beginning of a modular, generic merge_graph_wrapper...
7 #include <LEDA/graph.h>
8 #include <LEDA/mcb_matching.h>
10 #include <LEDA/graph_gen.h>
12 #include <leda_graph_wrapper.h>
13 #include <sage_graph.h>
14 //#include <smart_graph.h>
16 #include <hugo/time_measure.h>
17 #include <for_each_macros.h>
18 #include <hugo/graph_wrapper.h>
19 #include <bipartite_graph_wrapper.h>
20 #include <hugo/maps.h>
21 #include <hugo/max_flow.h>
32 //lg.make_undirected();
33 typedef LedaGraphWrapper<leda::graph> Graph;
37 //typedef UndirSageGraph Graph;
40 typedef Graph::Node Node;
41 typedef Graph::NodeIt NodeIt;
42 typedef Graph::Edge Edge;
43 typedef Graph::EdgeIt EdgeIt;
44 typedef Graph::OutEdgeIt OutEdgeIt;
46 std::vector<Graph::Node> s_nodes;
47 std::vector<Graph::Node> t_nodes;
50 cout << "number of nodes in the first color class=";
53 cout << "number of nodes in the second color class=";
56 cout << "number of edges=";
59 cout << "A bipartite graph is a random group graph if the color classes \nA and B are partitiones to A_0, A_1, ..., A_{k-1} and B_0, B_1, ..., B_{k-1} \nas equally as possible \nand the edges from A_i goes to A_{i-1 mod k} and A_{i+1 mod k}.\n";
60 cout << "number of groups in LEDA random group graph=";
64 leda_list<leda_node> lS;
65 leda_list<leda_node> lT;
66 random_bigraph(lg, a, b, m, lS, lT, k);
68 Graph::NodeMap<int> ref_map(g, -1);
69 IterableBoolMap< Graph::NodeMap<int> > bipartite_map(ref_map);
71 //generating leda random group graph
73 forall(ln, lS) bipartite_map.insert(ln, false);
74 forall(ln, lT) bipartite_map.insert(ln, true);
76 //making bipartite graph
77 typedef BipartiteGraphWrapper<Graph> BGW;
78 BGW bgw(g, bipartite_map);
82 typedef stBipartiteGraphWrapper<BGW> stGW;
84 ConstMap<stGW::Edge, int> const1map(1);
85 stGW::EdgeMap<int> flow(stgw);
90 FOR_EACH_LOC(stGW::EdgeIt, e, stgw) flow.set(e, 0);
91 MaxFlow<stGW, int, ConstMap<stGW::Edge, int>, stGW::EdgeMap<int> >
92 max_flow_test(stgw, stgw.S_NODE, stgw.T_NODE, const1map, flow/*, true*/);
94 cout << "HUGO max matching algorithm based on preflow." << endl
95 << "Size of matching: "
96 << max_flow_test.flowValue() << endl;
97 cout << "elapsed time: " << ts << endl << endl;
100 leda_list<leda_edge> ml=MAX_CARD_BIPARTITE_MATCHING(lg);
101 cout << "LEDA max matching algorithm." << endl
102 << "Size of matching: "
103 << ml.size() << endl;
104 cout << "elapsed time: " << ts << endl << endl;
107 // FOR_EACH_LOC(stGW::EdgeIt, e, stgw) flow.set(e, 0);
108 // typedef SageGraph MutableGraph;
109 // while (max_flow_test.augmentOnBlockingFlow<MutableGraph>()) { }
110 // cout << "HUGO max matching algorithm based on blocking flow augmentation."
111 // << endl << "Matching size: "
112 // << max_flow_test.flowValue() << endl;
113 // cout << "elapsed time: " << ts << endl << endl;
117 SageGraph::Node s=hg.addNode();
118 SageGraph::Node t=hg.addNode();
119 BGW::NodeMap<SageGraph::Node> b_s_nodes(bgw);
120 BGW::NodeMap<SageGraph::Node> b_t_nodes(bgw);
122 FOR_EACH_INC_LOC(BGW::ClassNodeIt, n, bgw, BGW::S_CLASS) {
123 b_s_nodes.set(n, hg.addNode());
124 hg.addEdge(s, b_s_nodes[n]);
126 FOR_EACH_INC_LOC(BGW::ClassNodeIt, n, bgw, BGW::T_CLASS) {
127 b_t_nodes.set(n, hg.addNode());
128 hg.addEdge(b_t_nodes[n], t);
131 FOR_EACH_LOC(BGW::EdgeIt, e, bgw)
132 hg.addEdge(b_s_nodes[bgw.tail(e)], b_t_nodes[bgw.head(e)]);
134 ConstMap<SageGraph::Edge, int> cm(1);
135 SageGraph::EdgeMap<int> flow(hg); //0
140 MaxFlow<SageGraph, int, ConstMap<SageGraph::Edge, int>,
141 SageGraph::EdgeMap<int> >
142 max_flow_test(hg, s, t, cm, flow);
144 cout << "HUGO max matching algorithm on SageGraph by copying the graph, based on preflow."
146 << "Size of matching: "
147 << max_flow_test.flowValue() << endl;
148 cout << "elapsed time: " << ts << endl << endl;