src/hugo/min_cost_flow.h
author marci
Tue, 28 Sep 2004 13:45:39 +0000
changeset 915 751ed145bdae
parent 906 17f31d280385
permissions -rw-r--r--
beginning of a modular, generic merge_graph_wrapper...
     1 /* -*- C++ -*-
     2  * src/hugo/min_cost_flow.h - Part of HUGOlib, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef HUGO_MIN_COST_FLOW_H
    18 #define HUGO_MIN_COST_FLOW_H
    19 
    20 ///\ingroup flowalgs
    21 ///\file
    22 ///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost 
    23 
    24 
    25 #include <hugo/dijkstra.h>
    26 #include <hugo/graph_wrapper.h>
    27 #include <hugo/maps.h>
    28 #include <vector>
    29 
    30 namespace hugo {
    31 
    32 /// \addtogroup flowalgs
    33 /// @{
    34 
    35   ///\brief Implementation of an algorithm for finding a flow of value \c k 
    36   ///(for small values of \c k) having minimal total cost between 2 nodes 
    37   /// 
    38   ///
    39   /// The class \ref hugo::MinCostFlow "MinCostFlow" implements
    40   /// an algorithm for finding a flow of value \c k 
    41   /// having minimal total cost 
    42   /// from a given source node to a given target node in an
    43   /// edge-weighted directed graph. To this end, 
    44   /// the edge-capacities and edge-weitghs have to be nonnegative. 
    45   /// The edge-capacities should be integers, but the edge-weights can be 
    46   /// integers, reals or of other comparable numeric type.
    47   /// This algorithm is intended to use only for small values of \c k, 
    48   /// since it is only polynomial in k, 
    49   /// not in the length of k (which is log k). 
    50   /// In order to find the minimum cost flow of value \c k it 
    51   /// finds the minimum cost flow of value \c i for every 
    52   /// \c i between 0 and \c k. 
    53   ///
    54   ///\param Graph The directed graph type the algorithm runs on.
    55   ///\param LengthMap The type of the length map.
    56   ///\param CapacityMap The capacity map type.
    57   ///
    58   ///\author Attila Bernath
    59   template <typename Graph, typename LengthMap, typename CapacityMap>
    60   class MinCostFlow {
    61 
    62     typedef typename LengthMap::ValueType Length;
    63 
    64     //Warning: this should be integer type
    65     typedef typename CapacityMap::ValueType Capacity;
    66     
    67     typedef typename Graph::Node Node;
    68     typedef typename Graph::NodeIt NodeIt;
    69     typedef typename Graph::Edge Edge;
    70     typedef typename Graph::OutEdgeIt OutEdgeIt;
    71     typedef typename Graph::template EdgeMap<int> EdgeIntMap;
    72 
    73 
    74     typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGW;
    75     typedef typename ResGW::Edge ResGraphEdge;
    76 
    77     class ModLengthMap {   
    78       typedef typename Graph::template NodeMap<Length> NodeMap;
    79       const ResGW& G;
    80       const LengthMap &ol;
    81       const NodeMap &pot;
    82     public :
    83       typedef typename LengthMap::KeyType KeyType;
    84       typedef typename LengthMap::ValueType ValueType;
    85 	
    86       ValueType operator[](typename ResGW::Edge e) const {     
    87 	if (G.forward(e))
    88 	  return  ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    89 	else
    90 	  return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    91       }     
    92 	
    93       ModLengthMap(const ResGW& _G,
    94 		   const LengthMap &o,  const NodeMap &p) : 
    95 	G(_G), /*rev(_rev),*/ ol(o), pot(p){}; 
    96     };//ModLengthMap
    97 
    98 
    99   protected:
   100     
   101     //Input
   102     const Graph& G;
   103     const LengthMap& length;
   104     const CapacityMap& capacity;
   105 
   106 
   107     //auxiliary variables
   108 
   109     //To store the flow
   110     EdgeIntMap flow; 
   111     //To store the potential (dual variables)
   112     typedef typename Graph::template NodeMap<Length> PotentialMap;
   113     PotentialMap potential;
   114     
   115 
   116     Length total_length;
   117 
   118 
   119   public :
   120 
   121     /// The constructor of the class.
   122     
   123     ///\param _G The directed graph the algorithm runs on. 
   124     ///\param _length The length (weight or cost) of the edges. 
   125     ///\param _cap The capacity of the edges. 
   126     MinCostFlow(Graph& _G, LengthMap& _length, CapacityMap& _cap) : G(_G), 
   127       length(_length), capacity(_cap), flow(_G), potential(_G){ }
   128 
   129     
   130     ///Runs the algorithm.
   131     
   132     ///Runs the algorithm.
   133     ///Returns k if there is a flow of value at least k edge-disjoint 
   134     ///from s to t.
   135     ///Otherwise it returns the maximum value of a flow from s to t.
   136     ///
   137     ///\param s The source node.
   138     ///\param t The target node.
   139     ///\param k The value of the flow we are looking for.
   140     ///
   141     ///\todo May be it does make sense to be able to start with a nonzero 
   142     /// feasible primal-dual solution pair as well.
   143     int run(Node s, Node t, int k) {
   144 
   145       //Resetting variables from previous runs
   146       total_length = 0;
   147       
   148       for (typename Graph::EdgeIt e(G); e!=INVALID; ++e) flow.set(e, 0);
   149 
   150       //Initialize the potential to zero
   151       for (typename Graph::NodeIt n(G); n!=INVALID; ++n) potential.set(n, 0);
   152       
   153       
   154       //We need a residual graph
   155       ResGW res_graph(G, capacity, flow);
   156 
   157 
   158       ModLengthMap mod_length(res_graph, length, potential);
   159 
   160       Dijkstra<ResGW, ModLengthMap> dijkstra(res_graph, mod_length);
   161 
   162       int i;
   163       for (i=0; i<k; ++i){
   164 	dijkstra.run(s);
   165 	if (!dijkstra.reached(t)){
   166 	  //There are no flow of value k from s to t
   167 	  break;
   168 	};
   169 	
   170 	//We have to change the potential
   171         for(typename ResGW::NodeIt n(res_graph); n!=INVALID; ++n)
   172 	  potential[n] += dijkstra.distMap()[n];
   173 
   174 
   175 	//Augmenting on the sortest path
   176 	Node n=t;
   177 	ResGraphEdge e;
   178 	while (n!=s){
   179 	  e = dijkstra.pred(n);
   180 	  n = dijkstra.predNode(n);
   181 	  res_graph.augment(e,1);
   182 	  //Let's update the total length
   183 	  if (res_graph.forward(e))
   184 	    total_length += length[e];
   185 	  else 
   186 	    total_length -= length[e];	    
   187 	}
   188 
   189 	  
   190       }
   191       
   192 
   193       return i;
   194     }
   195 
   196 
   197 
   198     /// Gives back the total weight of the found flow.
   199 
   200     ///This function gives back the total weight of the found flow.
   201     ///Assumes that \c run() has been run and nothing changed since then.
   202     Length totalLength(){
   203       return total_length;
   204     }
   205 
   206     ///Returns a const reference to the EdgeMap \c flow. 
   207 
   208     ///Returns a const reference to the EdgeMap \c flow. 
   209     ///\pre \ref run() must
   210     ///be called before using this function.
   211     const EdgeIntMap &getFlow() const { return flow;}
   212 
   213     ///Returns a const reference to the NodeMap \c potential (the dual solution).
   214 
   215     ///Returns a const reference to the NodeMap \c potential (the dual solution).
   216     /// \pre \ref run() must be called before using this function.
   217     const PotentialMap &getPotential() const { return potential;}
   218 
   219     /// Checking the complementary slackness optimality criteria
   220 
   221     ///This function checks, whether the given solution is optimal
   222     ///If executed after the call of \c run() then it should return with true.
   223     ///This function only checks optimality, doesn't bother with feasibility.
   224     ///It is meant for testing purposes.
   225     ///
   226     bool checkComplementarySlackness(){
   227       Length mod_pot;
   228       Length fl_e;
   229         for(typename Graph::EdgeIt e(G); e!=INVALID; ++e) {
   230 	//C^{\Pi}_{i,j}
   231 	mod_pot = length[e]-potential[G.head(e)]+potential[G.tail(e)];
   232 	fl_e = flow[e];
   233 	if (0<fl_e && fl_e<capacity[e]) {
   234 	  /// \todo better comparison is needed for real types, moreover, 
   235 	  /// this comparison here is superfluous.
   236 	  if (mod_pot != 0)
   237 	    return false;
   238 	} 
   239 	else {
   240 	  if (mod_pot > 0 && fl_e != 0)
   241 	    return false;
   242 	  if (mod_pot < 0 && fl_e != capacity[e])
   243 	    return false;
   244 	}
   245       }
   246       return true;
   247     }
   248     
   249 
   250   }; //class MinCostFlow
   251 
   252   ///@}
   253 
   254 } //namespace hugo
   255 
   256 #endif //HUGO_MIN_COST_FLOW_H