src/lemon/smart_graph.h
author ladanyi
Mon, 11 Oct 2004 18:02:48 +0000
changeset 942 75fdd0c6866d
parent 921 818510fa3d99
child 946 c94ef40a22ce
permissions -rw-r--r--
Naming and coding style fixes and various other changes.
     1 /* -*- C++ -*-
     2  * src/lemon/smart_graph.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_SMART_GRAPH_H
    18 #define LEMON_SMART_GRAPH_H
    19 
    20 ///\ingroup graphs
    21 ///\file
    22 ///\brief SmartGraph and SymSmartGraph classes.
    23 
    24 #include <vector>
    25 #include <climits>
    26 
    27 #include <lemon/invalid.h>
    28 
    29 
    30 #include <lemon/array_map.h>
    31 
    32 #include <lemon/map_registry.h>
    33 
    34 #include <lemon/map_defines.h>
    35 
    36 namespace lemon {
    37 
    38 /// \addtogroup graphs
    39 /// @{
    40 //  class SymSmartGraph;
    41 
    42   ///A smart graph class.
    43 
    44   ///This is a simple and fast graph implementation.
    45   ///It is also quite memory efficient, but at the price
    46   ///that <b> it does not support node and edge deletion</b>.
    47   ///It conforms to 
    48   ///the \ref skeleton::ExtendableGraph "ExtendableGraph" concept.
    49   ///\sa skeleton::ExtendableGraph.
    50   ///
    51   ///\todo Some member functions could be \c static.
    52   ///
    53   ///\todo A possibly useful functionality: a function saveState() would
    54   ///give back a data sturcture X and then the function restoreState(X)
    55   ///would remove the nodes and edges added after the call of saveState().
    56   ///Of course it should be used as a stack. (Maybe X is not necessary.)
    57   ///
    58   ///\author Alpar Juttner
    59   class SmartGraph {
    60 
    61     struct NodeT 
    62     {
    63       int first_in,first_out;      
    64       NodeT() : first_in(-1), first_out(-1) {}
    65     };
    66     struct EdgeT 
    67     {
    68       int head, tail, next_in, next_out;      
    69       //FIXME: is this necessary?
    70       EdgeT() : next_in(-1), next_out(-1) {}  
    71     };
    72 
    73     std::vector<NodeT> nodes;
    74 
    75     std::vector<EdgeT> edges;
    76     
    77     
    78   public:
    79 
    80     typedef SmartGraph Graph;
    81 
    82     class Node;
    83     class Edge;
    84 
    85     class NodeIt;
    86     class EdgeIt;
    87     class OutEdgeIt;
    88     class InEdgeIt;
    89     
    90     // Create map registries.
    91     CREATE_MAP_REGISTRIES;
    92     // Create node and edge maps.
    93     CREATE_MAPS(ArrayMap);
    94     
    95   public:
    96 
    97     SmartGraph() : nodes(), edges() { }
    98     SmartGraph(const SmartGraph &_g) : nodes(_g.nodes), edges(_g.edges) { }
    99     
   100     ///Number of nodes.
   101     int nodeNum() const { return nodes.size(); }
   102     ///Number of edges.
   103     int edgeNum() const { return edges.size(); }
   104 
   105     /// Maximum node ID.
   106     
   107     /// Maximum node ID.
   108     ///\sa id(Node)
   109     int maxNodeId() const { return nodes.size()-1; }
   110     /// Maximum edge ID.
   111     
   112     /// Maximum edge ID.
   113     ///\sa id(Edge)
   114     int maxEdgeId() const { return edges.size()-1; }
   115 
   116     Node tail(Edge e) const { return edges[e.n].tail; }
   117     Node head(Edge e) const { return edges[e.n].head; }
   118 
   119     NodeIt& first(NodeIt& v) const { 
   120       v=NodeIt(*this); return v; }
   121     EdgeIt& first(EdgeIt& e) const { 
   122       e=EdgeIt(*this); return e; }
   123     OutEdgeIt& first(OutEdgeIt& e, const Node v) const { 
   124       e=OutEdgeIt(*this,v); return e; }
   125     InEdgeIt& first(InEdgeIt& e, const Node v) const { 
   126       e=InEdgeIt(*this,v); return e; }
   127 
   128     /// Node ID.
   129     
   130     /// The ID of a valid Node is a nonnegative integer not greater than
   131     /// \ref maxNodeId(). The range of the ID's is not surely continuous
   132     /// and the greatest node ID can be actually less then \ref maxNodeId().
   133     ///
   134     /// The ID of the \ref INVALID node is -1.
   135     ///\return The ID of the node \c v. 
   136     static int id(Node v) { return v.n; }
   137     /// Edge ID.
   138     
   139     /// The ID of a valid Edge is a nonnegative integer not greater than
   140     /// \ref maxEdgeId(). The range of the ID's is not surely continuous
   141     /// and the greatest edge ID can be actually less then \ref maxEdgeId().
   142     ///
   143     /// The ID of the \ref INVALID edge is -1.
   144     ///\return The ID of the edge \c e. 
   145     static int id(Edge e) { return e.n; }
   146 
   147     Node addNode() {
   148       Node n; n.n=nodes.size();
   149       nodes.push_back(NodeT()); //FIXME: Hmmm...
   150 
   151       
   152       node_maps.add(n);
   153       return n;
   154     }
   155     
   156     Edge addEdge(Node u, Node v) {
   157       Edge e; e.n=edges.size(); edges.push_back(EdgeT()); //FIXME: Hmmm...
   158       edges[e.n].tail=u.n; edges[e.n].head=v.n;
   159       edges[e.n].next_out=nodes[u.n].first_out;
   160       edges[e.n].next_in=nodes[v.n].first_in;
   161       nodes[u.n].first_out=nodes[v.n].first_in=e.n;
   162 
   163       edge_maps.add(e);
   164 
   165       return e;
   166     }
   167 
   168     /// Finds an edge between two nodes.
   169 
   170     /// Finds an edge from node \c u to node \c v.
   171     ///
   172     /// If \c prev is \ref INVALID (this is the default value), then
   173     /// It finds the first edge from \c u to \c v. Otherwise it looks for
   174     /// the next edge from \c u to \c v after \c prev.
   175     /// \return The found edge or INVALID if there is no such an edge.
   176     Edge findEdge(Node u,Node v, Edge prev = INVALID) 
   177     {
   178       int e = (prev.n==-1)? nodes[u.n].first_out : edges[prev.n].next_out;
   179       while(e!=-1 && edges[e].tail!=v.n) e = edges[e].next_out;
   180       prev.n=e;
   181       return prev;
   182     }
   183     
   184     void clear() {
   185       edge_maps.clear();
   186       edges.clear();
   187       node_maps.clear();
   188       nodes.clear();
   189     }
   190 
   191     class Node {
   192       friend class SmartGraph;
   193       template <typename T> friend class NodeMap;
   194       
   195       friend class Edge;
   196       friend class OutEdgeIt;
   197       friend class InEdgeIt;
   198       friend class SymEdge;
   199 
   200     protected:
   201       int n;
   202       friend int SmartGraph::id(Node v); 
   203       Node(int nn) {n=nn;}
   204     public:
   205       Node() {}
   206       Node (Invalid) { n=-1; }
   207       bool operator==(const Node i) const {return n==i.n;}
   208       bool operator!=(const Node i) const {return n!=i.n;}
   209       bool operator<(const Node i) const {return n<i.n;}
   210       //      ///Validity check
   211       //      operator bool() { return n!=-1; }
   212     };
   213     
   214     class NodeIt : public Node {
   215       const SmartGraph *G;
   216       friend class SmartGraph;
   217     public:
   218       NodeIt() : Node() { }
   219       NodeIt(const SmartGraph& _G,Node n) : Node(n), G(&_G) { }
   220       NodeIt(Invalid i) : Node(i) { }
   221       NodeIt(const SmartGraph& _G) : Node(_G.nodes.size()?0:-1), G(&_G) { }
   222       NodeIt &operator++() {
   223 	n=(n+2)%(G->nodes.size()+1)-1; 
   224 	return *this; 
   225       }
   226 //       ///Validity check
   227 //       operator bool() { return Node::operator bool(); }      
   228     };
   229 
   230     class Edge {
   231       friend class SmartGraph;
   232       template <typename T> friend class EdgeMap;
   233 
   234       friend class SymSmartGraph;
   235       
   236       friend class Node;
   237       friend class NodeIt;
   238     protected:
   239       int n;
   240       friend int SmartGraph::id(Edge e);
   241       Edge(int nn) {n=nn;}
   242     public:
   243       /// An Edge with id \c n.
   244 
   245       Edge() { }
   246       Edge (Invalid) { n=-1; }
   247       bool operator==(const Edge i) const {return n==i.n;}
   248       bool operator!=(const Edge i) const {return n!=i.n;}
   249       bool operator<(const Edge i) const {return n<i.n;}
   250 //       ///Validity check
   251 //       operator bool() { return n!=-1; }
   252 
   253       ///Set the edge to that have ID \c ID.
   254       void setToId(int id) { n=id; }
   255    };
   256     
   257     class EdgeIt : public Edge {
   258       const SmartGraph *G;
   259       friend class SmartGraph;
   260     public:
   261       EdgeIt(const SmartGraph& _G) : Edge(_G.edges.size()-1), G(&_G) { }
   262       EdgeIt(const SmartGraph& _G, Edge e) : Edge(e), G(&_G) { }
   263       EdgeIt (Invalid i) : Edge(i) { }
   264       EdgeIt() : Edge() { }
   265       EdgeIt &operator++() { --n; return *this; }
   266 //       ///Validity check
   267 //       operator bool() { return Edge::operator bool(); }      
   268     };
   269     
   270     class OutEdgeIt : public Edge {
   271       const SmartGraph *G;
   272       friend class SmartGraph;
   273     public: 
   274       OutEdgeIt() : Edge() { }
   275       OutEdgeIt(const SmartGraph& _G, Edge e) : Edge(e), G(&_G) { }
   276       OutEdgeIt (Invalid i) : Edge(i) { }
   277 
   278       OutEdgeIt(const SmartGraph& _G,const Node v)
   279 	: Edge(_G.nodes[v.n].first_out), G(&_G) {}
   280       OutEdgeIt &operator++() { n=G->edges[n].next_out; return *this; }
   281 //       ///Validity check
   282 //       operator bool() { return Edge::operator bool(); }      
   283     };
   284     
   285     class InEdgeIt : public Edge {
   286       const SmartGraph *G;
   287       friend class SmartGraph;
   288     public: 
   289       InEdgeIt() : Edge() { }
   290       InEdgeIt(const SmartGraph& _G, Edge e) : Edge(e), G(&_G) { }
   291       InEdgeIt (Invalid i) : Edge(i) { }
   292       InEdgeIt(const SmartGraph& _G,Node v)
   293 	: Edge(_G.nodes[v.n].first_in), G(&_G) { }
   294       InEdgeIt &operator++() { n=G->edges[n].next_in; return *this; }
   295 //       ///Validity check
   296 //       operator bool() { return Edge::operator bool(); }      
   297     };
   298 
   299   };
   300 
   301 
   302 
   303   class SymSmartGraph : public SmartGraph {
   304     typedef SmartGraph Parent;
   305   public:
   306 
   307     typedef SymSmartGraph Graph;
   308 
   309     typedef SmartGraph::Node Node;
   310     typedef SmartGraph::NodeIt NodeIt;
   311 
   312     class SymEdge;
   313     class SymEdgeIt;
   314 
   315     class Edge;
   316     class EdgeIt;
   317     class OutEdgeIt;
   318     class InEdgeIt;
   319 
   320     template <typename Value>
   321     class NodeMap : public Parent::NodeMap<Value> {      
   322     public:
   323       NodeMap(const SymSmartGraph& g) 
   324 	: SymSmartGraph::Parent::NodeMap<Value>(g) {}
   325       NodeMap(const SymSmartGraph& g, Value v) 
   326 	: SymSmartGraph::Parent::NodeMap<Value>(g, v) {}
   327       template<typename TT> 
   328       NodeMap(const NodeMap<TT>& copy) 
   329 	: SymSmartGraph::Parent::NodeMap<Value>(copy) { }            
   330     };
   331 
   332     template <typename Value>
   333     class SymEdgeMap : public Parent::EdgeMap<Value> {
   334     public:
   335       typedef SymEdge KeyType;
   336 
   337       SymEdgeMap(const SymSmartGraph& g) 
   338 	: SymSmartGraph::Parent::EdgeMap<Value>(g) {}
   339       SymEdgeMap(const SymSmartGraph& g, Value v) 
   340 	: SymSmartGraph::Parent::EdgeMap<Value>(g, v) {}
   341       template<typename TT> 
   342       SymEdgeMap(const SymEdgeMap<TT>& copy) 
   343 	: SymSmartGraph::Parent::EdgeMap<Value>(copy) { }
   344       
   345     };
   346 
   347     // Create edge map registry.
   348     CREATE_EDGE_MAP_REGISTRY;
   349     // Create edge maps.
   350     CREATE_EDGE_MAP(ArrayMap);
   351 
   352     class Edge {
   353       friend class SymSmartGraph;
   354       friend class SymSmartGraph::EdgeIt;
   355       friend class SymSmartGraph::OutEdgeIt;
   356       friend class SymSmartGraph::InEdgeIt;
   357       
   358     protected:
   359       int id;
   360 
   361       Edge(int pid) { id = pid; }
   362 
   363     public:
   364       /// An Edge with id \c n.
   365 
   366       Edge() { }
   367       Edge (Invalid) { id = -1; }
   368 
   369       operator SymEdge(){ return SymEdge(id >> 1);}
   370       
   371       bool operator==(const Edge i) const {return id == i.id;}
   372       bool operator!=(const Edge i) const {return id != i.id;}
   373       bool operator<(const Edge i) const {return id < i.id;}
   374       //      ///Validity check
   375       //      operator bool() { return n!=-1; }
   376     };
   377 
   378     class SymEdge : public SmartGraph::Edge {
   379       friend class SymSmartGraph;
   380       friend class SymSmartGraph::Edge;
   381       typedef SmartGraph::Edge Parent;
   382 
   383     protected:      
   384       SymEdge(int pid) : Parent(pid) {}
   385     public:
   386 
   387       SymEdge() { }
   388       SymEdge(const SmartGraph::Edge& i) : Parent(i) {} 
   389       SymEdge (Invalid) : Parent(INVALID) {}
   390 
   391     };
   392 
   393     class OutEdgeIt {
   394       Parent::OutEdgeIt out;
   395       Parent::InEdgeIt in;      
   396     public: 
   397       OutEdgeIt() {}
   398       OutEdgeIt(const SymSmartGraph& g, Edge e) { 
   399 	if ((e.id & 1) == 0) {	
   400 	  out = Parent::OutEdgeIt(g, SymEdge(e));
   401 	  in = Parent::InEdgeIt(g, g.tail(e));
   402 	} else {
   403 	  out = Parent::OutEdgeIt(INVALID);
   404 	  in = Parent::InEdgeIt(g, SymEdge(e));
   405 	}
   406       }
   407       OutEdgeIt (Invalid i) : out(INVALID), in(INVALID) { }
   408 
   409       OutEdgeIt(const SymSmartGraph& g, const Node v)
   410 	: out(g, v), in(g, v) {}
   411       OutEdgeIt &operator++() { 
   412 	if (out != INVALID) {
   413 	  ++out;
   414 	} else {
   415 	  ++in;
   416 	}
   417 	return *this; 
   418       }
   419 
   420       operator Edge() const {
   421 	if (out == INVALID && in == INVALID) return INVALID;
   422 	return out != INVALID ? forward(out) : backward(in);
   423       }
   424 
   425       bool operator==(const Edge i) const {return Edge(*this) == i;}
   426       bool operator!=(const Edge i) const {return Edge(*this) != i;}
   427       bool operator<(const Edge i) const {return Edge(*this) < i;}
   428     };
   429 
   430     class InEdgeIt {
   431       Parent::OutEdgeIt out;
   432       Parent::InEdgeIt in;      
   433     public: 
   434       InEdgeIt() {}
   435       InEdgeIt(const SymSmartGraph& g, Edge e) { 
   436 	if ((e.id & 1) == 0) {	
   437 	  out = Parent::OutEdgeIt(g, SymEdge(e));
   438 	  in = Parent::InEdgeIt(g, g.tail(e));
   439 	} else {
   440 	  out = Parent::OutEdgeIt(INVALID);
   441 	  in = Parent::InEdgeIt(g, SymEdge(e));
   442 	}
   443       }
   444       InEdgeIt (Invalid i) : out(INVALID), in(INVALID) { }
   445 
   446       InEdgeIt(const SymSmartGraph& g, const Node v)
   447 	: out(g, v), in(g, v) {}
   448 
   449       InEdgeIt &operator++() { 
   450 	if (out != INVALID) {
   451 	  ++out;
   452 	} else {
   453 	  ++in;
   454 	}
   455 	return *this; 
   456       }
   457 
   458       operator Edge() const {
   459 	if (out == INVALID && in == INVALID) return INVALID;
   460 	return out != INVALID ? backward(out) : forward(in);
   461       }
   462 
   463       bool operator==(const Edge i) const {return Edge(*this) == i;}
   464       bool operator!=(const Edge i) const {return Edge(*this) != i;}
   465       bool operator<(const Edge i) const {return Edge(*this) < i;}
   466     };
   467 
   468     class SymEdgeIt : public Parent::EdgeIt {
   469 
   470     public:
   471       SymEdgeIt() {}
   472 
   473       SymEdgeIt(const SymSmartGraph& g) 
   474 	: SymSmartGraph::Parent::EdgeIt(g) {}
   475 
   476       SymEdgeIt(const SymSmartGraph& g, SymEdge e) 
   477 	: SymSmartGraph::Parent::EdgeIt(g, e) {}
   478 
   479       SymEdgeIt(Invalid i) 
   480 	: SymSmartGraph::Parent::EdgeIt(INVALID) {}
   481 
   482       SymEdgeIt& operator++() {
   483 	SymSmartGraph::Parent::EdgeIt::operator++();
   484 	return *this;
   485       }
   486 
   487       operator SymEdge() const {
   488 	return SymEdge
   489 	  (static_cast<const SymSmartGraph::Parent::EdgeIt&>(*this));
   490       }
   491       bool operator==(const SymEdge i) const {return SymEdge(*this) == i;}
   492       bool operator!=(const SymEdge i) const {return SymEdge(*this) != i;}
   493       bool operator<(const SymEdge i) const {return SymEdge(*this) < i;}
   494     };
   495 
   496     class EdgeIt {
   497       SymEdgeIt it;
   498       bool fw;
   499     public:
   500       EdgeIt(const SymSmartGraph& g) : it(g), fw(true) {}
   501       EdgeIt (Invalid i) : it(i) { }
   502       EdgeIt(const SymSmartGraph& g, Edge e) 
   503 	: it(g, SymEdge(e)), fw(id(e) & 1 == 0) { }
   504       EdgeIt() { }
   505       EdgeIt& operator++() {
   506 	fw = !fw;
   507 	if (fw) ++it;
   508 	return *this;
   509       }
   510       operator Edge() const {
   511 	if (it == INVALID) return INVALID;
   512 	return fw ? forward(it) : backward(it);
   513       }
   514       bool operator==(const Edge i) const {return Edge(*this) == i;}
   515       bool operator!=(const Edge i) const {return Edge(*this) != i;}
   516       bool operator<(const Edge i) const {return Edge(*this) < i;}
   517 
   518     };
   519 
   520     ///Number of nodes.
   521     int nodeNum() const { return Parent::nodeNum(); }
   522     ///Number of edges.
   523     int edgeNum() const { return 2*Parent::edgeNum(); }
   524     ///Number of symmetric edges.
   525     int symEdgeNum() const { return Parent::edgeNum(); }
   526 
   527     /// Maximum node ID.
   528     
   529     /// Maximum node ID.
   530     ///\sa id(Node)
   531     int maxNodeId() const { return Parent::maxNodeId(); } 
   532     /// Maximum edge ID.
   533     
   534     /// Maximum edge ID.
   535     ///\sa id(Edge)
   536     int maxEdgeId() const { return 2*Parent::maxEdgeId(); }
   537     /// Maximum symmetric edge ID.
   538     
   539     /// Maximum symmetric edge ID.
   540     ///\sa id(SymEdge)
   541     int maxSymEdgeId() const { return Parent::maxEdgeId(); }
   542 
   543 
   544     Node tail(Edge e) const { 
   545       return (e.id & 1) == 0 ? 
   546 	Parent::tail(SymEdge(e)) : Parent::head(SymEdge(e)); 
   547     }
   548 
   549     Node head(Edge e) const { 
   550       return (e.id & 1) == 0 ? 
   551 	Parent::head(SymEdge(e)) : Parent::tail(SymEdge(e)); 
   552     }
   553 
   554     Node tail(SymEdge e) const { 
   555       return Parent::tail(e); 
   556     }
   557 
   558     Node head(SymEdge e) const { 
   559       return Parent::head(e); 
   560     }
   561 
   562     NodeIt& first(NodeIt& v) const { 
   563       v=NodeIt(*this); return v; }
   564     EdgeIt& first(EdgeIt& e) const { 
   565       e=EdgeIt(*this); return e; }
   566     SymEdgeIt& first(SymEdgeIt& e) const {
   567       e=SymEdgeIt(*this); return e; }
   568     OutEdgeIt& first(OutEdgeIt& e, const Node v) const { 
   569       e=OutEdgeIt(*this,v); return e; }
   570     InEdgeIt& first(InEdgeIt& e, const Node v) const { 
   571       e=InEdgeIt(*this,v); return e; }
   572 
   573     /// Node ID.
   574     
   575     /// The ID of a valid Node is a nonnegative integer not greater than
   576     /// \ref maxNodeId(). The range of the ID's is not surely continuous
   577     /// and the greatest node ID can be actually less then \ref maxNodeId().
   578     ///
   579     /// The ID of the \ref INVALID node is -1.
   580     ///\return The ID of the node \c v. 
   581     static int id(Node v) { return Parent::id(v); }
   582     /// Edge ID.
   583     
   584     /// The ID of a valid Edge is a nonnegative integer not greater than
   585     /// \ref maxEdgeId(). The range of the ID's is not surely continuous
   586     /// and the greatest edge ID can be actually less then \ref maxEdgeId().
   587     ///
   588     /// The ID of the \ref INVALID edge is -1.
   589     ///\return The ID of the edge \c e. 
   590     static int id(Edge e) { return e.id; }
   591 
   592     /// The ID of a valid SymEdge is a nonnegative integer not greater than
   593     /// \ref maxSymEdgeId(). The range of the ID's is not surely continuous
   594     /// and the greatest edge ID can be actually less then \ref maxSymEdgeId().
   595     ///
   596     /// The ID of the \ref INVALID symmetric edge is -1.
   597     ///\return The ID of the edge \c e. 
   598     static int id(SymEdge e) { return Parent::id(e); }
   599 
   600     /// Adds a new node to the graph.
   601 
   602     /// \warning It adds the new node to the front of the list.
   603     /// (i.e. the lastly added node becomes the first.)
   604     Node addNode() {
   605       return Parent::addNode();
   606     }
   607     
   608     SymEdge addEdge(Node u, Node v) {
   609       SymEdge se = Parent::addEdge(u, v);
   610       edge_maps.add(forward(se));
   611       edge_maps.add(backward(se));
   612       return se;
   613     }
   614     
   615     /// Finds an edge between two nodes.
   616 
   617     /// Finds an edge from node \c u to node \c v.
   618     ///
   619     /// If \c prev is \ref INVALID (this is the default value), then
   620     /// It finds the first edge from \c u to \c v. Otherwise it looks for
   621     /// the next edge from \c u to \c v after \c prev.
   622     /// \return The found edge or INVALID if there is no such an edge.
   623     Edge findEdge(Node u, Node v, Edge prev = INVALID) 
   624     {     
   625       if (prev == INVALID || id(prev) & 1 == 0) {
   626 	SymEdge se = Parent::findEdge(u, v, SymEdge(prev));
   627 	if (se != INVALID) return forward(se);
   628       } else {
   629 	SymEdge se = Parent::findEdge(v, u, SymEdge(prev));
   630 	if (se != INVALID) return backward(se);	
   631       }
   632       return INVALID;
   633     }
   634 
   635 //     /// Finds an symmetric edge between two nodes.
   636 
   637 //     /// Finds an symmetric edge from node \c u to node \c v.
   638 //     ///
   639 //     /// If \c prev is \ref INVALID (this is the default value), then
   640 //     /// It finds the first edge from \c u to \c v. Otherwise it looks for
   641 //     /// the next edge from \c u to \c v after \c prev.
   642 //     /// \return The found edge or INVALID if there is no such an edge.
   643 
   644 //     SymEdge findEdge(Node u, Node v, SymEdge prev = INVALID) 
   645 //     {     
   646 //       if (prev == INVALID || id(prev) & 1 == 0) {
   647 // 	SymEdge se = Parent::findEdge(u, v, SymEdge(prev));
   648 // 	if (se != INVALID) return se;
   649 //       } else {
   650 // 	SymEdge se = Parent::findEdge(v, u, SymEdge(prev));
   651 // 	if (se != INVALID) return se;	
   652 //       }
   653 //       return INVALID;
   654 //     }
   655     
   656   public:
   657 
   658     void clear() {
   659       edge_maps.clear();
   660       Parent::clear();
   661     }
   662 
   663     static Edge opposite(Edge e) {
   664       return Edge(id(e) ^ 1);
   665     }
   666 
   667     static Edge forward(SymEdge e) {
   668       return Edge(id(e) << 1);
   669     }
   670 
   671     static Edge backward(SymEdge e) {
   672       return Edge((id(e) << 1) | 1);
   673     }
   674 
   675   };
   676   ///Graph for bidirectional edges.
   677 
   678   ///The purpose of this graph structure is to handle graphs
   679   ///having bidirectional edges. Here the function \c addEdge(u,v) adds a pair
   680   ///of oppositely directed edges.
   681   ///There is a new edge map type called
   682   ///\ref SymSmartGraph::SymEdgeMap "SymEdgeMap"
   683   ///that complements this
   684   ///feature by
   685   ///storing shared values for the edge pairs. The usual
   686   ///\ref Graph::EdgeMap "EdgeMap"
   687   ///can be used
   688   ///as well.
   689   ///
   690   ///The oppositely directed edge can also be obtained easily
   691   ///using \ref opposite.
   692   ///\warning It shares the similarity with \ref SmartGraph that
   693   ///it is not possible to delete edges or nodes from the graph.
   694   //\sa SmartGraph.
   695 
   696   /*  class SymSmartGraph : public SmartGraph
   697   {
   698   public:
   699     typedef SymSmartGraph Graph;
   700 
   701     // Create symmetric map registry.
   702     CREATE_SYM_EDGE_MAP_REGISTRY;
   703     // Create symmetric edge map.
   704     CREATE_SYM_EDGE_MAP(ArrayMap);
   705 
   706 
   707     SymSmartGraph() : SmartGraph() { }
   708     SymSmartGraph(const SmartGraph &_g) : SmartGraph(_g) { }
   709     ///Adds a pair of oppositely directed edges to the graph.
   710     Edge addEdge(Node u, Node v)
   711     {
   712       Edge e = SmartGraph::addEdge(u,v);
   713       Edge f = SmartGraph::addEdge(v,u);
   714       sym_edge_maps.add(e);
   715       sym_edge_maps.add(f);
   716       return e;
   717     }
   718 
   719     ///The oppositely directed edge.
   720 
   721     ///Returns the oppositely directed
   722     ///pair of the edge \c e.
   723     static Edge opposite(Edge e)
   724     {
   725       Edge f;
   726       f.n = e.n - 2*(e.n%2) + 1;
   727       return f;
   728     }
   729     
   730 
   731     };*/
   732   
   733   /// @}  
   734 } //namespace lemon
   735 
   736 
   737 
   738 
   739 #endif //LEMON_SMART_GRAPH_H