lemon/linear_heap.h
author deba
Mon, 14 Nov 2005 18:55:19 +0000
changeset 1794 79397d64f742
parent 1724 b20777184ba8
child 1834 0a14e1ae45a1
permissions -rw-r--r--
String->Double
     1 /* -*- C++ -*-
     2  * lemon/linear_heap.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_LINEAR_HEAP_H
    18 #define LEMON_LINEAR_HEAP_H
    19 
    20 ///\ingroup auxdat
    21 ///\file
    22 ///\brief Binary Heap implementation.
    23 
    24 #include <vector>
    25 #include <utility>
    26 #include <functional>
    27 
    28 namespace lemon {
    29 
    30   /// \addtogroup auxdat
    31   /// @{
    32 
    33   /// \brief A Linear Heap implementation.
    34   ///
    35   /// This class implements the \e linear \e heap data structure. A \e heap
    36   /// is a data structure for storing items with specified values called \e
    37   /// priorities in such a way that finding the item with minimum priority is
    38   /// efficient. The linear heap is very simple implementation, it can store
    39   /// only integer priorities and it stores for each priority in the [0..C]
    40   /// range a list of items. So it should be used only when the priorities
    41   /// are small. It is not intended to use as dijkstra heap.
    42   ///
    43   /// \param _Item Type of the items to be stored.  
    44   /// \param _ItemIntMap A read and writable Item int map, used internally
    45   /// to handle the cross references.
    46   /// \param minimize If the given parameter is true then the heap gives back
    47   /// the lowest priority. 
    48   template <typename _Item, typename _ItemIntMap, bool minimize = true >
    49   class LinearHeap {
    50 
    51   public:
    52     typedef _Item Item;
    53     typedef int Prio;
    54     typedef std::pair<Item, Prio> Pair;
    55     typedef _ItemIntMap ItemIntMap;
    56 
    57     /// \brief Type to represent the items states.
    58     ///
    59     /// Each Item element have a state associated to it. It may be "in heap",
    60     /// "pre heap" or "post heap". The latter two are indifferent from the
    61     /// heap's point of view, but may be useful to the user.
    62     ///
    63     /// The ItemIntMap \e should be initialized in such way that it maps
    64     /// PRE_HEAP (-1) to any element to be put in the heap...
    65     enum state_enum {
    66       IN_HEAP = 0,
    67       PRE_HEAP = -1,
    68       POST_HEAP = -2
    69     };
    70 
    71   public:
    72     /// \brief The constructor.
    73     ///
    74     /// The constructor.
    75     /// \param _index should be given to the constructor, since it is used
    76     /// internally to handle the cross references. The value of the map
    77     /// should be PRE_HEAP (-1) for each element.
    78     explicit LinearHeap(ItemIntMap &_index) : index(_index), minimal(0) {}
    79     
    80     /// The number of items stored in the heap.
    81     ///
    82     /// \brief Returns the number of items stored in the heap.
    83     int size() const { return data.size(); }
    84     
    85     /// \brief Checks if the heap stores no items.
    86     ///
    87     /// Returns \c true if and only if the heap stores no items.
    88     bool empty() const { return data.empty(); }
    89 
    90     /// \brief Make empty this heap.
    91     /// 
    92     /// Make empty this heap.
    93     void clear() { 
    94       for (int i = 0; i < (int)data.size(); ++i) {
    95 	index[data[i].item] = -2;
    96       }
    97       data.clear(); first.clear(); minimal = 0;
    98     }
    99 
   100   private:
   101 
   102     void relocate_last(int idx) {
   103       if (idx + 1 < (int)data.size()) {
   104 	data[idx] = data.back();
   105 	if (data[idx].prev != -1) {
   106 	  data[data[idx].prev].next = idx;
   107 	} else {
   108 	  first[data[idx].value] = idx;
   109 	}
   110 	if (data[idx].next != -1) {
   111 	  data[data[idx].next].prev = idx;
   112 	}
   113 	index[data[idx].item] = idx;
   114       }
   115       data.pop_back();
   116     }
   117 
   118     void unlace(int idx) {
   119       if (data[idx].prev != -1) {
   120 	data[data[idx].prev].next = data[idx].next;
   121       } else {
   122 	first[data[idx].value] = data[idx].next;
   123       }
   124       if (data[idx].next != -1) {
   125 	data[data[idx].next].prev = data[idx].prev;
   126       }
   127     }
   128 
   129     void lace(int idx) {
   130       if ((int)first.size() <= data[idx].value) {
   131 	first.resize(data[idx].value + 1, -1);
   132       }
   133       data[idx].next = first[data[idx].value];
   134       if (data[idx].next != -1) {
   135 	data[data[idx].next].prev = idx;
   136       }
   137       first[data[idx].value] = idx;
   138       data[idx].prev = -1;
   139     }
   140 
   141   public:
   142     /// \brief Insert a pair of item and priority into the heap.
   143     ///
   144     /// Adds \c p.first to the heap with priority \c p.second.
   145     /// \param p The pair to insert.
   146     void push(const Pair& p) {
   147       push(p.first, p.second);
   148     }
   149 
   150     /// \brief Insert an item into the heap with the given priority.
   151     ///    
   152     /// Adds \c i to the heap with priority \c p. 
   153     /// \param i The item to insert.
   154     /// \param p The priority of the item.
   155     void push(const Item &i, const Prio &p) { 
   156       int idx = data.size();
   157       index[i] = idx;
   158       data.push_back(LinearItem(i, p));
   159       lace(idx);
   160       if (p < minimal) {
   161 	minimal = p;
   162       }
   163     }
   164 
   165     /// \brief Returns the item with minimum priority.
   166     ///
   167     /// This method returns the item with minimum priority.
   168     /// \pre The heap must be nonempty.  
   169     Item top() const {
   170       while (first[minimal] == -1) {
   171 	++minimal;
   172       }
   173       return data[first[minimal]].item;
   174     }
   175 
   176     /// \brief Returns the minimum priority.
   177     ///
   178     /// It returns the minimum priority.
   179     /// \pre The heap must be nonempty.
   180     Prio prio() const {
   181       while (first[minimal] == -1) {
   182 	++minimal;
   183       }
   184       return minimal;
   185     }
   186 
   187     /// \brief Deletes the item with minimum priority.
   188     ///
   189     /// This method deletes the item with minimum priority from the heap.  
   190     /// \pre The heap must be non-empty.  
   191     void pop() {
   192       while (first[minimal] == -1) {
   193 	++minimal;
   194       }
   195       int idx = first[minimal];
   196       index[data[idx].item] = -2;
   197       unlace(idx);
   198       relocate_last(idx);
   199     }
   200 
   201     /// \brief Deletes \c i from the heap.
   202     ///
   203     /// This method deletes item \c i from the heap, if \c i was
   204     /// already stored in the heap.
   205     /// \param i The item to erase. 
   206     void erase(const Item &i) {
   207       int idx = index[i];
   208       index[data[idx].item] = -2;
   209       unlace(idx);
   210       relocate_last(idx);
   211     }
   212 
   213     
   214     /// \brief Returns the priority of \c i.
   215     ///
   216     /// This function returns the priority of item \c i.  
   217     /// \pre \c i must be in the heap.
   218     /// \param i The item.
   219     Prio operator[](const Item &i) const {
   220       int idx = index[i];
   221       return data[idx].value;
   222     }
   223 
   224     /// \brief \c i gets to the heap with priority \c p independently 
   225     /// if \c i was already there.
   226     ///
   227     /// This method calls \ref push(\c i, \c p) if \c i is not stored
   228     /// in the heap and sets the priority of \c i to \c p otherwise.
   229     /// \param i The item.
   230     /// \param p The priority.
   231     void set(const Item &i, const Prio &p) {
   232       int idx = index[i];
   233       if (idx < 0) {
   234 	push(i,p);
   235       } else if (p > data[idx].value) {
   236 	increase(i, p);
   237       } else {
   238 	decrease(i, p);
   239       }
   240     }
   241 
   242     /// \brief Decreases the priority of \c i to \c p.
   243 
   244     /// This method decreases the priority of item \c i to \c p.
   245     /// \pre \c i must be stored in the heap with priority at least \c
   246     /// p relative to \c Compare.
   247     /// \param i The item.
   248     /// \param p The priority.
   249     void decrease(const Item &i, const Prio &p) {
   250       int idx = index[i];
   251       unlace(idx);
   252       data[idx].value = p;
   253       if (p < minimal) {
   254 	minimal = p;
   255       }
   256       lace(idx);
   257     }
   258     
   259     /// \brief Increases the priority of \c i to \c p.
   260     ///
   261     /// This method sets the priority of item \c i to \c p. 
   262     /// \pre \c i must be stored in the heap with priority at most \c
   263     /// p relative to \c Compare.
   264     /// \param i The item.
   265     /// \param p The priority.
   266     void increase(const Item &i, const Prio &p) {
   267       int idx = index[i];
   268       unlace(idx);
   269       data[idx].value = p;
   270       lace(idx);
   271     }
   272 
   273     /// \brief Returns if \c item is in, has already been in, or has 
   274     /// never been in the heap.
   275     ///
   276     /// This method returns PRE_HEAP if \c item has never been in the
   277     /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   278     /// otherwise. In the latter case it is possible that \c item will
   279     /// get back to the heap again.
   280     /// \param i The item.
   281     state_enum state(const Item &i) const {
   282       int idx = index[i];
   283       if (idx >= 0) idx = 0;
   284       return state_enum(idx);
   285     }
   286 
   287   private:
   288 
   289     struct LinearItem {
   290       LinearItem(const Item& _item, int _value) 
   291 	: item(_item), value(_value) {}
   292 
   293       Item item;
   294       int value;
   295 
   296       int prev, next;
   297     };
   298 
   299     ItemIntMap& index;
   300     std::vector<int> first;
   301     std::vector<LinearItem> data;
   302     mutable int minimal;
   303 
   304   }; // class LinearHeap
   305 
   306 
   307   template <typename _Item, typename _ItemIntMap>
   308   class LinearHeap<_Item, _ItemIntMap, false> {
   309 
   310   public:
   311     typedef _Item Item;
   312     typedef int Prio;
   313     typedef std::pair<Item, Prio> Pair;
   314     typedef _ItemIntMap ItemIntMap;
   315 
   316     enum state_enum {
   317       IN_HEAP = 0,
   318       PRE_HEAP = -1,
   319       POST_HEAP = -2
   320     };
   321 
   322   public:
   323 
   324     explicit LinearHeap(ItemIntMap &_index) : index(_index), maximal(-1) {}
   325 
   326     int size() const { return data.size(); }
   327     bool empty() const { return data.empty(); }
   328 
   329     void clear() { 
   330       for (int i = 0; i < (int)data.size(); ++i) {
   331 	index[data[i].item] = -2;
   332       }
   333       data.clear(); first.clear(); maximal = -1; 
   334     }
   335 
   336   private:
   337 
   338     void relocate_last(int idx) {
   339       if (idx + 1 != (int)data.size()) {
   340 	data[idx] = data.back();
   341 	if (data[idx].prev != -1) {
   342 	  data[data[idx].prev].next = idx;
   343 	} else {
   344 	  first[data[idx].value] = idx;
   345 	}
   346 	if (data[idx].next != -1) {
   347 	  data[data[idx].next].prev = idx;
   348 	}
   349 	index[data[idx].item] = idx;
   350       }
   351       data.pop_back();
   352     }
   353 
   354     void unlace(int idx) {
   355       if (data[idx].prev != -1) {
   356 	data[data[idx].prev].next = data[idx].next;
   357       } else {
   358 	first[data[idx].value] = data[idx].next;
   359       }
   360       if (data[idx].next != -1) {
   361 	data[data[idx].next].prev = data[idx].prev;
   362       }
   363     }
   364 
   365     void lace(int idx) {
   366       if ((int)first.size() <= data[idx].value) {
   367 	first.resize(data[idx].value + 1, -1);
   368       }
   369       data[idx].next = first[data[idx].value];
   370       if (data[idx].next != -1) {
   371 	data[data[idx].next].prev = idx;
   372       }
   373       first[data[idx].value] = idx;
   374       data[idx].prev = -1;
   375     }
   376 
   377   public:
   378 
   379     void push(const Pair& p) {
   380       push(p.first, p.second);
   381     }
   382 
   383     void push(const Item &i, const Prio &p) { 
   384       int idx = data.size();
   385       index[i] = idx;
   386       data.push_back(LinearItem(i, p));
   387       lace(idx);
   388       if (data[idx].value > maximal) {
   389 	maximal = data[idx].value;
   390       }
   391     }
   392 
   393     Item top() const {
   394       while (first[maximal] == -1) {
   395 	--maximal;
   396       }
   397       return data[first[maximal]].item;
   398     }
   399 
   400     Prio prio() const {
   401       while (first[maximal] == -1) {
   402 	--maximal;
   403       }
   404       return maximal;
   405     }
   406 
   407     void pop() {
   408       while (first[maximal] == -1) {
   409 	--maximal;
   410       }
   411       int idx = first[maximal];
   412       index[data[idx].item] = -2;
   413       unlace(idx);
   414       relocate_last(idx);
   415     }
   416 
   417     void erase(const Item &i) {
   418       int idx = index[i];
   419       index[data[idx].item] = -2;
   420       unlace(idx);
   421       relocate_last(idx);
   422     }
   423 
   424     Prio operator[](const Item &i) const {
   425       int idx = index[i];
   426       return data[idx].value;
   427     }
   428 
   429     void set(const Item &i, const Prio &p) {
   430       int idx = index[i];
   431       if (idx < 0) {
   432 	push(i,p);
   433       } else if (p > data[idx].value) {
   434 	decrease(i, p);
   435       } else {
   436 	increase(i, p);
   437       }
   438     }
   439 
   440     void decrease(const Item &i, const Prio &p) {
   441       int idx = index[i];
   442       unlace(idx);
   443       data[idx].value = p;
   444       if (p > maximal) {
   445 	maximal = p;
   446       }
   447       lace(idx);
   448     }
   449     
   450     void increase(const Item &i, const Prio &p) {
   451       int idx = index[i];
   452       unlace(idx);
   453       data[idx].value = p;
   454       lace(idx);
   455     }
   456 
   457     state_enum state(const Item &i) const {
   458       int idx = index[i];
   459       if (idx >= 0) idx = 0;
   460       return state_enum(idx);
   461     }
   462 
   463   private:
   464 
   465     struct LinearItem {
   466       LinearItem(const Item& _item, int _value) 
   467 	: item(_item), value(_value) {}
   468 
   469       Item item;
   470       int value;
   471 
   472       int prev, next;
   473     };
   474 
   475     ItemIntMap& index;
   476     std::vector<int> first;
   477     std::vector<LinearItem> data;
   478     mutable int maximal;
   479 
   480   }; // class LinearHeap
   481 
   482 }
   483   
   484 #endif