Converted the "minlengthpaths" alg. to the new style graph_wrappers.
3 *template <typename Item,
6 * typename Compare = std::less<Prio> >
10 *FibHeap(ItemIntMap), FibHeap(ItemIntMap, Compare)
14 *int size() : returns the number of elements in the heap
16 *bool empty() : true iff size()=0
18 *void set(Item, Prio) : calls push(Item, Prio) if Item is not
19 * in the heap, and calls decrease/increase(Item, Prio) otherwise
21 *void push(Item, Prio) : pushes Item to the heap with priority Prio. Item
22 * mustn't be in the heap.
24 *Item top() : returns the Item with least Prio.
25 * Must be called only if heap is nonempty.
27 *Prio prio() : returns the least Prio
28 * Must be called only if heap is nonempty.
30 *Prio get(Item) : returns Prio of Item
31 * Must be called only if Item is in heap.
33 *void pop() : deletes the Item with least Prio
35 *void erase(Item) : deletes Item from the heap if it was already there
37 *void decrease(Item, P) : decreases prio of Item to P.
38 * Item must be in the heap with prio at least P.
40 *void increase(Item, P) : sets prio of Item to P.
42 *state_enum state(Item) : returns PRE_HEAP if Item has not been in the
43 * heap until now, IN_HEAP if it is in the heap at the moment, and
44 * POST_HEAP otherwise. In the latter case it is possible that Item
45 * will get back to the heap again.
47 *In Fibonacci heaps, increase and erase are not efficient, in case of
48 *many calls to these operations, it is better to use bin_heap.
55 ///\brief Fibonacci Heap implementation.
63 /// A Fibonacci Heap implementation.
64 template <typename Item, typename Prio, typename ItemIntMap,
65 typename Compare = std::less<Prio> >
68 typedef Prio PrioType;
72 std::vector<store> container;
78 ///\todo It is use nowhere
79 ///\todo It doesn't conform to the naming conventions.
89 FibHeap(ItemIntMap &_iimap) : minimum(), iimap(_iimap), num_items() {}
90 FibHeap(ItemIntMap &_iimap, const Compare &_comp) : minimum(),
91 iimap(_iimap), comp(_comp), num_items() {}
99 bool empty() const { return num_items==0; }
102 void set (Item const it, PrioType const value) {
104 if ( i >= 0 && container[i].in ) {
105 if ( comp(value, container[i].prio) ) decrease(it, value);
106 if ( comp(container[i].prio, value) ) increase(it, value);
107 } else push(it, value);
111 void push (Item const it, PrioType const value) {
114 int s=container.size();
118 container.push_back(st);
121 container[i].parent=container[i].child=-1;
122 container[i].degree=0;
123 container[i].in=true;
124 container[i].marked=false;
128 container[container[minimum].right_neighbor].left_neighbor=i;
129 container[i].right_neighbor=container[minimum].right_neighbor;
130 container[minimum].right_neighbor=i;
131 container[i].left_neighbor=minimum;
132 if ( comp( value, container[minimum].prio) ) minimum=i;
134 container[i].right_neighbor=container[i].left_neighbor=i;
137 container[i].prio=value;
143 return container[minimum].name;
147 PrioType prio() const {
148 return container[minimum].prio;
154 PrioType& operator[](const Item& it) {
155 return container[iimap[it]].prio;
158 const PrioType& operator[](const Item& it) const {
159 return container[iimap[it]].prio;
162 // const PrioType get(const Item& it) const {
163 // return container[iimap[it]].prio;
167 /*The first case is that there are only one root.*/
168 if ( container[minimum].left_neighbor==minimum ) {
169 container[minimum].in=false;
170 if ( container[minimum].degree!=0 ) {
171 makeroot(container[minimum].child);
172 minimum=container[minimum].child;
176 int right=container[minimum].right_neighbor;
178 container[minimum].in=false;
179 if ( container[minimum].degree > 0 ) {
180 int left=container[minimum].left_neighbor;
181 int child=container[minimum].child;
182 int last_child=container[child].left_neighbor;
186 container[left].right_neighbor=child;
187 container[child].left_neighbor=left;
188 container[right].left_neighbor=last_child;
189 container[last_child].right_neighbor=right;
193 } // the case where there are more roots
198 void erase (const Item& it) {
201 if ( i >= 0 && container[i].in ) {
202 if ( container[i].parent!=-1 ) {
203 int p=container[i].parent;
207 minimum=i; //As if its prio would be -infinity
213 void decrease (Item it, PrioType const value) {
215 container[i].prio=value;
216 int p=container[i].parent;
218 if ( p!=-1 && comp(value, container[p].prio) ) {
222 if ( comp(value, container[minimum].prio) ) minimum=i;
226 void increase (Item it, PrioType const value) {
232 state_enum state(const Item &it) const {
235 if ( container[i].in ) i=0;
238 return state_enum(i);
246 int maxdeg=int( floor( 2.08*log(double(container.size()))))+1;
248 std::vector<int> A(maxdeg,-1);
251 *Recall that now minimum does not point to the minimum prio element.
252 *We set minimum to this during balance().
254 int anchor=container[minimum].left_neighbor;
260 if ( anchor==active ) end=true;
261 int d=container[active].degree;
262 next=container[active].right_neighbor;
265 if( comp(container[active].prio, container[A[d]].prio) ) {
278 while ( container[minimum].parent >=0 ) minimum=container[minimum].parent;
282 if ( comp(container[s].prio, container[minimum].prio) ) minimum=s;
283 s=container[s].right_neighbor;
288 void makeroot (int c) {
291 container[s].parent=-1;
292 s=container[s].right_neighbor;
297 void cut (int a, int b) {
299 *Replacing a from the children of b.
301 --container[b].degree;
303 if ( container[b].degree !=0 ) {
304 int child=container[b].child;
306 container[b].child=container[child].right_neighbor;
311 /*Lacing a to the roots.*/
312 int right=container[minimum].right_neighbor;
313 container[minimum].right_neighbor=a;
314 container[a].left_neighbor=minimum;
315 container[a].right_neighbor=right;
316 container[right].left_neighbor=a;
318 container[a].parent=-1;
319 container[a].marked=false;
325 if ( container[a].parent!=-1 ) {
326 int p=container[a].parent;
328 if ( container[a].marked==false ) container[a].marked=true;
337 void fuse (int a, int b) {
340 /*Lacing b under a.*/
341 container[b].parent=a;
343 if (container[a].degree==0) {
344 container[b].left_neighbor=b;
345 container[b].right_neighbor=b;
346 container[a].child=b;
348 int child=container[a].child;
349 int last_child=container[child].left_neighbor;
350 container[child].left_neighbor=b;
351 container[b].right_neighbor=child;
352 container[last_child].right_neighbor=b;
353 container[b].left_neighbor=last_child;
356 ++container[a].degree;
358 container[b].marked=false;
363 *It is invoked only if a has siblings.
365 void unlace (int a) {
366 int leftn=container[a].left_neighbor;
367 int rightn=container[a].right_neighbor;
368 container[leftn].right_neighbor=rightn;
369 container[rightn].left_neighbor=leftn;
374 friend class FibHeap;
386 store() : parent(-1), child(-1), degree(), marked(false), in(true) {}