lemon/concept/bpugraph.h
author alpar
Wed, 12 Jul 2006 11:05:00 +0000
changeset 2132 783b1d583be3
parent 2120 a907fb95f1e0
child 2163 bef3457be038
permissions -rw-r--r--
(Hopefully) finish privatizing the copy constr. and operator= in
the graph concept, ListGraph and SmartGraph.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 /// \ingroup graph_concepts
    20 /// \file
    21 /// \brief Undirected bipartite graphs and components of.
    22 
    23 
    24 #ifndef LEMON_CONCEPT_BPUGRAPH_H
    25 #define LEMON_CONCEPT_BPUGRAPH_H
    26 
    27 #include <lemon/concept/graph_components.h>
    28 
    29 #include <lemon/concept/graph.h>
    30 #include <lemon/concept/ugraph.h>
    31 
    32 #include <lemon/bits/utility.h>
    33 
    34 namespace lemon {
    35   namespace concept {
    36 
    37     /// \addtogroup graph_concepts
    38     /// @{
    39 
    40 
    41     /// \brief Class describing the concept of Bipartite Undirected Graphs.
    42     ///
    43     /// This class describes the common interface of all 
    44     /// Undirected Bipartite Graphs.
    45     ///
    46     /// As all concept describing classes it provides only interface
    47     /// without any sensible implementation. So any algorithm for
    48     /// bipartite undirected graph should compile with this class, but it 
    49     /// will not run properly, of course.
    50     ///
    51     /// In LEMON bipartite undirected graphs also fulfill the concept of 
    52     /// the undirected graphs (\ref lemon::concept::UGraph "UGraph Concept"). 
    53     ///
    54     /// You can assume that all undirected bipartite graph can be handled
    55     /// as an undirected graph and consequently as a static graph.
    56     ///
    57     /// The bipartite graph stores two types of nodes which are named
    58     /// ANode and BNode. The graph type contains two types ANode and BNode
    59     /// which are inherited from Node type. Moreover they have
    60     /// constructor which converts Node to either ANode or BNode when it is
    61     /// possible. Therefor everywhere the Node type can be used instead of
    62     /// ANode and BNode. So the usage of the ANode and BNode is suggested.  
    63     ///
    64     /// The iteration on the partition can be done with the ANodeIt and 
    65     /// BNodeIt classes. The node map can be used to map values to the nodes
    66     /// and similarly we can use to map values for just the ANodes and
    67     /// BNodes the ANodeMap and BNodeMap template classes.
    68 
    69     class BpUGraph {
    70     public:
    71       /// \todo undocumented
    72       ///
    73       typedef True UndirectedTag;
    74 
    75       /// \brief The base type of node iterators, 
    76       /// or in other words, the trivial node iterator.
    77       ///
    78       /// This is the base type of each node iterator,
    79       /// thus each kind of node iterator converts to this.
    80       /// More precisely each kind of node iterator should be inherited 
    81       /// from the trivial node iterator. The Node class represents
    82       /// both of two types of nodes. 
    83       class Node {
    84       public:
    85         /// Default constructor
    86 
    87         /// @warning The default constructor sets the iterator
    88         /// to an undefined value.
    89         Node() { }
    90         /// Copy constructor.
    91 
    92         /// Copy constructor.
    93         ///
    94         Node(const Node&) { }
    95 
    96         /// Invalid constructor \& conversion.
    97 
    98         /// This constructor initializes the iterator to be invalid.
    99         /// \sa Invalid for more details.
   100         Node(Invalid) { }
   101         /// Equality operator
   102 
   103         /// Two iterators are equal if and only if they point to the
   104         /// same object or both are invalid.
   105         bool operator==(Node) const { return true; }
   106 
   107         /// Inequality operator
   108         
   109         /// \sa operator==(Node n)
   110         ///
   111         bool operator!=(Node) const { return true; }
   112 
   113 	/// Artificial ordering operator.
   114 	
   115 	/// To allow the use of graph descriptors as key type in std::map or
   116 	/// similar associative container we require this.
   117 	///
   118 	/// \note This operator only have to define some strict ordering of
   119 	/// the items; this order has nothing to do with the iteration
   120 	/// ordering of the items.
   121 	bool operator<(Node) const { return false; }
   122 
   123       };
   124 
   125       /// \brief The base type of anode iterators, 
   126       /// or in other words, the trivial anode iterator.
   127       ///
   128       /// This is the base type of each anode iterator,
   129       /// thus each kind of anode iterator converts to this.
   130       /// More precisely each kind of node iterator should be inherited 
   131       /// from the trivial anode iterator. The ANode class should be used
   132       /// only in special cases. Usually the Node type should be used insted
   133       /// of it. 
   134       class ANode {
   135       public:
   136         /// Default constructor
   137 
   138         /// @warning The default constructor sets the iterator
   139         /// to an undefined value.
   140         ANode() { }
   141         /// Copy constructor.
   142 
   143         /// Copy constructor.
   144         ///
   145         ANode(const ANode&) { }
   146 
   147         /// Construct the same node as ANode.
   148 
   149         /// Construct the same node as ANode. It may throws assertion
   150         /// when the given node is from the BNode set.
   151         ANode(const Node&) { }
   152 
   153         /// Invalid constructor \& conversion.
   154 
   155         /// This constructor initializes the iterator to be invalid.
   156         /// \sa Invalid for more details.
   157         ANode(Invalid) { }
   158         /// Equality operator
   159 
   160         /// Two iterators are equal if and only if they point to the
   161         /// same object or both are invalid.
   162         bool operator==(ANode) const { return true; }
   163 
   164         /// Inequality operator
   165         
   166         /// \sa operator==(ANode n)
   167         ///
   168         bool operator!=(ANode) const { return true; }
   169 
   170 	/// Artificial ordering operator.
   171 	
   172 	/// To allow the use of graph descriptors as key type in std::map or
   173 	/// similar associative container we require this.
   174 	///
   175 	/// \note This operator only have to define some strict ordering of
   176 	/// the items; this order has nothing to do with the iteration
   177 	/// ordering of the items.
   178 	bool operator<(ANode) const { return false; }
   179 
   180       };
   181 
   182       /// \brief The base type of bnode iterators, 
   183       /// or in other words, the trivial bnode iterator.
   184       ///
   185       /// This is the base type of each anode iterator,
   186       /// thus each kind of anode iterator converts to this.
   187       /// More precisely each kind of node iterator should be inherited 
   188       /// from the trivial anode iterator. The BNode class should be used
   189       /// only in special cases. Usually the Node type should be used insted
   190       /// of it. 
   191       class BNode {
   192       public:
   193         /// Default constructor
   194 
   195         /// @warning The default constructor sets the iterator
   196         /// to an undefined value.
   197         BNode() { }
   198         /// Copy constructor.
   199 
   200         /// Copy constructor.
   201         ///
   202         BNode(const BNode&) { }
   203 
   204         /// Construct the same node as BNode.
   205 
   206         /// Construct the same node as BNode. It may throws assertion
   207         /// when the given node is from the ANode set.
   208         BNode(const Node&) { }
   209 
   210         /// Invalid constructor \& conversion.
   211 
   212         /// This constructor initializes the iterator to be invalid.
   213         /// \sa Invalid for more details.
   214         BNode(Invalid) { }
   215         /// Equality operator
   216 
   217         /// Two iterators are equal if and only if they point to the
   218         /// same object or both are invalid.
   219         bool operator==(BNode) const { return true; }
   220 
   221         /// Inequality operator
   222         
   223         /// \sa operator==(BNode n)
   224         ///
   225         bool operator!=(BNode) const { return true; }
   226 
   227 	/// Artificial ordering operator.
   228 	
   229 	/// To allow the use of graph descriptors as key type in std::map or
   230 	/// similar associative container we require this.
   231 	///
   232 	/// \note This operator only have to define some strict ordering of
   233 	/// the items; this order has nothing to do with the iteration
   234 	/// ordering of the items.
   235 	bool operator<(BNode) const { return false; }
   236 
   237       };
   238     
   239       /// This iterator goes through each node.
   240 
   241       /// This iterator goes through each node.
   242       /// Its usage is quite simple, for example you can count the number
   243       /// of nodes in graph \c g of type \c Graph like this:
   244       ///\code
   245       /// int count=0;
   246       /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
   247       ///\endcode
   248       class NodeIt : public Node {
   249       public:
   250         /// Default constructor
   251 
   252         /// @warning The default constructor sets the iterator
   253         /// to an undefined value.
   254         NodeIt() { }
   255         /// Copy constructor.
   256         
   257         /// Copy constructor.
   258         ///
   259         NodeIt(const NodeIt& n) : Node(n) { }
   260         /// Invalid constructor \& conversion.
   261 
   262         /// Initialize the iterator to be invalid.
   263         /// \sa Invalid for more details.
   264         NodeIt(Invalid) { }
   265         /// Sets the iterator to the first node.
   266 
   267         /// Sets the iterator to the first node of \c g.
   268         ///
   269         NodeIt(const BpUGraph&) { }
   270         /// Node -> NodeIt conversion.
   271 
   272         /// Sets the iterator to the node of \c the graph pointed by 
   273 	/// the trivial iterator.
   274         /// This feature necessitates that each time we 
   275         /// iterate the edge-set, the iteration order is the same.
   276         NodeIt(const BpUGraph&, const Node&) { }
   277         /// Next node.
   278 
   279         /// Assign the iterator to the next node.
   280         ///
   281         NodeIt& operator++() { return *this; }
   282       };
   283 
   284       /// This iterator goes through each ANode.
   285 
   286       /// This iterator goes through each ANode.
   287       /// Its usage is quite simple, for example you can count the number
   288       /// of nodes in graph \c g of type \c Graph like this:
   289       ///\code
   290       /// int count=0;
   291       /// for (Graph::ANodeIt n(g); n!=INVALID; ++n) ++count;
   292       ///\endcode
   293       class ANodeIt : public ANode {
   294       public:
   295         /// Default constructor
   296 
   297         /// @warning The default constructor sets the iterator
   298         /// to an undefined value.
   299         ANodeIt() { }
   300         /// Copy constructor.
   301         
   302         /// Copy constructor.
   303         ///
   304         ANodeIt(const ANodeIt& n) : Node(n) { }
   305         /// Invalid constructor \& conversion.
   306 
   307         /// Initialize the iterator to be invalid.
   308         /// \sa Invalid for more details.
   309         ANodeIt(Invalid) { }
   310         /// Sets the iterator to the first node.
   311 
   312         /// Sets the iterator to the first node of \c g.
   313         ///
   314         ANodeIt(const BpUGraph&) { }
   315         /// Node -> ANodeIt conversion.
   316 
   317         /// Sets the iterator to the node of \c the graph pointed by 
   318 	/// the trivial iterator.
   319         /// This feature necessitates that each time we 
   320         /// iterate the edge-set, the iteration order is the same.
   321         ANodeIt(const BpUGraph&, const Node&) { }
   322         /// Next node.
   323 
   324         /// Assign the iterator to the next node.
   325         ///
   326         ANodeIt& operator++() { return *this; }
   327       };
   328 
   329       /// This iterator goes through each BNode.
   330 
   331       /// This iterator goes through each BNode.
   332       /// Its usage is quite simple, for example you can count the number
   333       /// of nodes in graph \c g of type \c Graph like this:
   334       ///\code
   335       /// int count=0;
   336       /// for (Graph::BNodeIt n(g); n!=INVALID; ++n) ++count;
   337       ///\endcode
   338       class BNodeIt : public BNode {
   339       public:
   340         /// Default constructor
   341 
   342         /// @warning The default constructor sets the iterator
   343         /// to an undefined value.
   344         BNodeIt() { }
   345         /// Copy constructor.
   346         
   347         /// Copy constructor.
   348         ///
   349         BNodeIt(const BNodeIt& n) : Node(n) { }
   350         /// Invalid constructor \& conversion.
   351 
   352         /// Initialize the iterator to be invalid.
   353         /// \sa Invalid for more details.
   354         BNodeIt(Invalid) { }
   355         /// Sets the iterator to the first node.
   356 
   357         /// Sets the iterator to the first node of \c g.
   358         ///
   359         BNodeIt(const BpUGraph&) { }
   360         /// Node -> BNodeIt conversion.
   361 
   362         /// Sets the iterator to the node of \c the graph pointed by 
   363 	/// the trivial iterator.
   364         /// This feature necessitates that each time we 
   365         /// iterate the edge-set, the iteration order is the same.
   366         BNodeIt(const BpUGraph&, const Node&) { }
   367         /// Next node.
   368 
   369         /// Assign the iterator to the next node.
   370         ///
   371         BNodeIt& operator++() { return *this; }
   372       };
   373     
   374     
   375       /// The base type of the undirected edge iterators.
   376 
   377       /// The base type of the undirected edge iterators.
   378       ///
   379       class UEdge {
   380       public:
   381         /// Default constructor
   382 
   383         /// @warning The default constructor sets the iterator
   384         /// to an undefined value.
   385         UEdge() { }
   386         /// Copy constructor.
   387 
   388         /// Copy constructor.
   389         ///
   390         UEdge(const UEdge&) { }
   391         /// Initialize the iterator to be invalid.
   392 
   393         /// Initialize the iterator to be invalid.
   394         ///
   395         UEdge(Invalid) { }
   396         /// Equality operator
   397 
   398         /// Two iterators are equal if and only if they point to the
   399         /// same object or both are invalid.
   400         bool operator==(UEdge) const { return true; }
   401         /// Inequality operator
   402 
   403         /// \sa operator==(UEdge n)
   404         ///
   405         bool operator!=(UEdge) const { return true; }
   406 
   407 	/// Artificial ordering operator.
   408 	
   409 	/// To allow the use of graph descriptors as key type in std::map or
   410 	/// similar associative container we require this.
   411 	///
   412 	/// \note This operator only have to define some strict ordering of
   413 	/// the items; this order has nothing to do with the iteration
   414 	/// ordering of the items.
   415 	bool operator<(UEdge) const { return false; }
   416       };
   417 
   418       /// This iterator goes through each undirected edge.
   419 
   420       /// This iterator goes through each undirected edge of a graph.
   421       /// Its usage is quite simple, for example you can count the number
   422       /// of undirected edges in a graph \c g of type \c Graph as follows:
   423       ///\code
   424       /// int count=0;
   425       /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
   426       ///\endcode
   427       class UEdgeIt : public UEdge {
   428       public:
   429         /// Default constructor
   430 
   431         /// @warning The default constructor sets the iterator
   432         /// to an undefined value.
   433         UEdgeIt() { }
   434         /// Copy constructor.
   435 
   436         /// Copy constructor.
   437         ///
   438         UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
   439         /// Initialize the iterator to be invalid.
   440 
   441         /// Initialize the iterator to be invalid.
   442         ///
   443         UEdgeIt(Invalid) { }
   444         /// This constructor sets the iterator to the first undirected edge.
   445     
   446         /// This constructor sets the iterator to the first undirected edge.
   447         UEdgeIt(const BpUGraph&) { }
   448         /// UEdge -> UEdgeIt conversion
   449 
   450         /// Sets the iterator to the value of the trivial iterator.
   451         /// This feature necessitates that each time we
   452         /// iterate the undirected edge-set, the iteration order is the 
   453 	/// same.
   454         UEdgeIt(const BpUGraph&, const UEdge&) { } 
   455         /// Next undirected edge
   456         
   457         /// Assign the iterator to the next undirected edge.
   458         UEdgeIt& operator++() { return *this; }
   459       };
   460 
   461       /// \brief This iterator goes trough the incident undirected 
   462       /// edges of a node.
   463       ///
   464       /// This iterator goes trough the incident undirected edges
   465       /// of a certain node
   466       /// of a graph.
   467       /// Its usage is quite simple, for example you can compute the
   468       /// degree (i.e. count the number
   469       /// of incident edges of a node \c n
   470       /// in graph \c g of type \c Graph as follows.
   471       ///\code
   472       /// int count=0;
   473       /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   474       ///\endcode
   475       class IncEdgeIt : public UEdge {
   476       public:
   477         /// Default constructor
   478 
   479         /// @warning The default constructor sets the iterator
   480         /// to an undefined value.
   481         IncEdgeIt() { }
   482         /// Copy constructor.
   483 
   484         /// Copy constructor.
   485         ///
   486         IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
   487         /// Initialize the iterator to be invalid.
   488 
   489         /// Initialize the iterator to be invalid.
   490         ///
   491         IncEdgeIt(Invalid) { }
   492         /// This constructor sets the iterator to first incident edge.
   493     
   494         /// This constructor set the iterator to the first incident edge of
   495         /// the node.
   496         IncEdgeIt(const BpUGraph&, const Node&) { }
   497         /// UEdge -> IncEdgeIt conversion
   498 
   499         /// Sets the iterator to the value of the trivial iterator \c e.
   500         /// This feature necessitates that each time we 
   501         /// iterate the edge-set, the iteration order is the same.
   502         IncEdgeIt(const BpUGraph&, const UEdge&) { }
   503         /// Next incident edge
   504 
   505         /// Assign the iterator to the next incident edge
   506 	/// of the corresponding node.
   507         IncEdgeIt& operator++() { return *this; }
   508       };
   509 
   510       /// The directed edge type.
   511 
   512       /// The directed edge type. It can be converted to the
   513       /// undirected edge.
   514       class Edge : public UEdge {
   515       public:
   516         /// Default constructor
   517 
   518         /// @warning The default constructor sets the iterator
   519         /// to an undefined value.
   520         Edge() { }
   521         /// Copy constructor.
   522 
   523         /// Copy constructor.
   524         ///
   525         Edge(const Edge& e) : UEdge(e) { }
   526         /// Initialize the iterator to be invalid.
   527 
   528         /// Initialize the iterator to be invalid.
   529         ///
   530         Edge(Invalid) { }
   531         /// Equality operator
   532 
   533         /// Two iterators are equal if and only if they point to the
   534         /// same object or both are invalid.
   535         bool operator==(Edge) const { return true; }
   536         /// Inequality operator
   537 
   538         /// \sa operator==(Edge n)
   539         ///
   540         bool operator!=(Edge) const { return true; }
   541 
   542 	/// Artificial ordering operator.
   543 	
   544 	/// To allow the use of graph descriptors as key type in std::map or
   545 	/// similar associative container we require this.
   546 	///
   547 	/// \note This operator only have to define some strict ordering of
   548 	/// the items; this order has nothing to do with the iteration
   549 	/// ordering of the items.
   550 	bool operator<(Edge) const { return false; }
   551 	
   552       }; 
   553       /// This iterator goes through each directed edge.
   554 
   555       /// This iterator goes through each edge of a graph.
   556       /// Its usage is quite simple, for example you can count the number
   557       /// of edges in a graph \c g of type \c Graph as follows:
   558       ///\code
   559       /// int count=0;
   560       /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
   561       ///\endcode
   562       class EdgeIt : public Edge {
   563       public:
   564         /// Default constructor
   565 
   566         /// @warning The default constructor sets the iterator
   567         /// to an undefined value.
   568         EdgeIt() { }
   569         /// Copy constructor.
   570 
   571         /// Copy constructor.
   572         ///
   573         EdgeIt(const EdgeIt& e) : Edge(e) { }
   574         /// Initialize the iterator to be invalid.
   575 
   576         /// Initialize the iterator to be invalid.
   577         ///
   578         EdgeIt(Invalid) { }
   579         /// This constructor sets the iterator to the first edge.
   580     
   581         /// This constructor sets the iterator to the first edge of \c g.
   582         ///@param g the graph
   583         EdgeIt(const BpUGraph &g) { ignore_unused_variable_warning(g); }
   584         /// Edge -> EdgeIt conversion
   585 
   586         /// Sets the iterator to the value of the trivial iterator \c e.
   587         /// This feature necessitates that each time we 
   588         /// iterate the edge-set, the iteration order is the same.
   589         EdgeIt(const BpUGraph&, const Edge&) { } 
   590         ///Next edge
   591         
   592         /// Assign the iterator to the next edge.
   593         EdgeIt& operator++() { return *this; }
   594       };
   595    
   596       /// This iterator goes trough the outgoing directed edges of a node.
   597 
   598       /// This iterator goes trough the \e outgoing edges of a certain node
   599       /// of a graph.
   600       /// Its usage is quite simple, for example you can count the number
   601       /// of outgoing edges of a node \c n
   602       /// in graph \c g of type \c Graph as follows.
   603       ///\code
   604       /// int count=0;
   605       /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   606       ///\endcode
   607     
   608       class OutEdgeIt : public Edge {
   609       public:
   610         /// Default constructor
   611 
   612         /// @warning The default constructor sets the iterator
   613         /// to an undefined value.
   614         OutEdgeIt() { }
   615         /// Copy constructor.
   616 
   617         /// Copy constructor.
   618         ///
   619         OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
   620         /// Initialize the iterator to be invalid.
   621 
   622         /// Initialize the iterator to be invalid.
   623         ///
   624         OutEdgeIt(Invalid) { }
   625         /// This constructor sets the iterator to the first outgoing edge.
   626     
   627         /// This constructor sets the iterator to the first outgoing edge of
   628         /// the node.
   629         ///@param n the node
   630         ///@param g the graph
   631         OutEdgeIt(const BpUGraph& n, const Node& g) {
   632 	  ignore_unused_variable_warning(n);
   633 	  ignore_unused_variable_warning(g);
   634 	}
   635         /// Edge -> OutEdgeIt conversion
   636 
   637         /// Sets the iterator to the value of the trivial iterator.
   638 	/// This feature necessitates that each time we 
   639         /// iterate the edge-set, the iteration order is the same.
   640         OutEdgeIt(const BpUGraph&, const Edge&) { }
   641         ///Next outgoing edge
   642         
   643         /// Assign the iterator to the next 
   644         /// outgoing edge of the corresponding node.
   645         OutEdgeIt& operator++() { return *this; }
   646       };
   647 
   648       /// This iterator goes trough the incoming directed edges of a node.
   649 
   650       /// This iterator goes trough the \e incoming edges of a certain node
   651       /// of a graph.
   652       /// Its usage is quite simple, for example you can count the number
   653       /// of outgoing edges of a node \c n
   654       /// in graph \c g of type \c Graph as follows.
   655       ///\code
   656       /// int count=0;
   657       /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   658       ///\endcode
   659 
   660       class InEdgeIt : public Edge {
   661       public:
   662         /// Default constructor
   663 
   664         /// @warning The default constructor sets the iterator
   665         /// to an undefined value.
   666         InEdgeIt() { }
   667         /// Copy constructor.
   668 
   669         /// Copy constructor.
   670         ///
   671         InEdgeIt(const InEdgeIt& e) : Edge(e) { }
   672         /// Initialize the iterator to be invalid.
   673 
   674         /// Initialize the iterator to be invalid.
   675         ///
   676         InEdgeIt(Invalid) { }
   677         /// This constructor sets the iterator to first incoming edge.
   678     
   679         /// This constructor set the iterator to the first incoming edge of
   680         /// the node.
   681         ///@param n the node
   682         ///@param g the graph
   683         InEdgeIt(const BpUGraph& g, const Node& n) { 
   684 	  ignore_unused_variable_warning(n);
   685 	  ignore_unused_variable_warning(g);
   686 	}
   687         /// Edge -> InEdgeIt conversion
   688 
   689         /// Sets the iterator to the value of the trivial iterator \c e.
   690         /// This feature necessitates that each time we 
   691         /// iterate the edge-set, the iteration order is the same.
   692         InEdgeIt(const BpUGraph&, const Edge&) { }
   693         /// Next incoming edge
   694 
   695         /// Assign the iterator to the next inedge of the corresponding node.
   696         ///
   697         InEdgeIt& operator++() { return *this; }
   698       };
   699 
   700       /// \brief Read write map of the nodes to type \c T.
   701       /// 
   702       /// ReadWrite map of the nodes to type \c T.
   703       /// \sa Reference
   704       /// \warning Making maps that can handle bool type (NodeMap<bool>)
   705       /// needs some extra attention!
   706       /// \todo Wrong documentation
   707       template<class T> 
   708       class NodeMap : public ReadWriteMap< Node, T >
   709       {
   710       public:
   711 
   712         ///\e
   713         NodeMap(const BpUGraph&) { }
   714         ///\e
   715         NodeMap(const BpUGraph&, T) { }
   716 
   717         ///Copy constructor
   718         NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   719         ///Assignment operator
   720         NodeMap& operator=(const NodeMap&) { return *this; }
   721         // \todo fix this concept
   722       };
   723 
   724       /// \brief Read write map of the ANodes to type \c T.
   725       /// 
   726       /// ReadWrite map of the ANodes to type \c T.
   727       /// \sa Reference
   728       /// \warning Making maps that can handle bool type (NodeMap<bool>)
   729       /// needs some extra attention!
   730       /// \todo Wrong documentation
   731       template<class T> 
   732       class ANodeMap : public ReadWriteMap< Node, T >
   733       {
   734       public:
   735 
   736         ///\e
   737         ANodeMap(const BpUGraph&) { }
   738         ///\e
   739         ANodeMap(const BpUGraph&, T) { }
   740 
   741         ///Copy constructor
   742         ANodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   743         ///Assignment operator
   744         ANodeMap& operator=(const NodeMap&) { return *this; }
   745         // \todo fix this concept
   746       };
   747 
   748       /// \brief Read write map of the BNodes to type \c T.
   749       /// 
   750       /// ReadWrite map of the BNodes to type \c T.
   751       /// \sa Reference
   752       /// \warning Making maps that can handle bool type (NodeMap<bool>)
   753       /// needs some extra attention!
   754       /// \todo Wrong documentation
   755       template<class T> 
   756       class BNodeMap : public ReadWriteMap< Node, T >
   757       {
   758       public:
   759 
   760         ///\e
   761         BNodeMap(const BpUGraph&) { }
   762         ///\e
   763         BNodeMap(const BpUGraph&, T) { }
   764 
   765         ///Copy constructor
   766         BNodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   767         ///Assignment operator
   768         BNodeMap& operator=(const NodeMap&) { return *this; }
   769         // \todo fix this concept
   770       };
   771 
   772       /// \brief Read write map of the directed edges to type \c T.
   773       ///
   774       /// Reference map of the directed edges to type \c T.
   775       /// \sa Reference
   776       /// \warning Making maps that can handle bool type (EdgeMap<bool>)
   777       /// needs some extra attention!
   778       /// \todo Wrong documentation
   779       template<class T> 
   780       class EdgeMap : public ReadWriteMap<Edge,T>
   781       {
   782       public:
   783 
   784         ///\e
   785         EdgeMap(const BpUGraph&) { }
   786         ///\e
   787         EdgeMap(const BpUGraph&, T) { }
   788         ///Copy constructor
   789         EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
   790         ///Assignment operator
   791         EdgeMap& operator=(const EdgeMap&) { return *this; }
   792         // \todo fix this concept    
   793       };
   794 
   795       /// Read write map of the undirected edges to type \c T.
   796 
   797       /// Reference map of the edges to type \c T.
   798       /// \sa Reference
   799       /// \warning Making maps that can handle bool type (UEdgeMap<bool>)
   800       /// needs some extra attention!
   801       /// \todo Wrong documentation
   802       template<class T> 
   803       class UEdgeMap : public ReadWriteMap<UEdge,T>
   804       {
   805       public:
   806 
   807         ///\e
   808         UEdgeMap(const BpUGraph&) { }
   809         ///\e
   810         UEdgeMap(const BpUGraph&, T) { }
   811         ///Copy constructor
   812         UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
   813         ///Assignment operator
   814         UEdgeMap &operator=(const UEdgeMap&) { return *this; }
   815         // \todo fix this concept    
   816       };
   817 
   818       /// \brief Direct the given undirected edge.
   819       ///
   820       /// Direct the given undirected edge. The returned edge source
   821       /// will be the given edge.
   822       Edge direct(const UEdge&, const Node&) const {
   823 	return INVALID;
   824       }
   825 
   826       /// \brief Direct the given undirected edge.
   827       ///
   828       /// Direct the given undirected edge. The returned edge source
   829       /// will be the source of the undirected edge if the given bool
   830       /// is true.
   831       Edge direct(const UEdge&, bool) const {
   832 	return INVALID;
   833       }
   834 
   835       /// \brief Returns true when the given node is an ANode.
   836       ///
   837       /// Returns true when the given node is an ANode.
   838       bool aNode(Node) const { return true;}
   839 
   840       /// \brief Returns true when the given node is an BNode.
   841       ///
   842       /// Returns true when the given node is an BNode.
   843       bool bNode(Node) const { return true;}
   844 
   845       /// \brief Returns the edge's end node which is in the ANode set.
   846       ///
   847       /// Returns the edge's end node which is in the ANode set.
   848       Node aNode(UEdge) const { return INVALID;}
   849 
   850       /// \brief Returns the edge's end node which is in the BNode set.
   851       ///
   852       /// Returns the edge's end node which is in the BNode set.
   853       Node bNode(UEdge) const { return INVALID;}
   854 
   855       /// \brief Returns true if the edge has default orientation.
   856       ///
   857       /// Returns whether the given directed edge is same orientation as
   858       /// the corresponding undirected edge.
   859       bool direction(Edge) const { return true; }
   860 
   861       /// \brief Returns the opposite directed edge.
   862       ///
   863       /// Returns the opposite directed edge.
   864       Edge oppositeEdge(Edge) const { return INVALID; }
   865 
   866       /// \brief Opposite node on an edge
   867       ///
   868       /// \return the opposite of the given Node on the given Edge
   869       Node oppositeNode(Node, UEdge) const { return INVALID; }
   870 
   871       /// \brief First node of the undirected edge.
   872       ///
   873       /// \return the first node of the given UEdge.
   874       ///
   875       /// Naturally uectected edges don't have direction and thus
   876       /// don't have source and target node. But we use these two methods
   877       /// to query the two endnodes of the edge. The direction of the edge
   878       /// which arises this way is called the inherent direction of the
   879       /// undirected edge, and is used to define the "default" direction
   880       /// of the directed versions of the edges.
   881       /// \sa direction
   882       Node source(UEdge) const { return INVALID; }
   883 
   884       /// \brief Second node of the undirected edge.
   885       Node target(UEdge) const { return INVALID; }
   886 
   887       /// \brief Source node of the directed edge.
   888       Node source(Edge) const { return INVALID; }
   889 
   890       /// \brief Target node of the directed edge.
   891       Node target(Edge) const { return INVALID; }
   892 
   893       /// \brief Base node of the iterator
   894       ///
   895       /// Returns the base node (the source in this case) of the iterator
   896       Node baseNode(OutEdgeIt e) const {
   897 	return source(e);
   898       }
   899 
   900       /// \brief Running node of the iterator
   901       ///
   902       /// Returns the running node (the target in this case) of the
   903       /// iterator
   904       Node runningNode(OutEdgeIt e) const {
   905 	return target(e);
   906       }
   907 
   908       /// \brief Base node of the iterator
   909       ///
   910       /// Returns the base node (the target in this case) of the iterator
   911       Node baseNode(InEdgeIt e) const {
   912 	return target(e);
   913       }
   914       /// \brief Running node of the iterator
   915       ///
   916       /// Returns the running node (the source in this case) of the
   917       /// iterator
   918       Node runningNode(InEdgeIt e) const {
   919 	return source(e);
   920       }
   921 
   922       /// \brief Base node of the iterator
   923       ///
   924       /// Returns the base node of the iterator
   925       Node baseNode(IncEdgeIt) const {
   926 	return INVALID;
   927       }
   928       
   929       /// \brief Running node of the iterator
   930       ///
   931       /// Returns the running node of the iterator
   932       Node runningNode(IncEdgeIt) const {
   933 	return INVALID;
   934       }
   935 
   936       template <typename Graph>
   937       struct Constraints {
   938 	void constraints() {
   939 	}
   940       };
   941 
   942     };
   943 
   944 
   945     /// @}
   946 
   947   }
   948 
   949 }
   950 
   951 #endif