2 #ifndef HUGO_MINLENGTHPATHS_H
3 #define HUGO_MINLENGTHPATHS_H
7 ///\brief An algorithm for finding k paths of minimal total length.
11 #include <graph_wrapper.h>
21 ///\brief Implementation of an algorithm for finding k paths between 2 nodes
22 /// of minimal total length
24 /// The class \ref hugo::MinLengthPaths "MinLengthPaths" implements
25 /// an algorithm which finds k edge-disjoint paths
26 /// from a given source node to a given target node in an
27 /// edge-weighted directed graph having minimal total weigth (length).
29 template <typename Graph, typename LengthMap>
30 class MinLengthPaths {
32 typedef typename LengthMap::ValueType Length;
34 typedef typename Graph::Node Node;
35 typedef typename Graph::NodeIt NodeIt;
36 typedef typename Graph::Edge Edge;
37 typedef typename Graph::OutEdgeIt OutEdgeIt;
38 typedef typename Graph::EdgeMap<int> EdgeIntMap;
40 typedef ConstMap<Edge,int> ConstMap;
42 typedef ResGraphWrapper<const Graph,int,ConstMap,EdgeIntMap> ResGraphType;
46 typedef typename ResGraphType::NodeMap<Length> NodeMap;
47 const ResGraphType& G;
48 const EdgeIntMap& rev;
52 typedef typename LengthMap::KeyType KeyType;
53 typedef typename LengthMap::ValueType ValueType;
55 ValueType operator[](typename ResGraphType::Edge e) const {
56 //if ( (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)] ) <0 ){
57 // std::cout<<"Negative length!!"<<std::endl;
59 return (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);
62 ModLengthMap(const ResGraphType& _G, const EdgeIntMap& _rev,
63 const LengthMap &o, const NodeMap &p) :
64 G(_G), rev(_rev), ol(o), pot(p){};
69 const LengthMap& length;
73 //The value is 1 iff the edge is reversed.
74 //If the algorithm has finished, the edges of the seeked paths are
75 //exactly those that are reversed
78 //Container to store found paths
79 std::vector< std::vector<Edge> > paths;
84 MinLengthPaths(Graph& _G, LengthMap& _length) : G(_G),
85 length(_length), reversed(_G)/*, dijkstra_dist(_G)*/{ }
88 ///Runs the algorithm.
90 ///Runs the algorithm.
91 ///Returns k if there are at least k edge-disjoint paths from s to t.
92 ///Otherwise it returns the number of found edge-disjoint paths from s to t.
93 int run(Node s, Node t, int k) {
94 ConstMap const1map(1);
96 //We need a residual graph, in which some of the edges are reversed
97 ResGraphType res_graph(G, const1map, reversed);
99 //Initialize the copy of the Dijkstra potential to zero
100 typename ResGraphType::NodeMap<Length> dijkstra_dist(res_graph);
101 ModLengthMap mod_length(res_graph, reversed, length, dijkstra_dist);
103 Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
108 if (!dijkstra.reached(t)){
109 //There are no k paths from s to t
114 //We have to copy the potential
115 typename ResGraphType::NodeIt n;
116 for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) {
117 dijkstra_dist[n] += dijkstra.distMap()[n];
122 //Reversing the sortest path
126 e = dijkstra.pred(n);
127 n = dijkstra.predNode(n);
128 reversed[e] = 1-reversed[e];
134 //Let's find the paths
135 //We put the paths into vectors (just for now). In the meantime we lose
136 //the information stored in 'reversed'
137 //We suppose the lengths to be positive now.
140 for (int j=0; j<i; ++j){
149 while (!reversed[e]){
153 paths[j].push_back(e);
154 reversed[e] = 1-reversed[e];
163 }; //class MinLengthPaths
169 #endif //HUGO_MINLENGTHPATHS_H