src/work/jacint/preflow_excess.h
author zsuzska
Fri, 25 Mar 2005 22:11:28 +0000
changeset 1266 74d616d081f0
parent 921 818510fa3d99
permissions -rw-r--r--
corrections in docs
     1 // -*- C++ -*-
     2 
     3 //run gyorsan tudna adni a minmincutot a 2 fazis elejen , ne vegyuk be konstruktorba egy cutmapet?
     4 //constzero jo igy?
     5 
     6 //majd marci megmondja betegyem-e bfs-t meg resgraphot
     7 
     8 //constzero helyett az kell hogy flow-e vagy csak preflow, ha flow akor csak
     9 //excess[t]-t kell szmaolni
    10 
    11 /*
    12 Heuristics: 
    13  2 phase
    14  gap
    15  list 'level_list' on the nodes on level i implemented by hand
    16  stack 'active' on the active nodes on level i implemented by hand
    17  runs heuristic 'highest label' for H1*n relabels
    18  runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
    19  
    20 Parameters H0 and H1 are initialized to 20 and 10.
    21 
    22 Constructors:
    23 
    24 Preflow(Graph, Node, Node, CapMap, FlowMap, bool) : bool must be false if 
    25      FlowMap is not constant zero, and should be true if it is
    26 
    27 Members:
    28 
    29 void run()
    30 
    31 T flowValue() : returns the value of a maximum flow
    32 
    33 void minMinCut(CutMap& M) : sets M to the characteristic vector of the 
    34      minimum min cut. M should be a map of bools initialized to false.
    35 
    36 void maxMinCut(CutMap& M) : sets M to the characteristic vector of the 
    37      maximum min cut. M should be a map of bools initialized to false.
    38 
    39 void minCut(CutMap& M) : sets M to the characteristic vector of 
    40      a min cut. M should be a map of bools initialized to false.
    41 
    42 FIXME reset
    43 
    44 */
    45 
    46 #ifndef LEMON_PREFLOW_H
    47 #define LEMON_PREFLOW_H
    48 
    49 #define H0 20
    50 #define H1 1
    51 
    52 #include <vector>
    53 #include <queue>
    54 #include <stack>
    55 
    56 namespace lemon {
    57 
    58   template <typename Graph, typename T, 
    59 	    typename CapMap=typename Graph::template EdgeMap<T>, 
    60             typename FlowMap=typename Graph::template EdgeMap<T> >
    61   class Preflow {
    62     
    63     typedef typename Graph::Node Node;
    64     typedef typename Graph::Edge Edge;
    65     typedef typename Graph::NodeIt NodeIt;
    66     typedef typename Graph::OutEdgeIt OutEdgeIt;
    67     typedef typename Graph::InEdgeIt InEdgeIt;
    68     
    69     const Graph& G;
    70     Node s;
    71     Node t;
    72     const CapMap& capacity;  
    73     FlowMap& flow;
    74     T value;
    75     bool constzero;
    76     bool isflow;
    77 
    78   public:
    79     Preflow(Graph& _G, Node _s, Node _t, CapMap& _capacity, 
    80 	    FlowMap& _flow, bool _constzero, bool _isflow ) :
    81       G(_G), s(_s), t(_t), capacity(_capacity), flow(_flow), constzero(_constzero), isflow(_isflow) {}
    82     
    83     
    84     void run() {
    85       
    86       value=0;                //for the subsequent runs
    87 
    88       bool phase=0;        //phase 0 is the 1st phase, phase 1 is the 2nd
    89       int n=G.nodeNum(); 
    90       int heur0=(int)(H0*n);  //time while running 'bound decrease' 
    91       int heur1=(int)(H1*n);  //time while running 'highest label'
    92       int heur=heur1;         //starting time interval (#of relabels)
    93       bool what_heur=1;       
    94       /*
    95 	what_heur is 0 in case 'bound decrease' 
    96 	and 1 in case 'highest label'
    97       */
    98       bool end=false;     
    99       /*
   100 	Needed for 'bound decrease', 'true'
   101 	means no active nodes are above bound b.
   102       */
   103       int relabel=0;
   104       int k=n-2;  //bound on the highest level under n containing a node
   105       int b=k;    //bound on the highest level under n of an active node
   106       
   107       typename Graph::template NodeMap<int> level(G,n);      
   108       typename Graph::template NodeMap<T> excess(G); 
   109 
   110       std::vector<std::stack<Node> > active(n);
   111       /*      std::vector<Node> active(n-1,INVALID);
   112       typename Graph::template NodeMap<Node> next(G,INVALID);
   113       //Stack of the active nodes in level i < n.
   114       //We use it in both phases.*/
   115 
   116       typename Graph::template NodeMap<Node> left(G,INVALID);
   117       typename Graph::template NodeMap<Node> right(G,INVALID);
   118       std::vector<Node> level_list(n,INVALID);
   119       /*
   120 	List of the nodes in level i<n.
   121       */
   122 
   123 
   124       if ( constzero ) {
   125      
   126 	/*Reverse_bfs from t, to find the starting level.*/
   127 	level.set(t,0);
   128 	std::queue<Node> bfs_queue;
   129 	bfs_queue.push(t);
   130 	
   131 	while (!bfs_queue.empty()) {
   132 	  
   133 	  Node v=bfs_queue.front();	
   134 	  bfs_queue.pop();
   135 	  int l=level[v]+1;
   136 	  
   137 	  InEdgeIt e;
   138 	  for(G.first(e,v); G.valid(e); G.next(e)) {
   139 	    Node w=G.source(e);
   140 	    if ( level[w] == n && w != s ) {
   141 	      bfs_queue.push(w);
   142 	      Node first=level_list[l];
   143 	      if ( G.valid(first) ) left.set(first,w);
   144 	      right.set(w,first);
   145 	      level_list[l]=w;
   146 	      level.set(w, l);
   147 	    }
   148 	  }
   149 	}
   150 
   151 	//the starting flow
   152 	OutEdgeIt e;
   153 	for(G.first(e,s); G.valid(e); G.next(e)) 
   154 	{
   155 	  T c=capacity[e];
   156 	  if ( c == 0 ) continue;
   157 	  Node w=G.target(e);
   158 	  if ( level[w] < n ) {	  
   159 	    if ( excess[w] == 0 && w!=t ) active[level[w]].push(w);
   160 	    flow.set(e, c); 
   161 	    excess.set(w, excess[w]+c);
   162 	  }
   163 	}
   164       }
   165       else 
   166       {
   167 	
   168 	/*
   169 	  Reverse_bfs from t in the residual graph, 
   170 	  to find the starting level.
   171 	*/
   172 	level.set(t,0);
   173 	std::queue<Node> bfs_queue;
   174 	bfs_queue.push(t);
   175 	
   176 	while (!bfs_queue.empty()) {
   177 	  
   178 	  Node v=bfs_queue.front();	
   179 	  bfs_queue.pop();
   180 	  int l=level[v]+1;
   181 	  
   182 	  InEdgeIt e;
   183 	  for(G.first(e,v); G.valid(e); G.next(e)) {
   184 	    if ( capacity[e] == flow[e] ) continue;
   185 	    Node w=G.source(e);
   186 	    if ( level[w] == n && w != s ) {
   187 	      bfs_queue.push(w);
   188 	      Node first=level_list[l];
   189 	      if ( G.valid(first) ) left.set(first,w);
   190 	      right.set(w,first);
   191 	      level_list[l]=w;
   192 	      level.set(w, l);
   193 	    }
   194 	  }
   195 	    
   196 	  OutEdgeIt f;
   197 	  for(G.first(f,v); G.valid(f); G.next(f)) {
   198 	    if ( 0 == flow[f] ) continue;
   199 	    Node w=G.target(f);
   200 	    if ( level[w] == n && w != s ) {
   201 	      bfs_queue.push(w);
   202 	      Node first=level_list[l];
   203 	      if ( G.valid(first) ) left.set(first,w);
   204 	      right.set(w,first);
   205 	      level_list[l]=w;
   206 	      level.set(w, l);
   207 	    }
   208 	  }
   209 	}
   210       
   211 	
   212 	/*
   213 	  Counting the excess
   214 	*/
   215 
   216 	if ( !isflow ) {
   217 	  NodeIt v;
   218 	  for(G.first(v); G.valid(v); G.next(v)) {
   219 	    T exc=0;
   220 	    
   221 	    InEdgeIt e;
   222 	    for(G.first(e,v); G.valid(e); G.next(e)) exc+=flow[e];
   223 	    OutEdgeIt f;
   224 	    for(G.first(f,v); G.valid(f); G.next(f)) exc-=flow[f];
   225 	    
   226 	    excess.set(v,exc);	  
   227 	    
   228 	    //putting the active nodes into the stack
   229 	    int lev=level[v];
   230 	    if ( exc > 0 && lev < n && v != t ) active[lev].push(v);
   231 	  }
   232 	} else {
   233 	  T exc=0;
   234 	    
   235 	  InEdgeIt e;
   236 	  for(G.first(e,t); G.valid(e); G.next(e)) exc+=flow[e];
   237 	  OutEdgeIt f;
   238 	  for(G.first(f,t); G.valid(f); G.next(f)) exc-=flow[f];
   239 
   240 	  excess.set(t,exc);	  
   241 	}
   242 
   243 
   244 	//the starting flow
   245 	OutEdgeIt e;
   246 	for(G.first(e,s); G.valid(e); G.next(e)) 
   247 	{
   248 	  T rem=capacity[e]-flow[e];
   249 	  if ( rem == 0 ) continue;
   250 	  Node w=G.target(e);
   251 	  if ( level[w] < n ) {	  
   252 	    if ( excess[w] == 0 && w!=t ) active[level[w]].push(w);
   253 	    flow.set(e, capacity[e]); 
   254 	    excess.set(w, excess[w]+rem);
   255 	  }
   256 	}
   257 	
   258 	InEdgeIt f;
   259 	for(G.first(f,s); G.valid(f); G.next(f)) 
   260 	{
   261 	  if ( flow[f] == 0 ) continue;
   262 	  Node w=G.source(f);
   263 	  if ( level[w] < n ) {	  
   264 	    if ( excess[w] == 0 && w!=t ) active[level[w]].push(w);
   265 	    excess.set(w, excess[w]+flow[f]);
   266 	    flow.set(f, 0); 
   267 	  }
   268 	}
   269       }
   270 
   271 
   272 
   273 
   274       /* 
   275 	 End of preprocessing 
   276       */
   277 
   278 
   279 
   280       /*
   281 	Push/relabel on the highest level active nodes.
   282       */	
   283       while ( true ) {
   284 	
   285 	if ( b == 0 ) {
   286 	  if ( phase ) break;
   287 	  
   288 	  if ( !what_heur && !end && k > 0 ) {
   289 	    b=k;
   290 	    end=true;
   291 	  } else {
   292 	    phase=1;
   293 	    level.set(s,0);
   294 	    std::queue<Node> bfs_queue;
   295 	    bfs_queue.push(s);
   296 	    
   297 	    while (!bfs_queue.empty()) {
   298 	      
   299 	      Node v=bfs_queue.front();	
   300 	      bfs_queue.pop();
   301 	      int l=level[v]+1;
   302 	      
   303 	      InEdgeIt e;
   304 	      for(G.first(e,v); G.valid(e); G.next(e)) {
   305 		if ( capacity[e] == flow[e] ) continue;
   306 		Node u=G.source(e);
   307 		if ( level[u] >= n ) { 
   308 		  bfs_queue.push(u);
   309 		  level.set(u, l);
   310 		  if ( excess[u] > 0 ) active[l].push(u);
   311 		}
   312 	      }
   313 	    
   314 	      OutEdgeIt f;
   315 	      for(G.first(f,v); G.valid(f); G.next(f)) {
   316 		if ( 0 == flow[f] ) continue;
   317 		Node u=G.target(f);
   318 		if ( level[u] >= n ) { 
   319 		  bfs_queue.push(u);
   320 		  level.set(u, l);
   321 		  if ( excess[u] > 0 ) active[l].push(u);
   322 		}
   323 	      }
   324 	    }
   325 	    b=n-2;
   326 	    }
   327 	    
   328 	}
   329 	  
   330 
   331 	///	  
   332 	if ( active[b].empty() ) --b; 
   333 	else {
   334 	  end=false;  
   335 
   336 	  Node w=active[b].top();
   337 	  active[b].pop();
   338 	  int lev=level[w];
   339 	  T exc=excess[w];
   340 	  int newlevel=n;       //bound on the next level of w
   341 	  
   342 	  OutEdgeIt e;
   343 	  for(G.first(e,w); G.valid(e); G.next(e)) {
   344 	    
   345 	    if ( flow[e] == capacity[e] ) continue; 
   346 	    Node v=G.target(e);            
   347 	    //e=wv	    
   348 	    
   349 	    if( lev > level[v] ) {      
   350 	      /*Push is allowed now*/
   351 	      
   352 	      if ( excess[v]==0 && v!=t && v!=s ) {
   353 		int lev_v=level[v];
   354 		active[lev_v].push(v);
   355 	      }
   356 	      
   357 	      T cap=capacity[e];
   358 	      T flo=flow[e];
   359 	      T remcap=cap-flo;
   360 	      
   361 	      if ( remcap >= exc ) {       
   362 		/*A nonsaturating push.*/
   363 		
   364 		flow.set(e, flo+exc);
   365 		excess.set(v, excess[v]+exc);
   366 		exc=0;
   367 		break; 
   368 		
   369 	      } else { 
   370 		/*A saturating push.*/
   371 		
   372 		flow.set(e, cap);
   373 		excess.set(v, excess[v]+remcap);
   374 		exc-=remcap;
   375 	      }
   376 	    } else if ( newlevel > level[v] ){
   377 	      newlevel = level[v];
   378 	    }	    
   379 	    
   380 	  } //for out edges wv 
   381 	
   382 	
   383 	if ( exc > 0 ) {	
   384 	  InEdgeIt e;
   385 	  for(G.first(e,w); G.valid(e); G.next(e)) {
   386 	    
   387 	    if( flow[e] == 0 ) continue; 
   388 	    Node v=G.source(e);  
   389 	    //e=vw
   390 	    
   391 	    if( lev > level[v] ) {  
   392 	      /*Push is allowed now*/
   393 	      
   394 	      if ( excess[v]==0 && v!=t && v!=s ) {
   395 		int lev_v=level[v];
   396 		active[lev_v].push(v);
   397 	      }
   398 	      
   399 	      T flo=flow[e];
   400 	      
   401 	      if ( flo >= exc ) { 
   402 		/*A nonsaturating push.*/
   403 		
   404 		flow.set(e, flo-exc);
   405 		excess.set(v, excess[v]+exc);
   406 		exc=0;
   407 		break; 
   408 	      } else {                                               
   409 		/*A saturating push.*/
   410 		
   411 		excess.set(v, excess[v]+flo);
   412 		exc-=flo;
   413 		flow.set(e,0);
   414 	      }  
   415 	    } else if ( newlevel > level[v] ) {
   416 	      newlevel = level[v];
   417 	    }	    
   418 	  } //for in edges vw
   419 	  
   420 	} // if w still has excess after the out edge for cycle
   421 	
   422 	excess.set(w, exc);
   423 	///	push
   424 
   425  
   426 	/*
   427 	  Relabel
   428 	*/
   429 	
   430 
   431 	if ( exc > 0 ) {
   432 	  //now 'lev' is the old level of w
   433 	
   434 	  if ( phase ) {
   435 	    level.set(w,++newlevel);
   436 	    active[newlevel].push(w);
   437 	    b=newlevel;
   438 	  } else {
   439 	    //unlacing starts
   440 	    Node right_n=right[w];
   441 	    Node left_n=left[w];
   442 
   443 	    if ( G.valid(right_n) ) {
   444 	      if ( G.valid(left_n) ) {
   445 		right.set(left_n, right_n);
   446 		left.set(right_n, left_n);
   447 	      } else {
   448 		level_list[lev]=right_n;   
   449 		left.set(right_n, INVALID);
   450 	      } 
   451 	    } else {
   452 	      if ( G.valid(left_n) ) {
   453 		right.set(left_n, INVALID);
   454 	      } else { 
   455 		level_list[lev]=INVALID;   
   456 	      } 
   457 	    } 
   458 	    //unlacing ends
   459 		
   460 	    if ( !G.valid(level_list[lev]) ) {
   461 	      
   462 	       //gapping starts
   463 	      for (int i=lev; i!=k ; ) {
   464 		Node v=level_list[++i];
   465 		while ( G.valid(v) ) {
   466 		  level.set(v,n);
   467 		  v=right[v];
   468 		}
   469 		level_list[i]=INVALID;
   470 		if ( !what_heur ) {
   471 		  while ( !active[i].empty() ) {
   472 		    active[i].pop();    //FIXME: ezt szebben kene
   473 		  }
   474 		}	     
   475 	      }
   476 
   477 	      level.set(w,n);
   478 	      b=lev-1;
   479 	      k=b;
   480 	      //gapping ends
   481 	    
   482 	    } else {
   483 	      
   484 	      if ( newlevel == n ) level.set(w,n); 
   485 	      else {
   486 		level.set(w,++newlevel);
   487 		active[newlevel].push(w);
   488 		if ( what_heur ) b=newlevel;
   489 		if ( k < newlevel ) ++k;      //now k=newlevel
   490 		Node first=level_list[newlevel];
   491 		if ( G.valid(first) ) left.set(first,w);
   492 		right.set(w,first);
   493 		left.set(w,INVALID);
   494 		level_list[newlevel]=w;
   495 	      }
   496 	    }
   497 
   498 
   499 	    ++relabel; 
   500 	    if ( relabel >= heur ) {
   501 	      relabel=0;
   502 	      if ( what_heur ) {
   503 		what_heur=0;
   504 		heur=heur0;
   505 		end=false;
   506 	      } else {
   507 		what_heur=1;
   508 		heur=heur1;
   509 		b=k; 
   510 	      }
   511 	    }
   512 	  } //phase 0
   513 	  
   514 	  
   515 	} // if ( exc > 0 )
   516 	  
   517 	
   518 	}  // if stack[b] is nonempty
   519 	
   520       } // while(true)
   521 
   522 
   523       value = excess[t];
   524       /*Max flow value.*/
   525      
   526     } //void run()
   527 
   528 
   529 
   530 
   531 
   532     /*
   533       Returns the maximum value of a flow.
   534      */
   535 
   536     T flowValue() {
   537       return value;
   538     }
   539 
   540 
   541     FlowMap Flow() {
   542       return flow;
   543       }
   544 
   545 
   546     void Flow(FlowMap& _flow ) {
   547       NodeIt v;
   548       for(G.first(v) ; G.valid(v); G.next(v))
   549 	_flow.set(v,flow[v]);
   550     }
   551 
   552 
   553 
   554     /*
   555       Returns the minimum min cut, by a bfs from s in the residual graph.
   556     */
   557    
   558     template<typename _CutMap>
   559     void minMinCut(_CutMap& M) {
   560     
   561       std::queue<Node> queue;
   562       
   563       M.set(s,true);      
   564       queue.push(s);
   565 
   566       while (!queue.empty()) {
   567         Node w=queue.front();
   568 	queue.pop();
   569 
   570 	OutEdgeIt e;
   571 	for(G.first(e,w) ; G.valid(e); G.next(e)) {
   572 	  Node v=G.target(e);
   573 	  if (!M[v] && flow[e] < capacity[e] ) {
   574 	    queue.push(v);
   575 	    M.set(v, true);
   576 	  }
   577 	} 
   578 
   579 	InEdgeIt f;
   580 	for(G.first(f,w) ; G.valid(f); G.next(f)) {
   581 	  Node v=G.source(f);
   582 	  if (!M[v] && flow[f] > 0 ) {
   583 	    queue.push(v);
   584 	    M.set(v, true);
   585 	  }
   586 	} 
   587       }
   588     }
   589 
   590 
   591   
   592     /*
   593       Returns the maximum min cut, by a reverse bfs 
   594       from t in the residual graph.
   595     */
   596     
   597     template<typename _CutMap>
   598     void maxMinCut(_CutMap& M) {
   599     
   600       std::queue<Node> queue;
   601       
   602       M.set(t,true);        
   603       queue.push(t);
   604 
   605       while (!queue.empty()) {
   606         Node w=queue.front();
   607 	queue.pop();
   608 
   609 
   610 	InEdgeIt e;
   611 	for(G.first(e,w) ; G.valid(e); G.next(e)) {
   612 	  Node v=G.source(e);
   613 	  if (!M[v] && flow[e] < capacity[e] ) {
   614 	    queue.push(v);
   615 	    M.set(v, true);
   616 	  }
   617 	}
   618 	
   619 	OutEdgeIt f;
   620 	for(G.first(f,w) ; G.valid(f); G.next(f)) {
   621 	  Node v=G.target(f);
   622 	  if (!M[v] && flow[f] > 0 ) {
   623 	    queue.push(v);
   624 	    M.set(v, true);
   625 	  }
   626 	}
   627       }
   628 
   629       NodeIt v;
   630       for(G.first(v) ; G.valid(v); G.next(v)) {
   631 	M.set(v, !M[v]);
   632       }
   633 
   634     }
   635 
   636 
   637 
   638     template<typename CutMap>
   639     void minCut(CutMap& M) {
   640       minMinCut(M);
   641     }
   642 
   643     
   644     void resetTarget (Node _t) {t=_t;}
   645     void resetSource (Node _s) {s=_s;}
   646    
   647     void resetCap (CapMap _cap) {capacity=_cap;}
   648 
   649     void resetFlow (FlowMap _flow, bool _constzero) {
   650       flow=_flow;
   651       constzero=_constzero;
   652     }
   653 
   654 
   655 
   656   };
   657 
   658 } //namespace lemon
   659 
   660 #endif //PREFLOW_H
   661 
   662 
   663 
   664