src/work/jacint/max_flow.h
author deba
Fri, 04 Jun 2004 11:52:53 +0000
changeset 674 7733d18de0e8
parent 653 c3ad7c661a49
child 709 7a518df79892
permissions -rw-r--r--
(none)
     1 // -*- C++ -*-
     2 #ifndef HUGO_MAX_FLOW_H
     3 #define HUGO_MAX_FLOW_H
     4 
     5 #include <vector>
     6 #include <queue>
     7 #include <stack>
     8 
     9 #include <hugo/graph_wrapper.h>
    10 #include <bfs_dfs.h>
    11 #include <hugo/invalid.h>
    12 #include <hugo/maps.h>
    13 #include <hugo/for_each_macros.h>
    14 
    15 /// \file
    16 /// \brief Maximum flow algorithms.
    17 /// \ingroup galgs
    18 
    19 namespace hugo {
    20 
    21   /// \addtogroup galgs
    22   /// @{                                                                                                                                        
    23   ///Maximum flow algorithms class.
    24 
    25   ///This class provides various algorithms for finding a flow of
    26   ///maximum value in a directed graph. The \e source node, the \e
    27   ///target node, the \e capacity of the edges and the \e starting \e
    28   ///flow value of the edges should be passed to the algorithm through the
    29   ///constructor. It is possible to change these quantities using the
    30   ///functions \ref resetSource, \ref resetTarget, \ref resetCap and
    31   ///\ref resetFlow. Before any subsequent runs of any algorithm of
    32   ///the class \ref resetFlow should be called. 
    33 
    34   ///After running an algorithm of the class, the actual flow value 
    35   ///can be obtained by calling \ref flowValue(). The minimum
    36   ///value cut can be written into a \c node map of \c bools by
    37   ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
    38   ///the inclusionwise minimum and maximum of the minimum value
    39   ///cuts, resp.)                                                                                                                               
    40   ///\param Graph The directed graph type the algorithm runs on.
    41   ///\param Num The number type of the capacities and the flow values.
    42   ///\param CapMap The capacity map type.
    43   ///\param FlowMap The flow map type.                                                                                                           
    44   ///\author Marton Makai, Jacint Szabo 
    45   template <typename Graph, typename Num,
    46 	    typename CapMap=typename Graph::template EdgeMap<Num>,
    47             typename FlowMap=typename Graph::template EdgeMap<Num> >
    48   class MaxFlow {
    49   protected:
    50     typedef typename Graph::Node Node;
    51     typedef typename Graph::NodeIt NodeIt;
    52     typedef typename Graph::EdgeIt EdgeIt;
    53     typedef typename Graph::OutEdgeIt OutEdgeIt;
    54     typedef typename Graph::InEdgeIt InEdgeIt;
    55 
    56     typedef typename std::vector<std::stack<Node> > VecStack;
    57     typedef typename Graph::template NodeMap<Node> NNMap;
    58     typedef typename std::vector<Node> VecNode;
    59 
    60     const Graph* g;
    61     Node s;
    62     Node t;
    63     const CapMap* capacity;
    64     FlowMap* flow;
    65     int n;      //the number of nodes of G
    66     typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;   
    67     //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
    68     typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
    69     typedef typename ResGW::Edge ResGWEdge;
    70     //typedef typename ResGW::template NodeMap<bool> ReachedMap;
    71     typedef typename Graph::template NodeMap<int> ReachedMap;
    72 
    73 
    74     //level works as a bool map in augmenting path algorithms and is
    75     //used by bfs for storing reached information.  In preflow, it
    76     //shows the levels of nodes.     
    77     ReachedMap level;
    78 
    79     //excess is needed only in preflow
    80     typename Graph::template NodeMap<Num> excess;
    81 
    82     //fixme    
    83 //   protected:
    84     //     MaxFlow() { }
    85     //     void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
    86     // 	     FlowMap& _flow)
    87     //       {
    88     // 	g=&_G;
    89     // 	s=_s;
    90     // 	t=_t;
    91     // 	capacity=&_capacity;
    92     // 	flow=&_flow;
    93     // 	n=_G.nodeNum;
    94     // 	level.set (_G); //kellene vmi ilyesmi fv
    95     // 	excess(_G,0); //itt is
    96     //       }
    97 
    98     // constants used for heuristics
    99     static const int H0=20;
   100     static const int H1=1;
   101 
   102   public:
   103 
   104     ///Indicates the property of the starting flow.
   105 
   106     ///Indicates the property of the starting flow. The meanings are as follows:
   107     ///- \c ZERO_FLOW: constant zero flow
   108     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
   109     ///the sum of the out-flows in every node except the \e source and
   110     ///the \e target.
   111     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
   112     ///least the sum of the out-flows in every node except the \e source.
   113     ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be 
   114     ///set to the constant zero flow in the beginning of the algorithm in this case.
   115     enum FlowEnum{
   116       ZERO_FLOW,
   117       GEN_FLOW,
   118       PRE_FLOW,
   119       NO_FLOW
   120     };
   121 
   122     enum StatusEnum {
   123       AFTER_NOTHING,
   124       AFTER_AUGMENTING,
   125       AFTER_FAST_AUGMENTING, 
   126       AFTER_PRE_FLOW_PHASE_1,      
   127       AFTER_PRE_FLOW_PHASE_2
   128     };
   129 
   130     /// Don not needle this flag only if necessary.
   131     StatusEnum status;
   132     int number_of_augmentations;
   133 
   134 
   135     template<typename IntMap>
   136     class TrickyReachedMap {
   137     protected:
   138       IntMap* map;
   139       int* number_of_augmentations;
   140     public:
   141       TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : 
   142 	map(&_map), number_of_augmentations(&_number_of_augmentations) { }
   143       void set(const Node& n, bool b) {
   144 	if (b)
   145 	  map->set(n, *number_of_augmentations);
   146 	else 
   147 	  map->set(n, *number_of_augmentations-1);
   148       }
   149       bool operator[](const Node& n) const { 
   150 	return (*map)[n]==*number_of_augmentations; 
   151       }
   152     };
   153     
   154     MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
   155 	    FlowMap& _flow) :
   156       g(&_G), s(_s), t(_t), capacity(&_capacity),
   157       flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), 
   158       status(AFTER_NOTHING), number_of_augmentations(0) { }
   159 
   160     ///Runs a maximum flow algorithm.
   161 
   162     ///Runs a preflow algorithm, which is the fastest maximum flow
   163     ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
   164     ///\pre The starting flow must be
   165     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   166     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   167     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   168     /// - any map if \c fe is NO_FLOW.
   169     void run(FlowEnum fe=ZERO_FLOW) {
   170       preflow(fe);
   171     }
   172 
   173                                                                               
   174     ///Runs a preflow algorithm.  
   175 
   176     ///Runs a preflow algorithm. The preflow algorithms provide the
   177     ///fastest way to compute a maximum flow in a directed graph.
   178     ///\pre The starting flow must be
   179     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   180     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   181     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   182     /// - any map if \c fe is NO_FLOW.
   183     void preflow(FlowEnum fe) {
   184       preflowPhase1(fe);
   185       preflowPhase2();
   186     }
   187     // Heuristics:
   188     //   2 phase
   189     //   gap
   190     //   list 'level_list' on the nodes on level i implemented by hand
   191     //   stack 'active' on the active nodes on level i                                                                                    
   192     //   runs heuristic 'highest label' for H1*n relabels
   193     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
   194     //   Parameters H0 and H1 are initialized to 20 and 1.
   195 
   196     ///Runs the first phase of the preflow algorithm.
   197 
   198     ///The preflow algorithm consists of two phases, this method runs the
   199     ///first phase. After the first phase the maximum flow value and a
   200     ///minimum value cut can already be computed, though a maximum flow
   201     ///is net yet obtained. So after calling this method \ref flowValue
   202     ///and \ref actMinCut gives proper results.
   203     ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
   204     ///give minimum value cuts unless calling \ref preflowPhase2.
   205     ///\pre The starting flow must be
   206     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   207     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   208     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   209     /// - any map if \c fe is NO_FLOW.
   210     void preflowPhase1(FlowEnum fe);
   211 
   212     ///Runs the second phase of the preflow algorithm.
   213 
   214     ///The preflow algorithm consists of two phases, this method runs
   215     ///the second phase. After calling \ref preflowPhase1 and then
   216     ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
   217     ///\ref minMinCut and \ref maxMinCut give proper results.
   218     ///\pre \ref preflowPhase1 must be called before.
   219     void preflowPhase2();
   220 
   221     /// Starting from a flow, this method searches for an augmenting path
   222     /// according to the Edmonds-Karp algorithm
   223     /// and augments the flow on if any.
   224     /// The return value shows if the augmentation was succesful.
   225     bool augmentOnShortestPath();
   226     bool augmentOnShortestPath2();
   227 
   228     /// Starting from a flow, this method searches for an augmenting blocking
   229     /// flow according to Dinits' algorithm and augments the flow on if any.
   230     /// The blocking flow is computed in a physically constructed
   231     /// residual graph of type \c Mutablegraph.
   232     /// The return value show sif the augmentation was succesful.
   233     template<typename MutableGraph> bool augmentOnBlockingFlow();
   234 
   235     /// The same as \c augmentOnBlockingFlow<MutableGraph> but the
   236     /// residual graph is not constructed physically.
   237     /// The return value shows if the augmentation was succesful.
   238     bool augmentOnBlockingFlow2();
   239 
   240     /// Returns the maximum value of a flow.
   241 
   242     /// Returns the maximum value of a flow, by counting the 
   243     /// over-flow of the target node \ref t.
   244     /// It can be called already after running \ref preflowPhase1.
   245     Num flowValue() const {
   246       Num a=0;
   247       FOR_EACH_INC_LOC(InEdgeIt, e, *g, t) a+=(*flow)[e];
   248       FOR_EACH_INC_LOC(OutEdgeIt, e, *g, t) a-=(*flow)[e];
   249       return a;
   250       //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan   
   251     }
   252 
   253     ///Returns a minimum value cut after calling \ref preflowPhase1.
   254 
   255     ///After the first phase of the preflow algorithm the maximum flow
   256     ///value and a minimum value cut can already be computed. This
   257     ///method can be called after running \ref preflowPhase1 for
   258     ///obtaining a minimum value cut.
   259     /// \warning Gives proper result only right after calling \ref
   260     /// preflowPhase1.
   261     /// \todo We have to make some status variable which shows the
   262     /// actual state
   263     /// of the class. This enables us to determine which methods are valid
   264     /// for MinCut computation
   265     template<typename _CutMap>
   266     void actMinCut(_CutMap& M) const {
   267       NodeIt v;
   268       switch (status) {
   269       case AFTER_PRE_FLOW_PHASE_1:
   270 	for(g->first(v); g->valid(v); g->next(v)) {
   271 	  if (level[v] < n) {
   272 	    M.set(v, false);
   273 	  } else {
   274 	    M.set(v, true);
   275 	  }
   276 	}
   277 	break;
   278       case AFTER_PRE_FLOW_PHASE_2:
   279       case AFTER_NOTHING:
   280 	minMinCut(M);
   281 	break;
   282       case AFTER_AUGMENTING:
   283 	for(g->first(v); g->valid(v); g->next(v)) {
   284 	  if (level[v]) {
   285 	    M.set(v, true);
   286 	  } else {
   287 	    M.set(v, false);
   288 	  }
   289 	}
   290 	break;
   291       case AFTER_FAST_AUGMENTING:
   292 	for(g->first(v); g->valid(v); g->next(v)) {
   293 	  if (level[v]==number_of_augmentations) {
   294 	    M.set(v, true);
   295 	  } else {
   296 	    M.set(v, false);
   297 	  }
   298 	}
   299 	break;
   300       }
   301     }
   302 
   303     ///Returns the inclusionwise minimum of the minimum value cuts.
   304 
   305     ///Sets \c M to the characteristic vector of the minimum value cut
   306     ///which is inclusionwise minimum. It is computed by processing
   307     ///a bfs from the source node \c s in the residual graph.
   308     ///\pre M should be a node map of bools initialized to false.
   309     ///\pre \c flow must be a maximum flow.
   310     template<typename _CutMap>
   311     void minMinCut(_CutMap& M) const {
   312       std::queue<Node> queue;
   313 
   314       M.set(s,true);
   315       queue.push(s);
   316 
   317       while (!queue.empty()) {
   318         Node w=queue.front();
   319 	queue.pop();
   320 
   321 	OutEdgeIt e;
   322 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   323 	  Node v=g->head(e);
   324 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
   325 	    queue.push(v);
   326 	    M.set(v, true);
   327 	  }
   328 	}
   329 
   330 	InEdgeIt f;
   331 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   332 	  Node v=g->tail(f);
   333 	  if (!M[v] && (*flow)[f] > 0 ) {
   334 	    queue.push(v);
   335 	    M.set(v, true);
   336 	  }
   337 	}
   338       }
   339     }
   340 
   341     ///Returns the inclusionwise maximum of the minimum value cuts.
   342 
   343     ///Sets \c M to the characteristic vector of the minimum value cut
   344     ///which is inclusionwise maximum. It is computed by processing a
   345     ///backward bfs from the target node \c t in the residual graph.
   346     ///\pre M should be a node map of bools initialized to false.
   347     ///\pre \c flow must be a maximum flow. 
   348     template<typename _CutMap>
   349     void maxMinCut(_CutMap& M) const {
   350 
   351       NodeIt v;
   352       for(g->first(v) ; g->valid(v); g->next(v)) {
   353 	M.set(v, true);
   354       }
   355 
   356       std::queue<Node> queue;
   357 
   358       M.set(t,false);
   359       queue.push(t);
   360 
   361       while (!queue.empty()) {
   362         Node w=queue.front();
   363 	queue.pop();
   364 
   365 	InEdgeIt e;
   366 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   367 	  Node v=g->tail(e);
   368 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
   369 	    queue.push(v);
   370 	    M.set(v, false);
   371 	  }
   372 	}
   373 
   374 	OutEdgeIt f;
   375 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   376 	  Node v=g->head(f);
   377 	  if (M[v] && (*flow)[f] > 0 ) {
   378 	    queue.push(v);
   379 	    M.set(v, false);
   380 	  }
   381 	}
   382       }
   383     }
   384 
   385     ///Returns a minimum value cut.
   386 
   387     ///Sets \c M to the characteristic vector of a minimum value cut.
   388     ///\pre M should be a node map of bools initialized to false.
   389     ///\pre \c flow must be a maximum flow.    
   390     template<typename CutMap>
   391     void minCut(CutMap& M) const { minMinCut(M); }
   392 
   393     ///Resets the source node to \c _s.
   394 
   395     ///Resets the source node to \c _s.
   396     /// 
   397     void resetSource(Node _s) { s=_s; status=AFTER_NOTHING; }
   398 
   399     ///Resets the target node to \c _t.
   400 
   401     ///Resets the target node to \c _t.
   402     ///
   403     void resetTarget(Node _t) { t=_t; status=AFTER_NOTHING; }
   404 
   405     /// Resets the edge map of the capacities to _cap.
   406 
   407     /// Resets the edge map of the capacities to _cap.
   408     /// 
   409     void resetCap(const CapMap& _cap) { capacity=&_cap; status=AFTER_NOTHING; }
   410 
   411     /// Resets the edge map of the flows to _flow.
   412 
   413     /// Resets the edge map of the flows to _flow.
   414     /// 
   415     void resetFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; }
   416 
   417 
   418   private:
   419 
   420     int push(Node w, VecStack& active) {
   421 
   422       int lev=level[w];
   423       Num exc=excess[w];
   424       int newlevel=n;       //bound on the next level of w
   425 
   426       OutEdgeIt e;
   427       for(g->first(e,w); g->valid(e); g->next(e)) {
   428 
   429 	if ( (*flow)[e] >= (*capacity)[e] ) continue;
   430 	Node v=g->head(e);
   431 
   432 	if( lev > level[v] ) { //Push is allowed now
   433 
   434 	  if ( excess[v]<=0 && v!=t && v!=s ) {
   435 	    int lev_v=level[v];
   436 	    active[lev_v].push(v);
   437 	  }
   438 
   439 	  Num cap=(*capacity)[e];
   440 	  Num flo=(*flow)[e];
   441 	  Num remcap=cap-flo;
   442 
   443 	  if ( remcap >= exc ) { //A nonsaturating push.
   444 
   445 	    flow->set(e, flo+exc);
   446 	    excess.set(v, excess[v]+exc);
   447 	    exc=0;
   448 	    break;
   449 
   450 	  } else { //A saturating push.
   451 	    flow->set(e, cap);
   452 	    excess.set(v, excess[v]+remcap);
   453 	    exc-=remcap;
   454 	  }
   455 	} else if ( newlevel > level[v] ) newlevel = level[v];
   456       } //for out edges wv
   457 
   458       if ( exc > 0 ) {
   459 	InEdgeIt e;
   460 	for(g->first(e,w); g->valid(e); g->next(e)) {
   461 
   462 	  if( (*flow)[e] <= 0 ) continue;
   463 	  Node v=g->tail(e);
   464 
   465 	  if( lev > level[v] ) { //Push is allowed now
   466 
   467 	    if ( excess[v]<=0 && v!=t && v!=s ) {
   468 	      int lev_v=level[v];
   469 	      active[lev_v].push(v);
   470 	    }
   471 
   472 	    Num flo=(*flow)[e];
   473 
   474 	    if ( flo >= exc ) { //A nonsaturating push.
   475 
   476 	      flow->set(e, flo-exc);
   477 	      excess.set(v, excess[v]+exc);
   478 	      exc=0;
   479 	      break;
   480 	    } else {  //A saturating push.
   481 
   482 	      excess.set(v, excess[v]+flo);
   483 	      exc-=flo;
   484 	      flow->set(e,0);
   485 	    }
   486 	  } else if ( newlevel > level[v] ) newlevel = level[v];
   487 	} //for in edges vw
   488 
   489       } // if w still has excess after the out edge for cycle
   490 
   491       excess.set(w, exc);
   492 
   493       return newlevel;
   494     }
   495 
   496 
   497     void preflowPreproc(FlowEnum fe, VecStack& active,
   498 			VecNode& level_list, NNMap& left, NNMap& right)
   499     {
   500       std::queue<Node> bfs_queue;
   501 
   502       switch (fe) {
   503       case NO_FLOW:   //flow is already set to const zero in this case
   504       case ZERO_FLOW:
   505 	{
   506 	  //Reverse_bfs from t, to find the starting level.
   507 	  level.set(t,0);
   508 	  bfs_queue.push(t);
   509 
   510 	  while (!bfs_queue.empty()) {
   511 
   512 	    Node v=bfs_queue.front();
   513 	    bfs_queue.pop();
   514 	    int l=level[v]+1;
   515 
   516 	    InEdgeIt e;
   517 	    for(g->first(e,v); g->valid(e); g->next(e)) {
   518 	      Node w=g->tail(e);
   519 	      if ( level[w] == n && w != s ) {
   520 		bfs_queue.push(w);
   521 		Node first=level_list[l];
   522 		if ( g->valid(first) ) left.set(first,w);
   523 		right.set(w,first);
   524 		level_list[l]=w;
   525 		level.set(w, l);
   526 	      }
   527 	    }
   528 	  }
   529 
   530 	  //the starting flow
   531 	  OutEdgeIt e;
   532 	  for(g->first(e,s); g->valid(e); g->next(e))
   533 	    {
   534 	      Num c=(*capacity)[e];
   535 	      if ( c <= 0 ) continue;
   536 	      Node w=g->head(e);
   537 	      if ( level[w] < n ) {
   538 		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   539 		flow->set(e, c);
   540 		excess.set(w, excess[w]+c);
   541 	      }
   542 	    }
   543 	  break;
   544 	}
   545 
   546       case GEN_FLOW:
   547       case PRE_FLOW:
   548 	{
   549 	  //Reverse_bfs from t in the residual graph,
   550 	  //to find the starting level.
   551 	  level.set(t,0);
   552 	  bfs_queue.push(t);
   553 
   554 	  while (!bfs_queue.empty()) {
   555 
   556 	    Node v=bfs_queue.front();
   557 	    bfs_queue.pop();
   558 	    int l=level[v]+1;
   559 
   560 	    InEdgeIt e;
   561 	    for(g->first(e,v); g->valid(e); g->next(e)) {
   562 	      if ( (*capacity)[e] <= (*flow)[e] ) continue;
   563 	      Node w=g->tail(e);
   564 	      if ( level[w] == n && w != s ) {
   565 		bfs_queue.push(w);
   566 		Node first=level_list[l];
   567 		if ( g->valid(first) ) left.set(first,w);
   568 		right.set(w,first);
   569 		level_list[l]=w;
   570 		level.set(w, l);
   571 	      }
   572 	    }
   573 
   574 	    OutEdgeIt f;
   575 	    for(g->first(f,v); g->valid(f); g->next(f)) {
   576 	      if ( 0 >= (*flow)[f] ) continue;
   577 	      Node w=g->head(f);
   578 	      if ( level[w] == n && w != s ) {
   579 		bfs_queue.push(w);
   580 		Node first=level_list[l];
   581 		if ( g->valid(first) ) left.set(first,w);
   582 		right.set(w,first);
   583 		level_list[l]=w;
   584 		level.set(w, l);
   585 	      }
   586 	    }
   587 	  }
   588 
   589 
   590 	  //the starting flow
   591 	  OutEdgeIt e;
   592 	  for(g->first(e,s); g->valid(e); g->next(e))
   593 	    {
   594 	      Num rem=(*capacity)[e]-(*flow)[e];
   595 	      if ( rem <= 0 ) continue;
   596 	      Node w=g->head(e);
   597 	      if ( level[w] < n ) {
   598 		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   599 		flow->set(e, (*capacity)[e]);
   600 		excess.set(w, excess[w]+rem);
   601 	      }
   602 	    }
   603 
   604 	  InEdgeIt f;
   605 	  for(g->first(f,s); g->valid(f); g->next(f))
   606 	    {
   607 	      if ( (*flow)[f] <= 0 ) continue;
   608 	      Node w=g->tail(f);
   609 	      if ( level[w] < n ) {
   610 		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   611 		excess.set(w, excess[w]+(*flow)[f]);
   612 		flow->set(f, 0);
   613 	      }
   614 	    }
   615 	  break;
   616 	} //case PRE_FLOW
   617       }
   618     } //preflowPreproc
   619 
   620 
   621 
   622     void relabel(Node w, int newlevel, VecStack& active,
   623 		 VecNode& level_list, NNMap& left,
   624 		 NNMap& right, int& b, int& k, bool what_heur )
   625     {
   626 
   627       Num lev=level[w];
   628 
   629       Node right_n=right[w];
   630       Node left_n=left[w];
   631 
   632       //unlacing starts
   633       if ( g->valid(right_n) ) {
   634 	if ( g->valid(left_n) ) {
   635 	  right.set(left_n, right_n);
   636 	  left.set(right_n, left_n);
   637 	} else {
   638 	  level_list[lev]=right_n;
   639 	  left.set(right_n, INVALID);
   640 	}
   641       } else {
   642 	if ( g->valid(left_n) ) {
   643 	  right.set(left_n, INVALID);
   644 	} else {
   645 	  level_list[lev]=INVALID;
   646 	}
   647       }
   648       //unlacing ends
   649 
   650       if ( !g->valid(level_list[lev]) ) {
   651 
   652 	//gapping starts
   653 	for (int i=lev; i!=k ; ) {
   654 	  Node v=level_list[++i];
   655 	  while ( g->valid(v) ) {
   656 	    level.set(v,n);
   657 	    v=right[v];
   658 	  }
   659 	  level_list[i]=INVALID;
   660 	  if ( !what_heur ) {
   661 	    while ( !active[i].empty() ) {
   662 	      active[i].pop();    //FIXME: ezt szebben kene
   663 	    }
   664 	  }
   665 	}
   666 
   667 	level.set(w,n);
   668 	b=lev-1;
   669 	k=b;
   670 	//gapping ends
   671 
   672       } else {
   673 
   674 	if ( newlevel == n ) level.set(w,n);
   675 	else {
   676 	  level.set(w,++newlevel);
   677 	  active[newlevel].push(w);
   678 	  if ( what_heur ) b=newlevel;
   679 	  if ( k < newlevel ) ++k;      //now k=newlevel
   680 	  Node first=level_list[newlevel];
   681 	  if ( g->valid(first) ) left.set(first,w);
   682 	  right.set(w,first);
   683 	  left.set(w,INVALID);
   684 	  level_list[newlevel]=w;
   685 	}
   686       }
   687 
   688     } //relabel
   689 
   690 
   691     template<typename MapGraphWrapper>
   692     class DistanceMap {
   693     protected:
   694       const MapGraphWrapper* g;
   695       typename MapGraphWrapper::template NodeMap<int> dist;
   696     public:
   697       DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { }
   698       void set(const typename MapGraphWrapper::Node& n, int a) {
   699 	dist.set(n, a);
   700       }
   701       int operator[](const typename MapGraphWrapper::Node& n) const { 
   702 	return dist[n]; 
   703       }
   704       //       int get(const typename MapGraphWrapper::Node& n) const {
   705       // 	return dist[n]; }
   706       //       bool get(const typename MapGraphWrapper::Edge& e) const {
   707       // 	return (dist.get(g->tail(e))<dist.get(g->head(e))); }
   708       bool operator[](const typename MapGraphWrapper::Edge& e) const {
   709 	return (dist[g->tail(e)]<dist[g->head(e)]);
   710       }
   711     };
   712 
   713   };
   714 
   715 
   716   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   717   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase1(FlowEnum fe)
   718   {
   719 
   720     int heur0=(int)(H0*n);  //time while running 'bound decrease'
   721     int heur1=(int)(H1*n);  //time while running 'highest label'
   722     int heur=heur1;         //starting time interval (#of relabels)
   723     int numrelabel=0;
   724 
   725     bool what_heur=1;
   726     //It is 0 in case 'bound decrease' and 1 in case 'highest label'
   727 
   728     bool end=false;
   729     //Needed for 'bound decrease', true means no active nodes are above bound
   730     //b.
   731 
   732     int k=n-2;  //bound on the highest level under n containing a node
   733     int b=k;    //bound on the highest level under n of an active node
   734 
   735     VecStack active(n);
   736 
   737     NNMap left(*g, INVALID);
   738     NNMap right(*g, INVALID);
   739     VecNode level_list(n,INVALID);
   740     //List of the nodes in level i<n, set to n.
   741 
   742     NodeIt v;
   743     for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
   744     //setting each node to level n
   745 
   746     if ( fe == NO_FLOW ) {
   747       EdgeIt e;
   748       for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0);
   749     }
   750 
   751     switch (fe) { //computing the excess
   752     case PRE_FLOW:
   753       {
   754 	NodeIt v;
   755 	for(g->first(v); g->valid(v); g->next(v)) {
   756 	  Num exc=0;
   757 
   758 	  InEdgeIt e;
   759 	  for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];
   760 	  OutEdgeIt f;
   761 	  for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];
   762 
   763 	  excess.set(v,exc);
   764 
   765 	  //putting the active nodes into the stack
   766 	  int lev=level[v];
   767 	  if ( exc > 0 && lev < n && v != t ) active[lev].push(v);
   768 	}
   769 	break;
   770       }
   771     case GEN_FLOW:
   772       {
   773 	NodeIt v;
   774 	for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
   775 
   776 	Num exc=0;
   777 	InEdgeIt e;
   778 	for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
   779 	OutEdgeIt f;
   780 	for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
   781 	excess.set(t,exc);
   782 	break;
   783       }
   784     case ZERO_FLOW:
   785     case NO_FLOW:
   786       {
   787 	NodeIt v;
   788         for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
   789 	break;
   790       }
   791     }
   792 
   793     preflowPreproc(fe, active, level_list, left, right);
   794     //End of preprocessing
   795 
   796 
   797     //Push/relabel on the highest level active nodes.
   798     while ( true ) {
   799       if ( b == 0 ) {
   800 	if ( !what_heur && !end && k > 0 ) {
   801 	  b=k;
   802 	  end=true;
   803 	} else break;
   804       }
   805 
   806       if ( active[b].empty() ) --b;
   807       else {
   808 	end=false;
   809 	Node w=active[b].top();
   810 	active[b].pop();
   811 	int newlevel=push(w,active);
   812 	if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list,
   813 				     left, right, b, k, what_heur);
   814 
   815 	++numrelabel;
   816 	if ( numrelabel >= heur ) {
   817 	  numrelabel=0;
   818 	  if ( what_heur ) {
   819 	    what_heur=0;
   820 	    heur=heur0;
   821 	    end=false;
   822 	  } else {
   823 	    what_heur=1;
   824 	    heur=heur1;
   825 	    b=k;
   826 	  }
   827 	}
   828       }
   829     }
   830 
   831     status=AFTER_PRE_FLOW_PHASE_1;
   832   }
   833 
   834 
   835 
   836   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   837   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase2()
   838   {
   839 
   840     int k=n-2;  //bound on the highest level under n containing a node
   841     int b=k;    //bound on the highest level under n of an active node
   842 
   843     VecStack active(n);
   844     level.set(s,0);
   845     std::queue<Node> bfs_queue;
   846     bfs_queue.push(s);
   847 
   848     while (!bfs_queue.empty()) {
   849 
   850       Node v=bfs_queue.front();
   851       bfs_queue.pop();
   852       int l=level[v]+1;
   853 
   854       InEdgeIt e;
   855       for(g->first(e,v); g->valid(e); g->next(e)) {
   856 	if ( (*capacity)[e] <= (*flow)[e] ) continue;
   857 	Node u=g->tail(e);
   858 	if ( level[u] >= n ) {
   859 	  bfs_queue.push(u);
   860 	  level.set(u, l);
   861 	  if ( excess[u] > 0 ) active[l].push(u);
   862 	}
   863       }
   864 
   865       OutEdgeIt f;
   866       for(g->first(f,v); g->valid(f); g->next(f)) {
   867 	if ( 0 >= (*flow)[f] ) continue;
   868 	Node u=g->head(f);
   869 	if ( level[u] >= n ) {
   870 	  bfs_queue.push(u);
   871 	  level.set(u, l);
   872 	  if ( excess[u] > 0 ) active[l].push(u);
   873 	}
   874       }
   875     }
   876     b=n-2;
   877 
   878     while ( true ) {
   879 
   880       if ( b == 0 ) break;
   881 
   882       if ( active[b].empty() ) --b;
   883       else {
   884 	Node w=active[b].top();
   885 	active[b].pop();
   886 	int newlevel=push(w,active);
   887 
   888 	//relabel
   889 	if ( excess[w] > 0 ) {
   890 	  level.set(w,++newlevel);
   891 	  active[newlevel].push(w);
   892 	  b=newlevel;
   893 	}
   894       }  // if stack[b] is nonempty
   895     } // while(true)
   896 
   897     status=AFTER_PRE_FLOW_PHASE_2;
   898   }
   899 
   900 
   901 
   902   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   903   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath()
   904   {
   905     ResGW res_graph(*g, *capacity, *flow);
   906     bool _augment=false;
   907 
   908     //ReachedMap level(res_graph);
   909     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
   910     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
   911     bfs.pushAndSetReached(s);
   912 
   913     typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
   914     pred.set(s, INVALID);
   915 
   916     typename ResGW::template NodeMap<Num> free(res_graph);
   917 
   918     //searching for augmenting path
   919     while ( !bfs.finished() ) {
   920       ResGWOutEdgeIt e=bfs;
   921       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   922 	Node v=res_graph.tail(e);
   923 	Node w=res_graph.head(e);
   924 	pred.set(w, e);
   925 	if (res_graph.valid(pred[v])) {
   926 	  free.set(w, std::min(free[v], res_graph.resCap(e)));
   927 	} else {
   928 	  free.set(w, res_graph.resCap(e));
   929 	}
   930 	if (res_graph.head(e)==t) { _augment=true; break; }
   931       }
   932 
   933       ++bfs;
   934     } //end of searching augmenting path
   935 
   936     if (_augment) {
   937       Node n=t;
   938       Num augment_value=free[t];
   939       while (res_graph.valid(pred[n])) {
   940 	ResGWEdge e=pred[n];
   941 	res_graph.augment(e, augment_value);
   942 	n=res_graph.tail(e);
   943       }
   944     }
   945 
   946     status=AFTER_AUGMENTING;
   947     return _augment;
   948   }
   949 
   950 
   951   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   952   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath2()
   953   {
   954     ResGW res_graph(*g, *capacity, *flow);
   955     bool _augment=false;
   956 
   957     if (status!=AFTER_FAST_AUGMENTING) {
   958       FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); 
   959       number_of_augmentations=1;
   960     } else {
   961       ++number_of_augmentations;
   962     }
   963     TrickyReachedMap<ReachedMap> 
   964       tricky_reached_map(level, number_of_augmentations);
   965     //ReachedMap level(res_graph);
   966 //    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
   967     BfsIterator<ResGW, TrickyReachedMap<ReachedMap> > 
   968       bfs(res_graph, tricky_reached_map);
   969     bfs.pushAndSetReached(s);
   970 
   971     typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
   972     pred.set(s, INVALID);
   973 
   974     typename ResGW::template NodeMap<Num> free(res_graph);
   975 
   976     //searching for augmenting path
   977     while ( !bfs.finished() ) {
   978       ResGWOutEdgeIt e=bfs;
   979       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   980 	Node v=res_graph.tail(e);
   981 	Node w=res_graph.head(e);
   982 	pred.set(w, e);
   983 	if (res_graph.valid(pred[v])) {
   984 	  free.set(w, std::min(free[v], res_graph.resCap(e)));
   985 	} else {
   986 	  free.set(w, res_graph.resCap(e));
   987 	}
   988 	if (res_graph.head(e)==t) { _augment=true; break; }
   989       }
   990 
   991       ++bfs;
   992     } //end of searching augmenting path
   993 
   994     if (_augment) {
   995       Node n=t;
   996       Num augment_value=free[t];
   997       while (res_graph.valid(pred[n])) {
   998 	ResGWEdge e=pred[n];
   999 	res_graph.augment(e, augment_value);
  1000 	n=res_graph.tail(e);
  1001       }
  1002     }
  1003 
  1004     status=AFTER_FAST_AUGMENTING;
  1005     return _augment;
  1006   }
  1007 
  1008 
  1009   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
  1010   template<typename MutableGraph>
  1011   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow()
  1012   {
  1013     typedef MutableGraph MG;
  1014     bool _augment=false;
  1015 
  1016     ResGW res_graph(*g, *capacity, *flow);
  1017 
  1018     //bfs for distances on the residual graph
  1019     //ReachedMap level(res_graph);
  1020     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
  1021     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
  1022     bfs.pushAndSetReached(s);
  1023     typename ResGW::template NodeMap<int>
  1024       dist(res_graph); //filled up with 0's
  1025 
  1026     //F will contain the physical copy of the residual graph
  1027     //with the set of edges which are on shortest paths
  1028     MG F;
  1029     typename ResGW::template NodeMap<typename MG::Node>
  1030       res_graph_to_F(res_graph);
  1031     {
  1032       typename ResGW::NodeIt n;
  1033       for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
  1034 	res_graph_to_F.set(n, F.addNode());
  1035       }
  1036     }
  1037 
  1038     typename MG::Node sF=res_graph_to_F[s];
  1039     typename MG::Node tF=res_graph_to_F[t];
  1040     typename MG::template EdgeMap<ResGWEdge> original_edge(F);
  1041     typename MG::template EdgeMap<Num> residual_capacity(F);
  1042 
  1043     while ( !bfs.finished() ) {
  1044       ResGWOutEdgeIt e=bfs;
  1045       if (res_graph.valid(e)) {
  1046 	if (bfs.isBNodeNewlyReached()) {
  1047 	  dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
  1048 	  typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
  1049 					res_graph_to_F[res_graph.head(e)]);
  1050 	  original_edge.update();
  1051 	  original_edge.set(f, e);
  1052 	  residual_capacity.update();
  1053 	  residual_capacity.set(f, res_graph.resCap(e));
  1054 	} else {
  1055 	  if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) {
  1056 	    typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
  1057 					  res_graph_to_F[res_graph.head(e)]);
  1058 	    original_edge.update();
  1059 	    original_edge.set(f, e);
  1060 	    residual_capacity.update();
  1061 	    residual_capacity.set(f, res_graph.resCap(e));
  1062 	  }
  1063 	}
  1064       }
  1065       ++bfs;
  1066     } //computing distances from s in the residual graph
  1067 
  1068     bool __augment=true;
  1069 
  1070     while (__augment) {
  1071       __augment=false;
  1072       //computing blocking flow with dfs
  1073       DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F);
  1074       typename MG::template NodeMap<typename MG::Edge> pred(F);
  1075       pred.set(sF, INVALID);
  1076       //invalid iterators for sources
  1077 
  1078       typename MG::template NodeMap<Num> free(F);
  1079 
  1080       dfs.pushAndSetReached(sF);
  1081       while (!dfs.finished()) {
  1082 	++dfs;
  1083 	if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
  1084 	  if (dfs.isBNodeNewlyReached()) {
  1085 	    typename MG::Node v=F.aNode(dfs);
  1086 	    typename MG::Node w=F.bNode(dfs);
  1087 	    pred.set(w, dfs);
  1088 	    if (F.valid(pred[v])) {
  1089 	      free.set(w, std::min(free[v], residual_capacity[dfs]));
  1090 	    } else {
  1091 	      free.set(w, residual_capacity[dfs]);
  1092 	    }
  1093 	    if (w==tF) {
  1094 	      __augment=true;
  1095 	      _augment=true;
  1096 	      break;
  1097 	    }
  1098 
  1099 	  } else {
  1100 	    F.erase(/*typename MG::OutEdgeIt*/(dfs));
  1101 	  }
  1102 	}
  1103       }
  1104 
  1105       if (__augment) {
  1106 	typename MG::Node n=tF;
  1107 	Num augment_value=free[tF];
  1108 	while (F.valid(pred[n])) {
  1109 	  typename MG::Edge e=pred[n];
  1110 	  res_graph.augment(original_edge[e], augment_value);
  1111 	  n=F.tail(e);
  1112 	  if (residual_capacity[e]==augment_value)
  1113 	    F.erase(e);
  1114 	  else
  1115 	    residual_capacity.set(e, residual_capacity[e]-augment_value);
  1116 	}
  1117       }
  1118 
  1119     }
  1120 
  1121     status=AFTER_AUGMENTING;
  1122     return _augment;
  1123   }
  1124 
  1125 
  1126 
  1127 
  1128   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
  1129   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2()
  1130   {
  1131     bool _augment=false;
  1132 
  1133     ResGW res_graph(*g, *capacity, *flow);
  1134 
  1135     //ReachedMap level(res_graph);
  1136     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
  1137     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
  1138 
  1139     bfs.pushAndSetReached(s);
  1140     DistanceMap<ResGW> dist(res_graph);
  1141     while ( !bfs.finished() ) {
  1142       ResGWOutEdgeIt e=bfs;
  1143       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
  1144 	dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
  1145       }
  1146       ++bfs;
  1147     } //computing distances from s in the residual graph
  1148 
  1149       //Subgraph containing the edges on some shortest paths
  1150     ConstMap<typename ResGW::Node, bool> true_map(true);
  1151     typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>,
  1152       DistanceMap<ResGW> > FilterResGW;
  1153     FilterResGW filter_res_graph(res_graph, true_map, dist);
  1154 
  1155     //Subgraph, which is able to delete edges which are already
  1156     //met by the dfs
  1157     typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt>
  1158       first_out_edges(filter_res_graph);
  1159     typename FilterResGW::NodeIt v;
  1160     for(filter_res_graph.first(v); filter_res_graph.valid(v);
  1161 	filter_res_graph.next(v))
  1162       {
  1163  	typename FilterResGW::OutEdgeIt e;
  1164  	filter_res_graph.first(e, v);
  1165  	first_out_edges.set(v, e);
  1166       }
  1167     typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
  1168       template NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW;
  1169     ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
  1170 
  1171     bool __augment=true;
  1172 
  1173     while (__augment) {
  1174 
  1175       __augment=false;
  1176       //computing blocking flow with dfs
  1177       DfsIterator< ErasingResGW,
  1178 	typename ErasingResGW::template NodeMap<bool> >
  1179 	dfs(erasing_res_graph);
  1180       typename ErasingResGW::
  1181 	template NodeMap<typename ErasingResGW::OutEdgeIt>
  1182 	pred(erasing_res_graph);
  1183       pred.set(s, INVALID);
  1184       //invalid iterators for sources
  1185 
  1186       typename ErasingResGW::template NodeMap<Num>
  1187 	free1(erasing_res_graph);
  1188 
  1189       dfs.pushAndSetReached
  1190 	///\bug hugo 0.2
  1191 	(typename ErasingResGW::Node
  1192 	 (typename FilterResGW::Node
  1193 	  (typename ResGW::Node(s)
  1194 	   )
  1195 	  )
  1196 	 );
  1197       while (!dfs.finished()) {
  1198 	++dfs;
  1199 	if (erasing_res_graph.valid(typename ErasingResGW::OutEdgeIt(dfs)))
  1200  	  {
  1201   	    if (dfs.isBNodeNewlyReached()) {
  1202 
  1203  	      typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs);
  1204  	      typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs);
  1205 
  1206  	      pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs));
  1207  	      if (erasing_res_graph.valid(pred[v])) {
  1208  		free1.set
  1209 		  (w, std::min(free1[v], res_graph.resCap
  1210 			       (typename ErasingResGW::OutEdgeIt(dfs))));
  1211  	      } else {
  1212  		free1.set
  1213 		  (w, res_graph.resCap
  1214 		   (typename ErasingResGW::OutEdgeIt(dfs)));
  1215  	      }
  1216 
  1217  	      if (w==t) {
  1218  		__augment=true;
  1219  		_augment=true;
  1220  		break;
  1221  	      }
  1222  	    } else {
  1223  	      erasing_res_graph.erase(dfs);
  1224 	    }
  1225 	  }
  1226       }
  1227 
  1228       if (__augment) {
  1229 	typename ErasingResGW::Node
  1230 	  n=typename FilterResGW::Node(typename ResGW::Node(t));
  1231 	// 	  typename ResGW::NodeMap<Num> a(res_graph);
  1232 	// 	  typename ResGW::Node b;
  1233 	// 	  Num j=a[b];
  1234 	// 	  typename FilterResGW::NodeMap<Num> a1(filter_res_graph);
  1235 	// 	  typename FilterResGW::Node b1;
  1236 	// 	  Num j1=a1[b1];
  1237 	// 	  typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph);
  1238 	// 	  typename ErasingResGW::Node b2;
  1239 	// 	  Num j2=a2[b2];
  1240 	Num augment_value=free1[n];
  1241 	while (erasing_res_graph.valid(pred[n])) {
  1242 	  typename ErasingResGW::OutEdgeIt e=pred[n];
  1243 	  res_graph.augment(e, augment_value);
  1244 	  n=erasing_res_graph.tail(e);
  1245 	  if (res_graph.resCap(e)==0)
  1246 	    erasing_res_graph.erase(e);
  1247 	}
  1248       }
  1249 
  1250     } //while (__augment)
  1251 
  1252     status=AFTER_AUGMENTING;
  1253     return _augment;
  1254   }
  1255 
  1256 
  1257 } //namespace hugo
  1258 
  1259 #endif //HUGO_MAX_FLOW_H
  1260 
  1261 
  1262 
  1263