lemon/dfs.h
author alpar
Mon, 12 Feb 2007 17:54:36 +0000
changeset 2360 72c7075ad5ba
parent 2260 4274224f8a7d
child 2376 0ed45a6c74b1
permissions -rw-r--r--
Lagrange relaxation based algorithm for the delay constrained least cost
path problem.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_DFS_H
    20 #define LEMON_DFS_H
    21 
    22 ///\ingroup flowalgs
    23 ///\file
    24 ///\brief Dfs algorithm.
    25 
    26 #include <lemon/list_graph.h>
    27 #include <lemon/graph_utils.h>
    28 #include <lemon/bits/path_dump.h>
    29 #include <lemon/bits/invalid.h>
    30 #include <lemon/error.h>
    31 #include <lemon/maps.h>
    32 
    33 #include <lemon/concept_check.h>
    34 
    35 namespace lemon {
    36 
    37   
    38   ///Default traits class of Dfs class.
    39 
    40   ///Default traits class of Dfs class.
    41   ///\param GR Graph type.
    42   template<class GR>
    43   struct DfsDefaultTraits
    44   {
    45     ///The graph type the algorithm runs on. 
    46     typedef GR Graph;
    47     ///\brief The type of the map that stores the last
    48     ///edges of the %DFS paths.
    49     /// 
    50     ///The type of the map that stores the last
    51     ///edges of the %DFS paths.
    52     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
    53     ///
    54     typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
    55     ///Instantiates a PredMap.
    56  
    57     ///This function instantiates a \ref PredMap. 
    58     ///\param G is the graph, to which we would like to define the PredMap.
    59     ///\todo The graph alone may be insufficient to initialize
    60     static PredMap *createPredMap(const GR &G) 
    61     {
    62       return new PredMap(G);
    63     }
    64 
    65     ///The type of the map that indicates which nodes are processed.
    66  
    67     ///The type of the map that indicates which nodes are processed.
    68     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
    69     ///\todo named parameter to set this type, function to read and write.
    70     typedef NullMap<typename Graph::Node,bool> ProcessedMap;
    71     ///Instantiates a ProcessedMap.
    72  
    73     ///This function instantiates a \ref ProcessedMap. 
    74     ///\param g is the graph, to which
    75     ///we would like to define the \ref ProcessedMap
    76 #ifdef DOXYGEN
    77     static ProcessedMap *createProcessedMap(const GR &g)
    78 #else
    79     static ProcessedMap *createProcessedMap(const GR &)
    80 #endif
    81     {
    82       return new ProcessedMap();
    83     }
    84     ///The type of the map that indicates which nodes are reached.
    85  
    86     ///The type of the map that indicates which nodes are reached.
    87     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
    88     ///\todo named parameter to set this type, function to read and write.
    89     typedef typename Graph::template NodeMap<bool> ReachedMap;
    90     ///Instantiates a ReachedMap.
    91  
    92     ///This function instantiates a \ref ReachedMap. 
    93     ///\param G is the graph, to which
    94     ///we would like to define the \ref ReachedMap.
    95     static ReachedMap *createReachedMap(const GR &G)
    96     {
    97       return new ReachedMap(G);
    98     }
    99     ///The type of the map that stores the dists of the nodes.
   100  
   101     ///The type of the map that stores the dists of the nodes.
   102     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   103     ///
   104     typedef typename Graph::template NodeMap<int> DistMap;
   105     ///Instantiates a DistMap.
   106  
   107     ///This function instantiates a \ref DistMap. 
   108     ///\param G is the graph, to which we would like to define the \ref DistMap
   109     static DistMap *createDistMap(const GR &G)
   110     {
   111       return new DistMap(G);
   112     }
   113   };
   114   
   115   ///%DFS algorithm class.
   116   
   117   ///\ingroup flowalgs
   118   ///This class provides an efficient implementation of the %DFS algorithm.
   119   ///
   120   ///\param GR The graph type the algorithm runs on. The default value is
   121   ///\ref ListGraph. The value of GR is not used directly by Dfs, it
   122   ///is only passed to \ref DfsDefaultTraits.
   123   ///\param TR Traits class to set various data types used by the algorithm.
   124   ///The default traits class is
   125   ///\ref DfsDefaultTraits "DfsDefaultTraits<GR>".
   126   ///See \ref DfsDefaultTraits for the documentation of
   127   ///a Dfs traits class.
   128   ///
   129   ///\author Jacint Szabo and Alpar Juttner
   130 #ifdef DOXYGEN
   131   template <typename GR,
   132 	    typename TR>
   133 #else
   134   template <typename GR=ListGraph,
   135 	    typename TR=DfsDefaultTraits<GR> >
   136 #endif
   137   class Dfs {
   138   public:
   139     /**
   140      * \brief \ref Exception for uninitialized parameters.
   141      *
   142      * This error represents problems in the initialization
   143      * of the parameters of the algorithms.
   144      */
   145     class UninitializedParameter : public lemon::UninitializedParameter {
   146     public:
   147       virtual const char* what() const throw() {
   148 	return "lemon::Dfs::UninitializedParameter";
   149       }
   150     };
   151 
   152     typedef TR Traits;
   153     ///The type of the underlying graph.
   154     typedef typename TR::Graph Graph;
   155     ///\e
   156     typedef typename Graph::Node Node;
   157     ///\e
   158     typedef typename Graph::NodeIt NodeIt;
   159     ///\e
   160     typedef typename Graph::Edge Edge;
   161     ///\e
   162     typedef typename Graph::OutEdgeIt OutEdgeIt;
   163     
   164     ///\brief The type of the map that stores the last
   165     ///edges of the %DFS paths.
   166     typedef typename TR::PredMap PredMap;
   167     ///The type of the map indicating which nodes are reached.
   168     typedef typename TR::ReachedMap ReachedMap;
   169     ///The type of the map indicating which nodes are processed.
   170     typedef typename TR::ProcessedMap ProcessedMap;
   171     ///The type of the map that stores the dists of the nodes.
   172     typedef typename TR::DistMap DistMap;
   173   private:
   174     /// Pointer to the underlying graph.
   175     const Graph *G;
   176     ///Pointer to the map of predecessors edges.
   177     PredMap *_pred;
   178     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   179     bool local_pred;
   180     ///Pointer to the map of distances.
   181     DistMap *_dist;
   182     ///Indicates if \ref _dist is locally allocated (\c true) or not.
   183     bool local_dist;
   184     ///Pointer to the map of reached status of the nodes.
   185     ReachedMap *_reached;
   186     ///Indicates if \ref _reached is locally allocated (\c true) or not.
   187     bool local_reached;
   188     ///Pointer to the map of processed status of the nodes.
   189     ProcessedMap *_processed;
   190     ///Indicates if \ref _processed is locally allocated (\c true) or not.
   191     bool local_processed;
   192 
   193     std::vector<typename Graph::OutEdgeIt> _stack;
   194     int _stack_head;
   195 
   196     ///Creates the maps if necessary.
   197     
   198     ///\todo Better memory allocation (instead of new).
   199     void create_maps() 
   200     {
   201       if(!_pred) {
   202 	local_pred = true;
   203 	_pred = Traits::createPredMap(*G);
   204       }
   205       if(!_dist) {
   206 	local_dist = true;
   207 	_dist = Traits::createDistMap(*G);
   208       }
   209       if(!_reached) {
   210 	local_reached = true;
   211 	_reached = Traits::createReachedMap(*G);
   212       }
   213       if(!_processed) {
   214 	local_processed = true;
   215 	_processed = Traits::createProcessedMap(*G);
   216       }
   217     }
   218 
   219   protected:
   220 
   221     Dfs() {}
   222     
   223   public:
   224 
   225     typedef Dfs Create;
   226 
   227     ///\name Named template parameters
   228 
   229     ///@{
   230 
   231     template <class T>
   232     struct DefPredMapTraits : public Traits {
   233       typedef T PredMap;
   234       static PredMap *createPredMap(const Graph &G) 
   235       {
   236 	throw UninitializedParameter();
   237       }
   238     };
   239     ///\ref named-templ-param "Named parameter" for setting PredMap type
   240 
   241     ///\ref named-templ-param "Named parameter" for setting PredMap type
   242     ///
   243     template <class T>
   244     struct DefPredMap : public Dfs<Graph, DefPredMapTraits<T> > {
   245       typedef Dfs<Graph, DefPredMapTraits<T> > Create;
   246     };
   247     
   248     
   249     template <class T>
   250     struct DefDistMapTraits : public Traits {
   251       typedef T DistMap;
   252       static DistMap *createDistMap(const Graph &) 
   253       {
   254 	throw UninitializedParameter();
   255       }
   256     };
   257     ///\ref named-templ-param "Named parameter" for setting DistMap type
   258 
   259     ///\ref named-templ-param "Named parameter" for setting DistMap type
   260     ///
   261     template <class T>
   262     struct DefDistMap {
   263       typedef Dfs<Graph, DefDistMapTraits<T> > Create;
   264     };
   265     
   266     template <class T>
   267     struct DefReachedMapTraits : public Traits {
   268       typedef T ReachedMap;
   269       static ReachedMap *createReachedMap(const Graph &) 
   270       {
   271 	throw UninitializedParameter();
   272       }
   273     };
   274     ///\ref named-templ-param "Named parameter" for setting ReachedMap type
   275 
   276     ///\ref named-templ-param "Named parameter" for setting ReachedMap type
   277     ///
   278     template <class T>
   279     struct DefReachedMap : public Dfs< Graph, DefReachedMapTraits<T> > {
   280       typedef Dfs< Graph, DefReachedMapTraits<T> > Create;
   281     };
   282 
   283     template <class T>
   284     struct DefProcessedMapTraits : public Traits {
   285       typedef T ProcessedMap;
   286       static ProcessedMap *createProcessedMap(const Graph &) 
   287       {
   288 	throw UninitializedParameter();
   289       }
   290     };
   291     ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   292 
   293     ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   294     ///
   295     template <class T>
   296     struct DefProcessedMap : public Dfs< Graph, DefProcessedMapTraits<T> > { 
   297       typedef Dfs< Graph, DefProcessedMapTraits<T> > Create;
   298     };
   299     
   300     struct DefGraphProcessedMapTraits : public Traits {
   301       typedef typename Graph::template NodeMap<bool> ProcessedMap;
   302       static ProcessedMap *createProcessedMap(const Graph &G) 
   303       {
   304 	return new ProcessedMap(G);
   305       }
   306     };
   307     ///\brief \ref named-templ-param "Named parameter"
   308     ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
   309     ///
   310     ///\ref named-templ-param "Named parameter"
   311     ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
   312     ///If you don't set it explicitely, it will be automatically allocated.
   313     template <class T>
   314     class DefProcessedMapToBeDefaultMap :
   315       public Dfs< Graph, DefGraphProcessedMapTraits> { 
   316       typedef Dfs< Graph, DefGraphProcessedMapTraits> Create;
   317     };
   318     
   319     ///@}
   320 
   321   public:      
   322     
   323     ///Constructor.
   324     
   325     ///\param _G the graph the algorithm will run on.
   326     ///
   327     Dfs(const Graph& _G) :
   328       G(&_G),
   329       _pred(NULL), local_pred(false),
   330       _dist(NULL), local_dist(false),
   331       _reached(NULL), local_reached(false),
   332       _processed(NULL), local_processed(false)
   333     { }
   334     
   335     ///Destructor.
   336     ~Dfs() 
   337     {
   338       if(local_pred) delete _pred;
   339       if(local_dist) delete _dist;
   340       if(local_reached) delete _reached;
   341       if(local_processed) delete _processed;
   342     }
   343 
   344     ///Sets the map storing the predecessor edges.
   345 
   346     ///Sets the map storing the predecessor edges.
   347     ///If you don't use this function before calling \ref run(),
   348     ///it will allocate one. The destuctor deallocates this
   349     ///automatically allocated map, of course.
   350     ///\return <tt> (*this) </tt>
   351     Dfs &predMap(PredMap &m) 
   352     {
   353       if(local_pred) {
   354 	delete _pred;
   355 	local_pred=false;
   356       }
   357       _pred = &m;
   358       return *this;
   359     }
   360 
   361     ///Sets the map storing the distances calculated by the algorithm.
   362 
   363     ///Sets the map storing the distances calculated by the algorithm.
   364     ///If you don't use this function before calling \ref run(),
   365     ///it will allocate one. The destuctor deallocates this
   366     ///automatically allocated map, of course.
   367     ///\return <tt> (*this) </tt>
   368     Dfs &distMap(DistMap &m) 
   369     {
   370       if(local_dist) {
   371 	delete _dist;
   372 	local_dist=false;
   373       }
   374       _dist = &m;
   375       return *this;
   376     }
   377 
   378     ///Sets the map indicating if a node is reached.
   379 
   380     ///Sets the map indicating if a node is reached.
   381     ///If you don't use this function before calling \ref run(),
   382     ///it will allocate one. The destuctor deallocates this
   383     ///automatically allocated map, of course.
   384     ///\return <tt> (*this) </tt>
   385     Dfs &reachedMap(ReachedMap &m) 
   386     {
   387       if(local_reached) {
   388 	delete _reached;
   389 	local_reached=false;
   390       }
   391       _reached = &m;
   392       return *this;
   393     }
   394 
   395     ///Sets the map indicating if a node is processed.
   396 
   397     ///Sets the map indicating if a node is processed.
   398     ///If you don't use this function before calling \ref run(),
   399     ///it will allocate one. The destuctor deallocates this
   400     ///automatically allocated map, of course.
   401     ///\return <tt> (*this) </tt>
   402     Dfs &processedMap(ProcessedMap &m) 
   403     {
   404       if(local_processed) {
   405 	delete _processed;
   406 	local_processed=false;
   407       }
   408       _processed = &m;
   409       return *this;
   410     }
   411 
   412   public:
   413     ///\name Execution control
   414     ///The simplest way to execute the algorithm is to use
   415     ///one of the member functions called \c run(...).
   416     ///\n
   417     ///If you need more control on the execution,
   418     ///first you must call \ref init(), then you can add a source node
   419     ///with \ref addSource().
   420     ///Finally \ref start() will perform the actual path
   421     ///computation.
   422 
   423     ///@{
   424 
   425     ///Initializes the internal data structures.
   426 
   427     ///Initializes the internal data structures.
   428     ///
   429     void init()
   430     {
   431       create_maps();
   432       _stack.resize(countNodes(*G));
   433       _stack_head=-1;
   434       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
   435 	_pred->set(u,INVALID);
   436 	// _predNode->set(u,INVALID);
   437 	_reached->set(u,false);
   438 	_processed->set(u,false);
   439       }
   440     }
   441     
   442     ///Adds a new source node.
   443 
   444     ///Adds a new source node to the set of nodes to be processed.
   445     ///
   446     ///\warning dists are wrong (or at least strange)
   447     ///in case of multiple sources.
   448     void addSource(Node s)
   449     {
   450       if(!(*_reached)[s])
   451 	{
   452 	  _reached->set(s,true);
   453 	  _pred->set(s,INVALID);
   454 	  OutEdgeIt e(*G,s);
   455 	  if(e!=INVALID) {
   456 	    _stack[++_stack_head]=e;
   457 	    _dist->set(s,_stack_head);
   458 	  }
   459 	  else {
   460 	    _processed->set(s,true);
   461 	    _dist->set(s,0);
   462 	  }
   463 	}
   464     }
   465     
   466     ///Processes the next edge.
   467 
   468     ///Processes the next edge.
   469     ///
   470     ///\return The processed edge.
   471     ///
   472     ///\pre The stack must not be empty!
   473     Edge processNextEdge()
   474     { 
   475       Node m;
   476       Edge e=_stack[_stack_head];
   477       if(!(*_reached)[m=G->target(e)]) {
   478 	_pred->set(m,e);
   479 	_reached->set(m,true);
   480 	++_stack_head;
   481 	_stack[_stack_head] = OutEdgeIt(*G, m);
   482 	_dist->set(m,_stack_head);
   483       }
   484       else {
   485 	m=G->source(e);
   486 	++_stack[_stack_head];
   487       }
   488       while(_stack_head>=0 && _stack[_stack_head]==INVALID) {
   489 	_processed->set(m,true);
   490 	--_stack_head;
   491 	if(_stack_head>=0) {
   492 	  m=G->source(_stack[_stack_head]);
   493 	  ++_stack[_stack_head];
   494 	}
   495       }
   496       return e;
   497     }
   498     ///Next edge to be processed.
   499 
   500     ///Next edge to be processed.
   501     ///
   502     ///\return The next edge to be processed or INVALID if the stack is
   503     /// empty.
   504     OutEdgeIt nextEdge()
   505     { 
   506       return _stack_head>=0?_stack[_stack_head]:INVALID;
   507     }
   508 
   509     ///\brief Returns \c false if there are nodes
   510     ///to be processed in the queue
   511     ///
   512     ///Returns \c false if there are nodes
   513     ///to be processed in the queue
   514     bool emptyQueue() { return _stack_head<0; }
   515     ///Returns the number of the nodes to be processed.
   516     
   517     ///Returns the number of the nodes to be processed in the queue.
   518     int queueSize() { return _stack_head+1; }
   519     
   520     ///Executes the algorithm.
   521 
   522     ///Executes the algorithm.
   523     ///
   524     ///\pre init() must be called and at least one node should be added
   525     ///with addSource() before using this function.
   526     ///
   527     ///This method runs the %DFS algorithm from the root node(s)
   528     ///in order to
   529     ///compute the
   530     ///%DFS path to each node. The algorithm computes
   531     ///- The %DFS tree.
   532     ///- The distance of each node from the root(s) in the %DFS tree.
   533     ///
   534     void start()
   535     {
   536       while ( !emptyQueue() ) processNextEdge();
   537     }
   538     
   539     ///Executes the algorithm until \c dest is reached.
   540 
   541     ///Executes the algorithm until \c dest is reached.
   542     ///
   543     ///\pre init() must be called and at least one node should be added
   544     ///with addSource() before using this function.
   545     ///
   546     ///This method runs the %DFS algorithm from the root node(s)
   547     ///in order to
   548     ///compute the
   549     ///%DFS path to \c dest. The algorithm computes
   550     ///- The %DFS path to \c  dest.
   551     ///- The distance of \c dest from the root(s) in the %DFS tree.
   552     ///
   553     void start(Node dest)
   554     {
   555       while ( !emptyQueue() && G->target(_stack[_stack_head])!=dest ) 
   556 	processNextEdge();
   557     }
   558     
   559     ///Executes the algorithm until a condition is met.
   560 
   561     ///Executes the algorithm until a condition is met.
   562     ///
   563     ///\pre init() must be called and at least one node should be added
   564     ///with addSource() before using this function.
   565     ///
   566     ///\param em must be a bool (or convertible) edge map. The algorithm
   567     ///will stop when it reaches an edge \c e with \code em[e]==true \endcode.
   568     ///
   569     ///\warning Contrary to \ref Dfs and \ref Dijkstra, \c em is an edge map,
   570     ///not a node map.
   571     template<class EM>
   572     void start(const EM &em)
   573     {
   574       while ( !emptyQueue() && !em[_stack[_stack_head]] ) processNextEdge();
   575     }
   576 
   577     ///Runs %DFS algorithm to visit all nodes in the graph.
   578     
   579     ///This method runs the %DFS algorithm in order to
   580     ///compute the
   581     ///%DFS path to each node. The algorithm computes
   582     ///- The %DFS tree.
   583     ///- The distance of each node from the root in the %DFS tree.
   584     ///
   585     ///\note d.run() is just a shortcut of the following code.
   586     ///\code
   587     ///  d.init();
   588     ///  for (NodeIt it(graph); it != INVALID; ++it) {
   589     ///    if (!d.reached(it)) {
   590     ///      d.addSource(it);
   591     ///      d.start();
   592     ///    }
   593     ///  }
   594     ///\endcode
   595     void run() {
   596       init();
   597       for (NodeIt it(*G); it != INVALID; ++it) {
   598         if (!reached(it)) {
   599           addSource(it);
   600           start();
   601         }
   602       }
   603     }
   604 
   605     ///Runs %DFS algorithm from node \c s.
   606     
   607     ///This method runs the %DFS algorithm from a root node \c s
   608     ///in order to
   609     ///compute the
   610     ///%DFS path to each node. The algorithm computes
   611     ///- The %DFS tree.
   612     ///- The distance of each node from the root in the %DFS tree.
   613     ///
   614     ///\note d.run(s) is just a shortcut of the following code.
   615     ///\code
   616     ///  d.init();
   617     ///  d.addSource(s);
   618     ///  d.start();
   619     ///\endcode
   620     void run(Node s) {
   621       init();
   622       addSource(s);
   623       start();
   624     }
   625     
   626     ///Finds the %DFS path between \c s and \c t.
   627     
   628     ///Finds the %DFS path between \c s and \c t.
   629     ///
   630     ///\return The length of the %DFS s---t path if there exists one,
   631     ///0 otherwise.
   632     ///\note Apart from the return value, d.run(s,t) is
   633     ///just a shortcut of the following code.
   634     ///\code
   635     ///  d.init();
   636     ///  d.addSource(s);
   637     ///  d.start(t);
   638     ///\endcode
   639     int run(Node s,Node t) {
   640       init();
   641       addSource(s);
   642       start(t);
   643       return reached(t)?_stack_head+1:0;
   644     }
   645     
   646     ///@}
   647 
   648     ///\name Query Functions
   649     ///The result of the %DFS algorithm can be obtained using these
   650     ///functions.\n
   651     ///Before the use of these functions,
   652     ///either run() or start() must be called.
   653     
   654     ///@{
   655 
   656     typedef PredMapPath<Graph, PredMap> Path;
   657 
   658     ///Gives back the shortest path.
   659     
   660     ///Gives back the shortest path.
   661     ///\pre The \c t should be reachable from the source.
   662     Path path(Node t) 
   663     {
   664       return Path(*G, *_pred, t);
   665     }
   666 
   667     ///The distance of a node from the root(s).
   668 
   669     ///Returns the distance of a node from the root(s).
   670     ///\pre \ref run() must be called before using this function.
   671     ///\warning If node \c v is unreachable from the root(s) then the return 
   672     ///value of this funcion is undefined.
   673     int dist(Node v) const { return (*_dist)[v]; }
   674 
   675     ///Returns the 'previous edge' of the %DFS tree.
   676 
   677     ///For a node \c v it returns the 'previous edge'
   678     ///of the %DFS path,
   679     ///i.e. it returns the last edge of a %DFS path from the root(s) to \c
   680     ///v. It is \ref INVALID
   681     ///if \c v is unreachable from the root(s) or \c v is a root. The
   682     ///%DFS tree used here is equal to the %DFS tree used in
   683     ///\ref predNode().
   684     ///\pre Either \ref run() or \ref start() must be called before using
   685     ///this function.
   686     Edge predEdge(Node v) const { return (*_pred)[v];}
   687 
   688     ///Returns the 'previous node' of the %DFS tree.
   689 
   690     ///For a node \c v it returns the 'previous node'
   691     ///of the %DFS tree,
   692     ///i.e. it returns the last but one node from a %DFS path from the
   693     ///root(s) to \c v.
   694     ///It is INVALID if \c v is unreachable from the root(s) or
   695     ///if \c v itself a root.
   696     ///The %DFS tree used here is equal to the %DFS
   697     ///tree used in \ref predEdge().
   698     ///\pre Either \ref run() or \ref start() must be called before
   699     ///using this function.
   700     Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
   701 				  G->source((*_pred)[v]); }
   702     
   703     ///Returns a reference to the NodeMap of distances.
   704 
   705     ///Returns a reference to the NodeMap of distances.
   706     ///\pre Either \ref run() or \ref init() must
   707     ///be called before using this function.
   708     const DistMap &distMap() const { return *_dist;}
   709  
   710     ///Returns a reference to the %DFS edge-tree map.
   711 
   712     ///Returns a reference to the NodeMap of the edges of the
   713     ///%DFS tree.
   714     ///\pre Either \ref run() or \ref init()
   715     ///must be called before using this function.
   716     const PredMap &predMap() const { return *_pred;}
   717  
   718     ///Checks if a node is reachable from the root.
   719 
   720     ///Returns \c true if \c v is reachable from the root(s).
   721     ///\warning The source nodes are inditated as unreachable.
   722     ///\pre Either \ref run() or \ref start()
   723     ///must be called before using this function.
   724     ///
   725     bool reached(Node v) { return (*_reached)[v]; }
   726     
   727     ///@}
   728   };
   729 
   730   ///Default traits class of Dfs function.
   731 
   732   ///Default traits class of Dfs function.
   733   ///\param GR Graph type.
   734   template<class GR>
   735   struct DfsWizardDefaultTraits
   736   {
   737     ///The graph type the algorithm runs on. 
   738     typedef GR Graph;
   739     ///\brief The type of the map that stores the last
   740     ///edges of the %DFS paths.
   741     /// 
   742     ///The type of the map that stores the last
   743     ///edges of the %DFS paths.
   744     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   745     ///
   746     typedef NullMap<typename Graph::Node,typename GR::Edge> PredMap;
   747     ///Instantiates a PredMap.
   748  
   749     ///This function instantiates a \ref PredMap. 
   750     ///\param g is the graph, to which we would like to define the PredMap.
   751     ///\todo The graph alone may be insufficient to initialize
   752 #ifdef DOXYGEN
   753     static PredMap *createPredMap(const GR &g) 
   754 #else
   755     static PredMap *createPredMap(const GR &) 
   756 #endif
   757     {
   758       return new PredMap();
   759     }
   760 
   761     ///The type of the map that indicates which nodes are processed.
   762  
   763     ///The type of the map that indicates which nodes are processed.
   764     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   765     ///\todo named parameter to set this type, function to read and write.
   766     typedef NullMap<typename Graph::Node,bool> ProcessedMap;
   767     ///Instantiates a ProcessedMap.
   768  
   769     ///This function instantiates a \ref ProcessedMap. 
   770     ///\param g is the graph, to which
   771     ///we would like to define the \ref ProcessedMap
   772 #ifdef DOXYGEN
   773     static ProcessedMap *createProcessedMap(const GR &g)
   774 #else
   775     static ProcessedMap *createProcessedMap(const GR &)
   776 #endif
   777     {
   778       return new ProcessedMap();
   779     }
   780     ///The type of the map that indicates which nodes are reached.
   781  
   782     ///The type of the map that indicates which nodes are reached.
   783     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   784     ///\todo named parameter to set this type, function to read and write.
   785     typedef typename Graph::template NodeMap<bool> ReachedMap;
   786     ///Instantiates a ReachedMap.
   787  
   788     ///This function instantiates a \ref ReachedMap. 
   789     ///\param G is the graph, to which
   790     ///we would like to define the \ref ReachedMap.
   791     static ReachedMap *createReachedMap(const GR &G)
   792     {
   793       return new ReachedMap(G);
   794     }
   795     ///The type of the map that stores the dists of the nodes.
   796  
   797     ///The type of the map that stores the dists of the nodes.
   798     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   799     ///
   800     typedef NullMap<typename Graph::Node,int> DistMap;
   801     ///Instantiates a DistMap.
   802  
   803     ///This function instantiates a \ref DistMap. 
   804     ///\param g is the graph, to which we would like to define the \ref DistMap
   805 #ifdef DOXYGEN
   806     static DistMap *createDistMap(const GR &g)
   807 #else
   808     static DistMap *createDistMap(const GR &)
   809 #endif
   810     {
   811       return new DistMap();
   812     }
   813   };
   814   
   815   /// Default traits used by \ref DfsWizard
   816 
   817   /// To make it easier to use Dfs algorithm
   818   ///we have created a wizard class.
   819   /// This \ref DfsWizard class needs default traits,
   820   ///as well as the \ref Dfs class.
   821   /// The \ref DfsWizardBase is a class to be the default traits of the
   822   /// \ref DfsWizard class.
   823   template<class GR>
   824   class DfsWizardBase : public DfsWizardDefaultTraits<GR>
   825   {
   826 
   827     typedef DfsWizardDefaultTraits<GR> Base;
   828   protected:
   829     /// Type of the nodes in the graph.
   830     typedef typename Base::Graph::Node Node;
   831 
   832     /// Pointer to the underlying graph.
   833     void *_g;
   834     ///Pointer to the map of reached nodes.
   835     void *_reached;
   836     ///Pointer to the map of processed nodes.
   837     void *_processed;
   838     ///Pointer to the map of predecessors edges.
   839     void *_pred;
   840     ///Pointer to the map of distances.
   841     void *_dist;
   842     ///Pointer to the source node.
   843     Node _source;
   844     
   845     public:
   846     /// Constructor.
   847     
   848     /// This constructor does not require parameters, therefore it initiates
   849     /// all of the attributes to default values (0, INVALID).
   850     DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
   851 			   _dist(0), _source(INVALID) {}
   852 
   853     /// Constructor.
   854     
   855     /// This constructor requires some parameters,
   856     /// listed in the parameters list.
   857     /// Others are initiated to 0.
   858     /// \param g is the initial value of  \ref _g
   859     /// \param s is the initial value of  \ref _source
   860     DfsWizardBase(const GR &g, Node s=INVALID) :
   861       _g((void *)&g), _reached(0), _processed(0), _pred(0),
   862       _dist(0), _source(s) {}
   863 
   864   };
   865   
   866   /// A class to make the usage of the Dfs algorithm easier
   867 
   868   /// This class is created to make it easier to use the Dfs algorithm.
   869   /// It uses the functions and features of the plain \ref Dfs,
   870   /// but it is much simpler to use it.
   871   ///
   872   /// Simplicity means that the way to change the types defined
   873   /// in the traits class is based on functions that returns the new class
   874   /// and not on templatable built-in classes.
   875   /// When using the plain \ref Dfs
   876   /// the new class with the modified type comes from
   877   /// the original class by using the ::
   878   /// operator. In the case of \ref DfsWizard only
   879   /// a function have to be called and it will
   880   /// return the needed class.
   881   ///
   882   /// It does not have own \ref run method. When its \ref run method is called
   883   /// it initiates a plain \ref Dfs object, and calls the \ref Dfs::run
   884   /// method of it.
   885   template<class TR>
   886   class DfsWizard : public TR
   887   {
   888     typedef TR Base;
   889 
   890     ///The type of the underlying graph.
   891     typedef typename TR::Graph Graph;
   892     //\e
   893     typedef typename Graph::Node Node;
   894     //\e
   895     typedef typename Graph::NodeIt NodeIt;
   896     //\e
   897     typedef typename Graph::Edge Edge;
   898     //\e
   899     typedef typename Graph::OutEdgeIt OutEdgeIt;
   900     
   901     ///\brief The type of the map that stores
   902     ///the reached nodes
   903     typedef typename TR::ReachedMap ReachedMap;
   904     ///\brief The type of the map that stores
   905     ///the processed nodes
   906     typedef typename TR::ProcessedMap ProcessedMap;
   907     ///\brief The type of the map that stores the last
   908     ///edges of the %DFS paths.
   909     typedef typename TR::PredMap PredMap;
   910     ///The type of the map that stores the distances of the nodes.
   911     typedef typename TR::DistMap DistMap;
   912 
   913   public:
   914     /// Constructor.
   915     DfsWizard() : TR() {}
   916 
   917     /// Constructor that requires parameters.
   918 
   919     /// Constructor that requires parameters.
   920     /// These parameters will be the default values for the traits class.
   921     DfsWizard(const Graph &g, Node s=INVALID) :
   922       TR(g,s) {}
   923 
   924     ///Copy constructor
   925     DfsWizard(const TR &b) : TR(b) {}
   926 
   927     ~DfsWizard() {}
   928 
   929     ///Runs Dfs algorithm from a given node.
   930     
   931     ///Runs Dfs algorithm from a given node.
   932     ///The node can be given by the \ref source function.
   933     void run()
   934     {
   935       if(Base::_source==INVALID) throw UninitializedParameter();
   936       Dfs<Graph,TR> alg(*(Graph*)Base::_g);
   937       if(Base::_reached) alg.reachedMap(*(ReachedMap*)Base::_reached);
   938       if(Base::_processed) alg.processedMap(*(ProcessedMap*)Base::_processed);
   939       if(Base::_pred) alg.predMap(*(PredMap*)Base::_pred);
   940       if(Base::_dist) alg.distMap(*(DistMap*)Base::_dist);
   941       alg.run(Base::_source);
   942     }
   943 
   944     ///Runs Dfs algorithm from the given node.
   945 
   946     ///Runs Dfs algorithm from the given node.
   947     ///\param s is the given source.
   948     void run(Node s)
   949     {
   950       Base::_source=s;
   951       run();
   952     }
   953 
   954     template<class T>
   955     struct DefPredMapBase : public Base {
   956       typedef T PredMap;
   957       static PredMap *createPredMap(const Graph &) { return 0; };
   958       DefPredMapBase(const TR &b) : TR(b) {}
   959     };
   960     
   961     ///\brief \ref named-templ-param "Named parameter"
   962     ///function for setting PredMap type
   963     ///
   964     /// \ref named-templ-param "Named parameter"
   965     ///function for setting PredMap type
   966     ///
   967     template<class T>
   968     DfsWizard<DefPredMapBase<T> > predMap(const T &t) 
   969     {
   970       Base::_pred=(void *)&t;
   971       return DfsWizard<DefPredMapBase<T> >(*this);
   972     }
   973     
   974  
   975     template<class T>
   976     struct DefReachedMapBase : public Base {
   977       typedef T ReachedMap;
   978       static ReachedMap *createReachedMap(const Graph &) { return 0; };
   979       DefReachedMapBase(const TR &b) : TR(b) {}
   980     };
   981     
   982     ///\brief \ref named-templ-param "Named parameter"
   983     ///function for setting ReachedMap
   984     ///
   985     /// \ref named-templ-param "Named parameter"
   986     ///function for setting ReachedMap
   987     ///
   988     template<class T>
   989     DfsWizard<DefReachedMapBase<T> > reachedMap(const T &t) 
   990     {
   991       Base::_pred=(void *)&t;
   992       return DfsWizard<DefReachedMapBase<T> >(*this);
   993     }
   994     
   995 
   996     template<class T>
   997     struct DefProcessedMapBase : public Base {
   998       typedef T ProcessedMap;
   999       static ProcessedMap *createProcessedMap(const Graph &) { return 0; };
  1000       DefProcessedMapBase(const TR &b) : TR(b) {}
  1001     };
  1002     
  1003     ///\brief \ref named-templ-param "Named parameter"
  1004     ///function for setting ProcessedMap
  1005     ///
  1006     /// \ref named-templ-param "Named parameter"
  1007     ///function for setting ProcessedMap
  1008     ///
  1009     template<class T>
  1010     DfsWizard<DefProcessedMapBase<T> > processedMap(const T &t) 
  1011     {
  1012       Base::_pred=(void *)&t;
  1013       return DfsWizard<DefProcessedMapBase<T> >(*this);
  1014     }
  1015     
  1016     template<class T>
  1017     struct DefDistMapBase : public Base {
  1018       typedef T DistMap;
  1019       static DistMap *createDistMap(const Graph &) { return 0; };
  1020       DefDistMapBase(const TR &b) : TR(b) {}
  1021     };
  1022     
  1023     ///\brief \ref named-templ-param "Named parameter"
  1024     ///function for setting DistMap type
  1025     ///
  1026     /// \ref named-templ-param "Named parameter"
  1027     ///function for setting DistMap type
  1028     ///
  1029     template<class T>
  1030     DfsWizard<DefDistMapBase<T> > distMap(const T &t) 
  1031     {
  1032       Base::_dist=(void *)&t;
  1033       return DfsWizard<DefDistMapBase<T> >(*this);
  1034     }
  1035     
  1036     /// Sets the source node, from which the Dfs algorithm runs.
  1037 
  1038     /// Sets the source node, from which the Dfs algorithm runs.
  1039     /// \param s is the source node.
  1040     DfsWizard<TR> &source(Node s) 
  1041     {
  1042       Base::_source=s;
  1043       return *this;
  1044     }
  1045     
  1046   };
  1047   
  1048   ///Function type interface for Dfs algorithm.
  1049 
  1050   /// \ingroup flowalgs
  1051   ///Function type interface for Dfs algorithm.
  1052   ///
  1053   ///This function also has several
  1054   ///\ref named-templ-func-param "named parameters",
  1055   ///they are declared as the members of class \ref DfsWizard.
  1056   ///The following
  1057   ///example shows how to use these parameters.
  1058   ///\code
  1059   ///  dfs(g,source).predMap(preds).run();
  1060   ///\endcode
  1061   ///\warning Don't forget to put the \ref DfsWizard::run() "run()"
  1062   ///to the end of the parameter list.
  1063   ///\sa DfsWizard
  1064   ///\sa Dfs
  1065   template<class GR>
  1066   DfsWizard<DfsWizardBase<GR> >
  1067   dfs(const GR &g,typename GR::Node s=INVALID)
  1068   {
  1069     return DfsWizard<DfsWizardBase<GR> >(g,s);
  1070   }
  1071 
  1072 #ifdef DOXYGEN
  1073   /// \brief Visitor class for dfs.
  1074   ///  
  1075   /// It gives a simple interface for a functional interface for dfs 
  1076   /// traversal. The traversal on a linear data structure. 
  1077   template <typename _Graph>
  1078   struct DfsVisitor {
  1079     typedef _Graph Graph;
  1080     typedef typename Graph::Edge Edge;
  1081     typedef typename Graph::Node Node;
  1082     /// \brief Called when the edge reach a node.
  1083     /// 
  1084     /// It is called when the dfs find an edge which target is not
  1085     /// reached yet.
  1086     void discover(const Edge& edge) {}
  1087     /// \brief Called when the node reached first time.
  1088     /// 
  1089     /// It is Called when the node reached first time.
  1090     void reach(const Node& node) {}
  1091     /// \brief Called when we step back on an edge.
  1092     /// 
  1093     /// It is called when the dfs should step back on the edge.
  1094     void backtrack(const Edge& edge) {}
  1095     /// \brief Called when we step back from the node.
  1096     /// 
  1097     /// It is called when we step back from the node.
  1098     void leave(const Node& node) {}
  1099     /// \brief Called when the edge examined but target of the edge 
  1100     /// already discovered.
  1101     /// 
  1102     /// It called when the edge examined but the target of the edge 
  1103     /// already discovered.
  1104     void examine(const Edge& edge) {}
  1105     /// \brief Called for the source node of the dfs.
  1106     /// 
  1107     /// It is called for the source node of the dfs.
  1108     void start(const Node& node) {}
  1109     /// \brief Called when we leave the source node of the dfs.
  1110     /// 
  1111     /// It is called when we leave the source node of the dfs.
  1112     void stop(const Node& node) {}
  1113 
  1114   };
  1115 #else
  1116   template <typename _Graph>
  1117   struct DfsVisitor {
  1118     typedef _Graph Graph;
  1119     typedef typename Graph::Edge Edge;
  1120     typedef typename Graph::Node Node;
  1121     void discover(const Edge&) {}
  1122     void reach(const Node&) {}
  1123     void backtrack(const Edge&) {}
  1124     void leave(const Node&) {}
  1125     void examine(const Edge&) {}
  1126     void start(const Node&) {}
  1127     void stop(const Node&) {}
  1128 
  1129     template <typename _Visitor>
  1130     struct Constraints {
  1131       void constraints() {
  1132 	Edge edge;
  1133 	Node node;
  1134 	visitor.discover(edge);
  1135 	visitor.reach(node);
  1136 	visitor.backtrack(edge);
  1137 	visitor.leave(node);
  1138 	visitor.examine(edge);
  1139 	visitor.start(node);
  1140 	visitor.stop(edge);
  1141       }
  1142       _Visitor& visitor;
  1143     };
  1144   };
  1145 #endif
  1146 
  1147   /// \brief Default traits class of DfsVisit class.
  1148   ///
  1149   /// Default traits class of DfsVisit class.
  1150   /// \param _Graph Graph type.
  1151   template<class _Graph>
  1152   struct DfsVisitDefaultTraits {
  1153 
  1154     /// \brief The graph type the algorithm runs on. 
  1155     typedef _Graph Graph;
  1156 
  1157     /// \brief The type of the map that indicates which nodes are reached.
  1158     /// 
  1159     /// The type of the map that indicates which nodes are reached.
  1160     /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
  1161     /// \todo named parameter to set this type, function to read and write.
  1162     typedef typename Graph::template NodeMap<bool> ReachedMap;
  1163 
  1164     /// \brief Instantiates a ReachedMap.
  1165     ///
  1166     /// This function instantiates a \ref ReachedMap. 
  1167     /// \param graph is the graph, to which
  1168     /// we would like to define the \ref ReachedMap.
  1169     static ReachedMap *createReachedMap(const Graph &graph) {
  1170       return new ReachedMap(graph);
  1171     }
  1172 
  1173   };
  1174   
  1175   /// %DFS Visit algorithm class.
  1176   
  1177   /// \ingroup flowalgs
  1178   /// This class provides an efficient implementation of the %DFS algorithm
  1179   /// with visitor interface.
  1180   ///
  1181   /// The %DfsVisit class provides an alternative interface to the Dfs
  1182   /// class. It works with callback mechanism, the DfsVisit object calls
  1183   /// on every dfs event the \c Visitor class member functions. 
  1184   ///
  1185   /// \param _Graph The graph type the algorithm runs on. The default value is
  1186   /// \ref ListGraph. The value of _Graph is not used directly by Dfs, it
  1187   /// is only passed to \ref DfsDefaultTraits.
  1188   /// \param _Visitor The Visitor object for the algorithm. The 
  1189   /// \ref DfsVisitor "DfsVisitor<_Graph>" is an empty Visitor which
  1190   /// does not observe the Dfs events. If you want to observe the dfs
  1191   /// events you should implement your own Visitor class.
  1192   /// \param _Traits Traits class to set various data types used by the 
  1193   /// algorithm. The default traits class is
  1194   /// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<_Graph>".
  1195   /// See \ref DfsVisitDefaultTraits for the documentation of
  1196   /// a Dfs visit traits class.
  1197   ///
  1198   /// \author Jacint Szabo, Alpar Juttner and Balazs Dezso
  1199 #ifdef DOXYGEN
  1200   template <typename _Graph, typename _Visitor, typename _Traits>
  1201 #else
  1202   template <typename _Graph = ListGraph,
  1203 	    typename _Visitor = DfsVisitor<_Graph>,
  1204 	    typename _Traits = DfsDefaultTraits<_Graph> >
  1205 #endif
  1206   class DfsVisit {
  1207   public:
  1208     
  1209     /// \brief \ref Exception for uninitialized parameters.
  1210     ///
  1211     /// This error represents problems in the initialization
  1212     /// of the parameters of the algorithms.
  1213     class UninitializedParameter : public lemon::UninitializedParameter {
  1214     public:
  1215       virtual const char* what() const throw() 
  1216       {
  1217 	return "lemon::DfsVisit::UninitializedParameter";
  1218       }
  1219     };
  1220 
  1221     typedef _Traits Traits;
  1222 
  1223     typedef typename Traits::Graph Graph;
  1224 
  1225     typedef _Visitor Visitor;
  1226 
  1227     ///The type of the map indicating which nodes are reached.
  1228     typedef typename Traits::ReachedMap ReachedMap;
  1229 
  1230   private:
  1231 
  1232     typedef typename Graph::Node Node;
  1233     typedef typename Graph::NodeIt NodeIt;
  1234     typedef typename Graph::Edge Edge;
  1235     typedef typename Graph::OutEdgeIt OutEdgeIt;
  1236 
  1237     /// Pointer to the underlying graph.
  1238     const Graph *_graph;
  1239     /// Pointer to the visitor object.
  1240     Visitor *_visitor;
  1241     ///Pointer to the map of reached status of the nodes.
  1242     ReachedMap *_reached;
  1243     ///Indicates if \ref _reached is locally allocated (\c true) or not.
  1244     bool local_reached;
  1245 
  1246     std::vector<typename Graph::Edge> _stack;
  1247     int _stack_head;
  1248 
  1249     /// \brief Creates the maps if necessary.
  1250     ///
  1251     /// Creates the maps if necessary.
  1252     void create_maps() {
  1253       if(!_reached) {
  1254 	local_reached = true;
  1255 	_reached = Traits::createReachedMap(*_graph);
  1256       }
  1257     }
  1258 
  1259   protected:
  1260 
  1261     DfsVisit() {}
  1262     
  1263   public:
  1264 
  1265     typedef DfsVisit Create;
  1266 
  1267     /// \name Named template parameters
  1268 
  1269     ///@{
  1270     template <class T>
  1271     struct DefReachedMapTraits : public Traits {
  1272       typedef T ReachedMap;
  1273       static ReachedMap *createReachedMap(const Graph &graph) {
  1274 	throw UninitializedParameter();
  1275       }
  1276     };
  1277     /// \brief \ref named-templ-param "Named parameter" for setting 
  1278     /// ReachedMap type
  1279     ///
  1280     /// \ref named-templ-param "Named parameter" for setting ReachedMap type
  1281     template <class T>
  1282     struct DefReachedMap : public DfsVisit< Graph, Visitor,
  1283 					    DefReachedMapTraits<T> > {
  1284       typedef DfsVisit< Graph, Visitor, DefReachedMapTraits<T> > Create;
  1285     };
  1286     ///@}
  1287 
  1288   public:      
  1289     
  1290     /// \brief Constructor.
  1291     ///
  1292     /// Constructor.
  1293     ///
  1294     /// \param graph the graph the algorithm will run on.
  1295     /// \param visitor The visitor of the algorithm.
  1296     ///
  1297     DfsVisit(const Graph& graph, Visitor& visitor) 
  1298       : _graph(&graph), _visitor(&visitor),
  1299 	_reached(0), local_reached(false) {}
  1300     
  1301     /// \brief Destructor.
  1302     ///
  1303     /// Destructor.
  1304     ~DfsVisit() {
  1305       if(local_reached) delete _reached;
  1306     }
  1307 
  1308     /// \brief Sets the map indicating if a node is reached.
  1309     ///
  1310     /// Sets the map indicating if a node is reached.
  1311     /// If you don't use this function before calling \ref run(),
  1312     /// it will allocate one. The destuctor deallocates this
  1313     /// automatically allocated map, of course.
  1314     /// \return <tt> (*this) </tt>
  1315     DfsVisit &reachedMap(ReachedMap &m) {
  1316       if(local_reached) {
  1317 	delete _reached;
  1318 	local_reached=false;
  1319       }
  1320       _reached = &m;
  1321       return *this;
  1322     }
  1323 
  1324   public:
  1325     /// \name Execution control
  1326     /// The simplest way to execute the algorithm is to use
  1327     /// one of the member functions called \c run(...).
  1328     /// \n
  1329     /// If you need more control on the execution,
  1330     /// first you must call \ref init(), then you can adda source node
  1331     /// with \ref addSource().
  1332     /// Finally \ref start() will perform the actual path
  1333     /// computation.
  1334 
  1335     /// @{
  1336     /// \brief Initializes the internal data structures.
  1337     ///
  1338     /// Initializes the internal data structures.
  1339     ///
  1340     void init() {
  1341       create_maps();
  1342       _stack.resize(countNodes(*_graph));
  1343       _stack_head = -1;
  1344       for (NodeIt u(*_graph) ; u != INVALID ; ++u) {
  1345 	_reached->set(u, false);
  1346       }
  1347     }
  1348     
  1349     /// \brief Adds a new source node.
  1350     ///
  1351     /// Adds a new source node to the set of nodes to be processed.
  1352     void addSource(Node s) {
  1353       if(!(*_reached)[s]) {
  1354 	  _reached->set(s,true);
  1355 	  _visitor->start(s);
  1356 	  _visitor->reach(s);
  1357 	  Edge e; 
  1358 	  _graph->firstOut(e, s);
  1359 	  if (e != INVALID) {
  1360 	    _stack[++_stack_head] = e;
  1361 	  } else {
  1362 	    _visitor->leave(s);
  1363 	  }
  1364 	}
  1365     }
  1366     
  1367     /// \brief Processes the next edge.
  1368     ///
  1369     /// Processes the next edge.
  1370     ///
  1371     /// \return The processed edge.
  1372     ///
  1373     /// \pre The stack must not be empty!
  1374     Edge processNextEdge() { 
  1375       Edge e = _stack[_stack_head];
  1376       Node m = _graph->target(e);
  1377       if(!(*_reached)[m]) {
  1378 	_visitor->discover(e);
  1379 	_visitor->reach(m);
  1380 	_reached->set(m, true);
  1381 	_graph->firstOut(_stack[++_stack_head], m);
  1382       } else {
  1383 	_visitor->examine(e);
  1384 	m = _graph->source(e);
  1385 	_graph->nextOut(_stack[_stack_head]);
  1386       }
  1387       while (_stack_head>=0 && _stack[_stack_head] == INVALID) {
  1388 	_visitor->leave(m);
  1389 	--_stack_head;
  1390 	if (_stack_head >= 0) {
  1391 	  _visitor->backtrack(_stack[_stack_head]);
  1392 	  m = _graph->source(_stack[_stack_head]);
  1393 	  _graph->nextOut(_stack[_stack_head]);
  1394 	} else {
  1395 	  _visitor->stop(m);	  
  1396 	}
  1397       }
  1398       return e;
  1399     }
  1400 
  1401     /// \brief Next edge to be processed.
  1402     ///
  1403     /// Next edge to be processed.
  1404     ///
  1405     /// \return The next edge to be processed or INVALID if the stack is
  1406     /// empty.
  1407     Edge nextEdge() { 
  1408       return _stack_head >= 0 ? _stack[_stack_head] : INVALID;
  1409     }
  1410 
  1411     /// \brief Returns \c false if there are nodes
  1412     /// to be processed in the queue
  1413     ///
  1414     /// Returns \c false if there are nodes
  1415     /// to be processed in the queue
  1416     bool emptyQueue() { return _stack_head < 0; }
  1417 
  1418     /// \brief Returns the number of the nodes to be processed.
  1419     ///
  1420     /// Returns the number of the nodes to be processed in the queue.
  1421     int queueSize() { return _stack_head + 1; }
  1422     
  1423     /// \brief Executes the algorithm.
  1424     ///
  1425     /// Executes the algorithm.
  1426     ///
  1427     /// \pre init() must be called and at least one node should be added
  1428     /// with addSource() before using this function.
  1429     void start() {
  1430       while ( !emptyQueue() ) processNextEdge();
  1431     }
  1432     
  1433     /// \brief Executes the algorithm until \c dest is reached.
  1434     ///
  1435     /// Executes the algorithm until \c dest is reached.
  1436     ///
  1437     /// \pre init() must be called and at least one node should be added
  1438     /// with addSource() before using this function.
  1439     void start(Node dest) {
  1440       while ( !emptyQueue() && _graph->target(_stack[_stack_head]) != dest) 
  1441 	processNextEdge();
  1442     }
  1443     
  1444     /// \brief Executes the algorithm until a condition is met.
  1445     ///
  1446     /// Executes the algorithm until a condition is met.
  1447     ///
  1448     /// \pre init() must be called and at least one node should be added
  1449     /// with addSource() before using this function.
  1450     ///
  1451     /// \param em must be a bool (or convertible) edge map. The algorithm
  1452     /// will stop when it reaches an edge \c e with \code nm[e]==true \endcode.
  1453     ///
  1454     /// \warning Contrary to \ref Dfs and \ref Dijkstra, \c em is an edge map,
  1455     /// not a node map.
  1456     template <typename EM>
  1457     void start(const EM &em) {
  1458       while (!emptyQueue() && !em[_stack[_stack_head]]) processNextEdge();
  1459     }
  1460 
  1461     /// \brief Runs %DFSVisit algorithm from node \c s.
  1462     ///
  1463     /// This method runs the %DFS algorithm from a root node \c s.
  1464     /// \note d.run(s) is just a shortcut of the following code.
  1465     ///\code
  1466     ///   d.init();
  1467     ///   d.addSource(s);
  1468     ///   d.start();
  1469     ///\endcode
  1470     void run(Node s) {
  1471       init();
  1472       addSource(s);
  1473       start();
  1474     }
  1475 
  1476     /// \brief Runs %DFSVisit algorithm to visit all nodes in the graph.
  1477     
  1478     /// This method runs the %DFS algorithm in order to
  1479     /// compute the %DFS path to each node. The algorithm computes
  1480     /// - The %DFS tree.
  1481     /// - The distance of each node from the root in the %DFS tree.
  1482     ///
  1483     ///\note d.run() is just a shortcut of the following code.
  1484     ///\code
  1485     ///  d.init();
  1486     ///  for (NodeIt it(graph); it != INVALID; ++it) {
  1487     ///    if (!d.reached(it)) {
  1488     ///      d.addSource(it);
  1489     ///      d.start();
  1490     ///    }
  1491     ///  }
  1492     ///\endcode
  1493     void run() {
  1494       init();
  1495       for (NodeIt it(*_graph); it != INVALID; ++it) {
  1496         if (!reached(it)) {
  1497           addSource(it);
  1498           start();
  1499         }
  1500       }
  1501     }
  1502     ///@}
  1503 
  1504     /// \name Query Functions
  1505     /// The result of the %DFS algorithm can be obtained using these
  1506     /// functions.\n
  1507     /// Before the use of these functions,
  1508     /// either run() or start() must be called.
  1509     ///@{
  1510     /// \brief Checks if a node is reachable from the root.
  1511     ///
  1512     /// Returns \c true if \c v is reachable from the root(s).
  1513     /// \warning The source nodes are inditated as unreachable.
  1514     /// \pre Either \ref run() or \ref start()
  1515     /// must be called before using this function.
  1516     ///
  1517     bool reached(Node v) { return (*_reached)[v]; }
  1518     ///@}
  1519   };
  1520 
  1521 
  1522 } //END OF NAMESPACE LEMON
  1523 
  1524 #endif
  1525