src/work/athos/minlengthpaths.h
author marci
Tue, 27 Apr 2004 14:10:19 +0000
changeset 446 77ef5c7a57d9
parent 330 7ac0d4e8a31c
child 456 02c28d3cf97b
permissions -rw-r--r--
comparison for matchings with leda
     1 // -*- c++ -*-
     2 #ifndef HUGO_MINLENGTHPATHS_H
     3 #define HUGO_MINLENGTHPATHS_H
     4 
     5 ///ingroup galgs
     6 ///\file
     7 ///\brief An algorithm for finding k paths of minimal total length.
     8 
     9 #include <iostream>
    10 #include <dijkstra.h>
    11 #include <graph_wrapper.h>
    12 #include <maps.h>
    13 #include <vector>
    14 
    15 
    16 namespace hugo {
    17 
    18 /// \addtogroup galgs
    19 /// @{
    20 
    21   ///\brief Implementation of an algorithm for finding k paths between 2 nodes 
    22   /// of minimal total length 
    23   ///
    24   /// The class \ref hugo::MinLengthPaths "MinLengthPaths" implements
    25   /// an algorithm which finds k edge-disjoint paths
    26   /// from a given source node to a given target node in an
    27   /// edge-weighted directed graph having minimal total weigth (length).
    28 
    29   template <typename Graph, typename LengthMap>
    30   class MinLengthPaths {
    31 
    32     typedef typename LengthMap::ValueType Length;
    33 
    34     typedef typename Graph::Node Node;
    35     typedef typename Graph::NodeIt NodeIt;
    36     typedef typename Graph::Edge Edge;
    37     typedef typename Graph::OutEdgeIt OutEdgeIt;
    38     typedef typename Graph::EdgeMap<int> EdgeIntMap;
    39 
    40     typedef ConstMap<Edge,int> ConstMap;
    41 
    42     typedef ResGraphWrapper<const Graph,int,ConstMap,EdgeIntMap> ResGraphType;
    43 
    44 
    45     class ModLengthMap {   
    46       typedef typename ResGraphType::NodeMap<Length> NodeMap;
    47       const ResGraphType& G;
    48       const EdgeIntMap& rev;
    49       const LengthMap &ol;
    50       const NodeMap &pot;
    51     public :
    52       typedef typename LengthMap::KeyType KeyType;
    53       typedef typename LengthMap::ValueType ValueType;
    54 
    55       ValueType operator[](typename ResGraphType::Edge e) const {     
    56 	//if ( (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)] ) <0 ){
    57 	//  std::cout<<"Negative length!!"<<std::endl;
    58 	//}
    59 	return (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    60       }     
    61 
    62       ModLengthMap(const ResGraphType& _G, const EdgeIntMap& _rev, 
    63 		   const LengthMap &o,  const NodeMap &p) : 
    64 	G(_G), rev(_rev), ol(o), pot(p){}; 
    65     };
    66     
    67 
    68     const Graph& G;
    69     const LengthMap& length;
    70 
    71     //auxiliary variables
    72 
    73     //The value is 1 iff the edge is reversed. 
    74     //If the algorithm has finished, the edges of the seeked paths are 
    75     //exactly those that are reversed 
    76     EdgeIntMap reversed; 
    77     
    78     //Container to store found paths
    79     std::vector< std::vector<Edge> > paths;
    80 
    81   public :
    82 
    83 
    84     MinLengthPaths(Graph& _G, LengthMap& _length) : G(_G), 
    85       length(_length), reversed(_G)/*, dijkstra_dist(_G)*/{ }
    86 
    87     
    88     ///Runs the algorithm.
    89 
    90     ///Runs the algorithm.
    91     ///Returns k if there are at least k edge-disjoint paths from s to t.
    92     ///Otherwise it returns the number of found edge-disjoint paths from s to t.
    93     int run(Node s, Node t, int k) {
    94       ConstMap const1map(1);
    95 
    96       //We need a residual graph, in which some of the edges are reversed
    97       ResGraphType res_graph(G, const1map, reversed);
    98 
    99       //Initialize the copy of the Dijkstra potential to zero
   100       typename ResGraphType::NodeMap<Length> dijkstra_dist(res_graph);
   101       ModLengthMap mod_length(res_graph, reversed, length, dijkstra_dist);
   102 
   103       Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
   104 
   105       int i;
   106       for (i=0; i<k; ++i){
   107 	dijkstra.run(s);
   108 	if (!dijkstra.reached(t)){
   109 	  //There are no k paths from s to t
   110 	  break;
   111 	};
   112 	
   113 	{
   114 	  //We have to copy the potential
   115 	  typename ResGraphType::NodeIt n;
   116 	  for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) {
   117 	      dijkstra_dist[n] += dijkstra.distMap()[n];
   118 	  }
   119 	}
   120 
   121 
   122 	//Reversing the sortest path
   123 	Node n=t;
   124 	Edge e;
   125 	while (n!=s){
   126 	  e = dijkstra.pred(n);
   127 	  n = dijkstra.predNode(n);
   128 	  reversed[e] = 1-reversed[e];
   129 	}
   130 
   131 	  
   132       }
   133       
   134       //Let's find the paths
   135       //We put the paths into vectors (just for now). In the meantime we lose 
   136       //the information stored in 'reversed'
   137       //We suppose the lengths to be positive now.
   138       paths.clear();
   139       paths.resize(k);
   140       for (int j=0; j<i; ++j){
   141 	Node n=s;
   142 	OutEdgeIt e;
   143 
   144 	while (n!=t){
   145 
   146 
   147 	  G.first(e,n);
   148 	  
   149 	  while (!reversed[e]){
   150 	    G.next(e);
   151 	  }
   152 	  n = G.head(e);
   153 	  paths[j].push_back(e);
   154 	  reversed[e] = 1-reversed[e];
   155 	}
   156 	
   157       }
   158 
   159       return i;
   160     }
   161 
   162 
   163   }; //class MinLengthPaths
   164 
   165   ///@}
   166 
   167 } //namespace hugo
   168 
   169 #endif //HUGO_MINLENGTHPATHS_H