lemon/topology.h
author deba
Mon, 03 Oct 2005 13:51:25 +0000
changeset 1701 77bb84387815
child 1709 a323456bf7c8
permissions -rw-r--r--
Bugfix
     1 /* -*- C++ -*-
     2  * lemon/topology.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_TOPOLOGY_H
    18 #define LEMON_TOPOLOGY_H
    19 
    20 #include <lemon/dfs.h>
    21 #include <lemon/graph_utils.h>
    22 
    23 #include <lemon/concept/graph.h>
    24 #include <lemon/concept/undir_graph.h>
    25 #include <lemon/concept_check.h>
    26 
    27 /// \ingroup flowalgs
    28 /// \file
    29 /// \brief Topology related algorithms
    30 ///
    31 /// Topology related algorithms
    32 
    33 namespace lemon {
    34 
    35   namespace _topology_bits {
    36     
    37     template <typename NodeMap>
    38     class BackCounterMap {
    39     public:
    40       BackCounterMap(NodeMap& _nodeMap, int _counter)
    41 	: nodeMap(_nodeMap), counter(_counter) {}
    42 
    43       void set(typename NodeMap::Key key, bool val) {
    44 	if (val) {
    45 	  nodeMap.set(key, --counter);
    46 	} else {
    47 	  nodeMap.set(key, -1);
    48 	}
    49       }
    50 
    51       bool operator[](typename NodeMap::Key key) const {
    52 	return nodeMap[key] != -1;
    53       }
    54 
    55     private:
    56       NodeMap& nodeMap;
    57       int counter;
    58     };
    59   }
    60 
    61   // \todo Its to special output // ReadWriteMap
    62   template <typename Graph, typename NodeMap>
    63   bool topological_sort(const Graph& graph, NodeMap& nodeMap) {
    64     using namespace _topology_bits;
    65 
    66     checkConcept<concept::StaticGraph, Graph>();
    67     checkConcept<concept::ReadWriteMap<typename Graph::Node, int>, NodeMap>();
    68 
    69     typedef typename Graph::Node Node;
    70     typedef typename Graph::NodeIt NodeIt;
    71     typedef typename Graph::Edge Edge;
    72 
    73     typedef BackCounterMap<NodeMap> ProcessedMap;
    74 
    75     typename Dfs<Graph>::template DefProcessedMap<ProcessedMap>::
    76       Dfs dfs(graph);
    77 
    78     ProcessedMap processed(nodeMap, countNodes(graph));
    79 
    80     dfs.processedMap(processed);
    81     dfs.init();
    82     for (NodeIt it(graph); it != INVALID; ++it) {
    83       if (!dfs.reached(it)) {
    84 	dfs.addSource(it);
    85 	while (!dfs.emptyQueue()) {
    86 	  Edge edge = dfs.nextEdge();
    87 	  Node target = graph.target(edge);
    88 	  if (dfs.reached(target) && !processed[target]) {
    89 	    return false;
    90 	  }
    91 	  dfs.processNextEdge();
    92 	}
    93       }
    94     }    
    95     return true;
    96   }
    97 
    98   /// \brief Check that the given graph is a DAG.
    99   ///
   100   /// Check that the given graph is a DAG. The DAG is
   101   /// an Directed Acyclic Graph.
   102   template <typename Graph>
   103   bool dag(const Graph& graph) {
   104 
   105     checkConcept<concept::StaticGraph, Graph>();
   106 
   107     typedef typename Graph::Node Node;
   108     typedef typename Graph::NodeIt NodeIt;
   109     typedef typename Graph::Edge Edge;
   110 
   111     typedef typename Graph::template NodeMap<bool> ProcessedMap;
   112 
   113     typename Dfs<Graph>::template DefProcessedMap<ProcessedMap>::
   114       Dfs dfs(graph);
   115 
   116     ProcessedMap processed(graph);
   117     dfs.processedMap(processed);
   118 
   119     dfs.init();
   120     for (NodeIt it(graph); it != INVALID; ++it) {
   121       if (!dfs.reached(it)) {
   122 	dfs.addSource(it);
   123 	while (!dfs.emptyQueue()) {
   124 	  Edge edge = dfs.nextEdge();
   125 	  Node target = graph.target(edge);
   126 	  if (dfs.reached(target) && !processed[target]) {
   127 	    return false;
   128 	  }
   129 	  dfs.processNextEdge();
   130 	}
   131       }
   132     }    
   133     return true;
   134   }
   135 
   136   // UndirGraph algorithms
   137 
   138   /// \brief Check that the given undirected graph is connected.
   139   ///
   140   /// Check that the given undirected graph connected.
   141   template <typename UndirGraph>
   142   bool connected(const UndirGraph& graph) {
   143     checkConcept<concept::UndirGraph, UndirGraph>();
   144     typedef typename UndirGraph::NodeIt NodeIt;
   145     if (NodeIt(graph) == INVALID) return false;
   146     Dfs<UndirGraph> dfs(graph);
   147     dfs.run(NodeIt(graph));
   148     for (NodeIt it(graph); it != INVALID; ++it) {
   149       if (!dfs.reached(it)) {
   150 	return false;
   151       }
   152     }
   153     return true;
   154   }
   155 
   156   /// \brief Check that the given undirected graph is acyclic.
   157   ///
   158   /// Check that the given undirected graph acyclic.
   159   template <typename UndirGraph>
   160   bool acyclic(const UndirGraph& graph) {
   161     checkConcept<concept::UndirGraph, UndirGraph>();
   162     typedef typename UndirGraph::Node Node;
   163     typedef typename UndirGraph::NodeIt NodeIt;
   164     typedef typename UndirGraph::Edge Edge;
   165     Dfs<UndirGraph> dfs(graph);
   166     dfs.init();
   167     for (NodeIt it(graph); it != INVALID; ++it) {
   168       if (!dfs.reached(it)) {
   169 	dfs.addSource(it);
   170 	while (!dfs.emptyQueue()) {
   171 	  Edge edge = dfs.nextEdge();
   172 	  Node source = graph.source(edge);
   173 	  Node target = graph.target(edge);
   174 	  if (dfs.reached(target) && 
   175 	      dfs.pred(source) != graph.oppositeEdge(edge)) {
   176 	    return false;
   177 	  }
   178 	  dfs.processNextEdge();
   179 	}
   180       }
   181     }
   182     return true;
   183   }
   184 
   185   /// \brief Check that the given undirected graph is tree.
   186   ///
   187   /// Check that the given undirected graph is tree.
   188   template <typename UndirGraph>
   189   bool tree(const UndirGraph& graph) {
   190     checkConcept<concept::UndirGraph, UndirGraph>();
   191     typedef typename UndirGraph::Node Node;
   192     typedef typename UndirGraph::NodeIt NodeIt;
   193     typedef typename UndirGraph::Edge Edge;
   194     if (NodeIt(graph) == INVALID) return false;
   195     Dfs<UndirGraph> dfs(graph);
   196     dfs.init();
   197     dfs.addSource(NodeIt(graph));
   198     while (!dfs.emptyQueue()) {
   199       Edge edge = dfs.nextEdge();
   200       Node source = graph.source(edge);
   201       Node target = graph.target(edge);
   202       if (dfs.reached(target) && 
   203 	  dfs.pred(source) != graph.oppositeEdge(edge)) {
   204 	return false;
   205       }
   206       dfs.processNextEdge();
   207     }
   208     for (NodeIt it(graph); it != INVALID; ++it) {
   209       if (!dfs.reached(it)) {
   210 	return false;
   211       }
   212     }    
   213     return true;
   214   }
   215  
   216 
   217 } //namespace lemon
   218 
   219 #endif //LEMON_TOPOLOGY_H