lemon/preflow.h
author deba
Mon, 14 Nov 2005 18:55:19 +0000
changeset 1794 79397d64f742
parent 1786 a263c131e999
child 1835 eb6c34c76501
permissions -rw-r--r--
String->Double
     1 /* -*- C++ -*-
     2  * lemon/preflow.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_PREFLOW_H
    18 #define LEMON_PREFLOW_H
    19 
    20 #include <vector>
    21 #include <queue>
    22 
    23 #include <lemon/error.h>
    24 #include <lemon/invalid.h>
    25 #include <lemon/maps.h>
    26 #include <lemon/graph_utils.h>
    27 
    28 /// \file
    29 /// \ingroup flowalgs
    30 /// \brief Implementation of the preflow algorithm.
    31 
    32 namespace lemon {
    33 
    34   ///\ingroup flowalgs
    35   ///\brief %Preflow algorithms class.
    36   ///
    37   ///This class provides an implementation of the \e preflow \e
    38   ///algorithm producing a flow of maximum value in a directed
    39   ///graph. The preflow algorithms are the fastest known max flow algorithms
    40   ///up to now. The \e source node, the \e target node, the \e
    41   ///capacity of the edges and the \e starting \e flow value of the
    42   ///edges should be passed to the algorithm through the
    43   ///constructor. It is possible to change these quantities using the
    44   ///functions \ref source, \ref target, \ref capacityMap and \ref
    45   ///flowMap.
    46   ///
    47   ///After running \ref lemon::Preflow::phase1() "phase1()"
    48   ///or \ref lemon::Preflow::run() "run()", the maximal flow
    49   ///value can be obtained by calling \ref flowValue(). The minimum
    50   ///value cut can be written into a <tt>bool</tt> node map by
    51   ///calling \ref minCut(). (\ref minMinCut() and \ref maxMinCut() writes
    52   ///the inclusionwise minimum and maximum of the minimum value cuts,
    53   ///resp.)
    54   ///
    55   ///\param Graph The directed graph type the algorithm runs on.
    56   ///\param Num The number type of the capacities and the flow values.
    57   ///\param CapacityMap The capacity map type.
    58   ///\param FlowMap The flow map type.
    59   ///
    60   ///\author Jacint Szabo 
    61   ///\todo Second template parameter is superfluous
    62   template <typename Graph, typename Num,
    63 	    typename CapacityMap=typename Graph::template EdgeMap<Num>,
    64             typename FlowMap=typename Graph::template EdgeMap<Num> >
    65   class Preflow {
    66   protected:
    67     typedef typename Graph::Node Node;
    68     typedef typename Graph::NodeIt NodeIt;
    69     typedef typename Graph::EdgeIt EdgeIt;
    70     typedef typename Graph::OutEdgeIt OutEdgeIt;
    71     typedef typename Graph::InEdgeIt InEdgeIt;
    72 
    73     typedef typename Graph::template NodeMap<Node> NNMap;
    74     typedef typename std::vector<Node> VecNode;
    75 
    76     const Graph* _g;
    77     Node _source;
    78     Node _target;
    79     const CapacityMap* _capacity;
    80     FlowMap* _flow;
    81     int _node_num;      //the number of nodes of G
    82     
    83     typename Graph::template NodeMap<int> level;  
    84     typename Graph::template NodeMap<Num> excess;
    85 
    86     // constants used for heuristics
    87     static const int H0=20;
    88     static const int H1=1;
    89 
    90   public:
    91 
    92     ///\ref Exception for the case when s=t.
    93 
    94     ///\ref Exception for the case when the source equals the target.
    95     class InvalidArgument : public lemon::LogicError {
    96     public:
    97       virtual const char* exceptionName() const {
    98 	return "lemon::Preflow::InvalidArgument";
    99       }
   100     };
   101     
   102     
   103     ///Indicates the property of the starting flow map.
   104     
   105     ///Indicates the property of the starting flow map.
   106     ///The meanings are as follows:
   107     ///- \c ZERO_FLOW: constant zero flow
   108     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
   109     ///the sum of the out-flows in every node except the \e source and
   110     ///the \e target.
   111     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
   112     ///least the sum of the out-flows in every node except the \e source.
   113     ///- \c NO_FLOW: indicates an unspecified edge map. \c flow will be 
   114     ///set to the constant zero flow in the beginning of
   115     ///the algorithm in this case.
   116     ///
   117     enum FlowEnum{
   118       NO_FLOW,
   119       ZERO_FLOW,
   120       GEN_FLOW,
   121       PRE_FLOW
   122     };
   123 
   124     ///Indicates the state of the preflow algorithm.
   125 
   126     ///Indicates the state of the preflow algorithm.
   127     ///The meanings are as follows:
   128     ///- \c AFTER_NOTHING: before running the algorithm or
   129     ///  at an unspecified state.
   130     ///- \c AFTER_PREFLOW_PHASE_1: right after running \c phase1
   131     ///- \c AFTER_PREFLOW_PHASE_2: after running \ref phase2()
   132     ///
   133     enum StatusEnum {
   134       AFTER_NOTHING,
   135       AFTER_PREFLOW_PHASE_1,      
   136       AFTER_PREFLOW_PHASE_2
   137     };
   138     
   139   protected: 
   140     FlowEnum flow_prop;
   141     StatusEnum status; // Do not needle this flag only if necessary.
   142     
   143   public: 
   144     ///The constructor of the class.
   145 
   146     ///The constructor of the class. 
   147     ///\param _gr The directed graph the algorithm runs on. 
   148     ///\param _s The source node.
   149     ///\param _t The target node.
   150     ///\param _cap The capacity of the edges. 
   151     ///\param _f The flow of the edges. 
   152     ///Except the graph, all of these parameters can be reset by
   153     ///calling \ref source, \ref target, \ref capacityMap and \ref
   154     ///flowMap, resp.
   155       Preflow(const Graph& _gr, Node _s, Node _t, 
   156 	      const CapacityMap& _cap, FlowMap& _f) :
   157 	_g(&_gr), _source(_s), _target(_t), _capacity(&_cap),
   158 	_flow(&_f), _node_num(countNodes(_gr)), level(_gr), excess(_gr,0), 
   159 	flow_prop(NO_FLOW), status(AFTER_NOTHING) { 
   160 	if ( _source==_target )
   161 	  throw InvalidArgument();
   162       }
   163     
   164 
   165                                                                               
   166     ///Runs the preflow algorithm.  
   167 
   168     ///Runs the preflow algorithm.
   169     ///
   170     void run() {
   171       phase1(flow_prop);
   172       phase2();
   173     }
   174     
   175     ///Runs the preflow algorithm.  
   176     
   177     ///Runs the preflow algorithm. 
   178     ///\pre The starting flow map must be
   179     /// - a constant zero flow if \c fp is \c ZERO_FLOW,
   180     /// - an arbitrary flow if \c fp is \c GEN_FLOW,
   181     /// - an arbitrary preflow if \c fp is \c PRE_FLOW,
   182     /// - any map if \c fp is NO_FLOW.
   183     ///If the starting flow map is a flow or a preflow then 
   184     ///the algorithm terminates faster.
   185     void run(FlowEnum fp) {
   186       flow_prop=fp;
   187       run();
   188     }
   189       
   190     ///Runs the first phase of the preflow algorithm.
   191 
   192     ///The preflow algorithm consists of two phases, this method runs
   193     ///the first phase. After the first phase the maximum flow value
   194     ///and a minimum value cut can already be computed, although a
   195     ///maximum flow is not yet obtained. So after calling this method
   196     ///\ref flowValue returns the value of a maximum flow and \ref
   197     ///minCut returns a minimum cut.     
   198     ///\warning \ref minMinCut and \ref maxMinCut do not give minimum
   199     ///value cuts unless calling \ref phase2.  
   200     ///\pre The starting flow must be 
   201     ///- a constant zero flow if \c fp is \c ZERO_FLOW, 
   202     ///- an arbitary flow if \c fp is \c GEN_FLOW, 
   203     ///- an arbitary preflow if \c fp is \c PRE_FLOW, 
   204     ///- any map if \c fp is NO_FLOW.
   205     void phase1(FlowEnum fp)
   206     {
   207       flow_prop=fp;
   208       phase1();
   209     }
   210 
   211     
   212     ///Runs the first phase of the preflow algorithm.
   213 
   214     ///The preflow algorithm consists of two phases, this method runs
   215     ///the first phase. After the first phase the maximum flow value
   216     ///and a minimum value cut can already be computed, although a
   217     ///maximum flow is not yet obtained. So after calling this method
   218     ///\ref flowValue returns the value of a maximum flow and \ref
   219     ///minCut returns a minimum cut.
   220     ///\warning \ref minMinCut() and \ref maxMinCut() do not
   221     ///give minimum value cuts unless calling \ref phase2().
   222     void phase1()
   223     {
   224       int heur0=(int)(H0*_node_num);  //time while running 'bound decrease'
   225       int heur1=(int)(H1*_node_num);  //time while running 'highest label'
   226       int heur=heur1;         //starting time interval (#of relabels)
   227       int numrelabel=0;
   228 
   229       bool what_heur=1;
   230       //It is 0 in case 'bound decrease' and 1 in case 'highest label'
   231 
   232       bool end=false;
   233       //Needed for 'bound decrease', true means no active 
   234       //nodes are above bound b.
   235 
   236       int k=_node_num-2;  //bound on the highest level under n containing a node
   237       int b=k;    //bound on the highest level under n of an active node
   238 
   239       VecNode first(_node_num, INVALID);
   240       NNMap next(*_g, INVALID);
   241 
   242       NNMap left(*_g, INVALID);
   243       NNMap right(*_g, INVALID);
   244       VecNode level_list(_node_num,INVALID);
   245       //List of the nodes in level i<n, set to n.
   246 
   247       preflowPreproc(first, next, level_list, left, right);
   248 
   249       //Push/relabel on the highest level active nodes.
   250       while ( true ) {
   251 	if ( b == 0 ) {
   252 	  if ( !what_heur && !end && k > 0 ) {
   253 	    b=k;
   254 	    end=true;
   255 	  } else break;
   256 	}
   257 
   258 	if ( first[b]==INVALID ) --b;
   259 	else {
   260 	  end=false;
   261 	  Node w=first[b];
   262 	  first[b]=next[w];
   263 	  int newlevel=push(w, next, first);
   264 	  if ( excess[w] > 0 ) relabel(w, newlevel, first, next, level_list, 
   265 				       left, right, b, k, what_heur);
   266 
   267 	  ++numrelabel;
   268 	  if ( numrelabel >= heur ) {
   269 	    numrelabel=0;
   270 	    if ( what_heur ) {
   271 	      what_heur=0;
   272 	      heur=heur0;
   273 	      end=false;
   274 	    } else {
   275 	      what_heur=1;
   276 	      heur=heur1;
   277 	      b=k;
   278 	    }
   279 	  }
   280 	}
   281       }
   282       flow_prop=PRE_FLOW;
   283       status=AFTER_PREFLOW_PHASE_1;
   284     }
   285     // Heuristics:
   286     //   2 phase
   287     //   gap
   288     //   list 'level_list' on the nodes on level i implemented by hand
   289     //   stack 'active' on the active nodes on level i      
   290     //   runs heuristic 'highest label' for H1*n relabels
   291     //   runs heuristic 'bound decrease' for H0*n relabels,
   292     //        starts with 'highest label'
   293     //   Parameters H0 and H1 are initialized to 20 and 1.
   294 
   295 
   296     ///Runs the second phase of the preflow algorithm.
   297 
   298     ///The preflow algorithm consists of two phases, this method runs
   299     ///the second phase. After calling \ref phase1() and then
   300     ///\ref phase2(),
   301     /// \ref flowMap() return a maximum flow, \ref flowValue
   302     ///returns the value of a maximum flow, \ref minCut returns a
   303     ///minimum cut, while the methods \ref minMinCut and \ref
   304     ///maxMinCut return the inclusionwise minimum and maximum cuts of
   305     ///minimum value, resp.  \pre \ref phase1 must be called before.
   306     void phase2()
   307     {
   308 
   309       int k=_node_num-2;  //bound on the highest level under n containing a node
   310       int b=k;    //bound on the highest level under n of an active node
   311 
   312     
   313       VecNode first(_node_num, INVALID);
   314       NNMap next(*_g, INVALID); 
   315       level.set(_source,0);
   316       std::queue<Node> bfs_queue;
   317       bfs_queue.push(_source);
   318 
   319       while ( !bfs_queue.empty() ) {
   320 
   321 	Node v=bfs_queue.front();
   322 	bfs_queue.pop();
   323 	int l=level[v]+1;
   324 
   325 	for(InEdgeIt e(*_g,v); e!=INVALID; ++e) {
   326 	  if ( (*_capacity)[e] <= (*_flow)[e] ) continue;
   327 	  Node u=_g->source(e);
   328 	  if ( level[u] >= _node_num ) {
   329 	    bfs_queue.push(u);
   330 	    level.set(u, l);
   331 	    if ( excess[u] > 0 ) {
   332 	      next.set(u,first[l]);
   333 	      first[l]=u;
   334 	    }
   335 	  }
   336 	}
   337 
   338 	for(OutEdgeIt e(*_g,v); e!=INVALID; ++e) {
   339 	  if ( 0 >= (*_flow)[e] ) continue;
   340 	  Node u=_g->target(e);
   341 	  if ( level[u] >= _node_num ) {
   342 	    bfs_queue.push(u);
   343 	    level.set(u, l);
   344 	    if ( excess[u] > 0 ) {
   345 	      next.set(u,first[l]);
   346 	      first[l]=u;
   347 	    }
   348 	  }
   349 	}
   350       }
   351       b=_node_num-2;
   352 
   353       while ( true ) {
   354 
   355 	if ( b == 0 ) break;
   356 	if ( first[b]==INVALID ) --b;
   357 	else {
   358 	  Node w=first[b];
   359 	  first[b]=next[w];
   360 	  int newlevel=push(w,next, first);
   361 	  
   362 	  //relabel
   363 	  if ( excess[w] > 0 ) {
   364 	    level.set(w,++newlevel);
   365 	    next.set(w,first[newlevel]);
   366 	    first[newlevel]=w;
   367 	    b=newlevel;
   368 	  }
   369 	} 
   370       } // while(true)
   371       flow_prop=GEN_FLOW;
   372       status=AFTER_PREFLOW_PHASE_2;
   373     }
   374 
   375     /// Returns the value of the maximum flow.
   376 
   377     /// Returns the value of the maximum flow by returning the excess
   378     /// of the target node \c t. This value equals to the value of
   379     /// the maximum flow already after running \ref phase1.
   380     Num flowValue() const {
   381       return excess[_target];
   382     }
   383 
   384 
   385     ///Returns a minimum value cut.
   386 
   387     ///Sets \c M to the characteristic vector of a minimum value
   388     ///cut. This method can be called both after running \ref
   389     ///phase1 and \ref phase2. It is much faster after
   390     ///\ref phase1.  \pre M should be a bool-valued node-map. \pre
   391     ///If \ref minCut() is called after \ref phase2() then M should
   392     ///be initialized to false.
   393     template<typename _CutMap>
   394     void minCut(_CutMap& M) const {
   395       switch ( status ) {
   396 	case AFTER_PREFLOW_PHASE_1:
   397 	for(NodeIt v(*_g); v!=INVALID; ++v) {
   398 	  if (level[v] < _node_num) {
   399 	    M.set(v, false);
   400 	  } else {
   401 	    M.set(v, true);
   402 	  }
   403 	}
   404 	break;
   405 	case AFTER_PREFLOW_PHASE_2:
   406 	minMinCut(M);
   407 	break;
   408 	case AFTER_NOTHING:
   409 	break;
   410       }
   411     }
   412 
   413     ///Returns the inclusionwise minimum of the minimum value cuts.
   414 
   415     ///Sets \c M to the characteristic vector of the minimum value cut
   416     ///which is inclusionwise minimum. It is computed by processing a
   417     ///bfs from the source node \c s in the residual graph.  \pre M
   418     ///should be a node map of bools initialized to false.  \pre \ref
   419     ///phase2 should already be run.
   420     template<typename _CutMap>
   421     void minMinCut(_CutMap& M) const {
   422 
   423       std::queue<Node> queue;
   424       M.set(_source,true);
   425       queue.push(_source);
   426       
   427       while (!queue.empty()) {
   428 	Node w=queue.front();
   429 	queue.pop();
   430 	
   431 	for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
   432 	  Node v=_g->target(e);
   433 	  if (!M[v] && (*_flow)[e] < (*_capacity)[e] ) {
   434 	    queue.push(v);
   435 	    M.set(v, true);
   436 	  }
   437 	}
   438 	
   439 	for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
   440 	  Node v=_g->source(e);
   441 	  if (!M[v] && (*_flow)[e] > 0 ) {
   442 	    queue.push(v);
   443 	    M.set(v, true);
   444 	  }
   445 	}
   446       }
   447     }
   448     
   449     ///Returns the inclusionwise maximum of the minimum value cuts.
   450 
   451     ///Sets \c M to the characteristic vector of the minimum value cut
   452     ///which is inclusionwise maximum. It is computed by processing a
   453     ///backward bfs from the target node \c t in the residual graph.
   454     ///\pre \ref phase2() or run() should already be run.
   455     template<typename _CutMap>
   456     void maxMinCut(_CutMap& M) const {
   457 
   458       for(NodeIt v(*_g) ; v!=INVALID; ++v) M.set(v, true);
   459 
   460       std::queue<Node> queue;
   461 
   462       M.set(_target,false);
   463       queue.push(_target);
   464 
   465       while (!queue.empty()) {
   466         Node w=queue.front();
   467 	queue.pop();
   468 
   469 	for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
   470 	  Node v=_g->source(e);
   471 	  if (M[v] && (*_flow)[e] < (*_capacity)[e] ) {
   472 	    queue.push(v);
   473 	    M.set(v, false);
   474 	  }
   475 	}
   476 
   477 	for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
   478 	  Node v=_g->target(e);
   479 	  if (M[v] && (*_flow)[e] > 0 ) {
   480 	    queue.push(v);
   481 	    M.set(v, false);
   482 	  }
   483 	}
   484       }
   485     }
   486 
   487     ///Sets the source node to \c _s.
   488 
   489     ///Sets the source node to \c _s.
   490     /// 
   491     void source(Node _s) { 
   492       _source=_s; 
   493       if ( flow_prop != ZERO_FLOW ) flow_prop=NO_FLOW;
   494       status=AFTER_NOTHING; 
   495     }
   496 
   497     ///Returns the source node.
   498 
   499     ///Returns the source node.
   500     /// 
   501     Node source() const { 
   502       return _source;
   503     }
   504 
   505     ///Sets the target node to \c _t.
   506 
   507     ///Sets the target node to \c _t.
   508     ///
   509     void target(Node _t) { 
   510       _target=_t; 
   511       if ( flow_prop == GEN_FLOW ) flow_prop=PRE_FLOW;
   512       status=AFTER_NOTHING; 
   513     }
   514 
   515     ///Returns the target node.
   516 
   517     ///Returns the target node.
   518     /// 
   519     Node target() const { 
   520       return _target;
   521     }
   522 
   523     /// Sets the edge map of the capacities to _cap.
   524 
   525     /// Sets the edge map of the capacities to _cap.
   526     /// 
   527     void capacityMap(const CapacityMap& _cap) { 
   528       _capacity=&_cap; 
   529       status=AFTER_NOTHING; 
   530     }
   531     /// Returns a reference to capacity map.
   532 
   533     /// Returns a reference to capacity map.
   534     /// 
   535     const CapacityMap &capacityMap() const { 
   536       return *_capacity;
   537     }
   538 
   539     /// Sets the edge map of the flows to _flow.
   540 
   541     /// Sets the edge map of the flows to _flow.
   542     /// 
   543     void flowMap(FlowMap& _f) { 
   544       _flow=&_f; 
   545       flow_prop=NO_FLOW;
   546       status=AFTER_NOTHING; 
   547     }
   548      
   549     /// Returns a reference to flow map.
   550 
   551     /// Returns a reference to flow map.
   552     /// 
   553     const FlowMap &flowMap() const { 
   554       return *_flow;
   555     }
   556 
   557   private:
   558 
   559     int push(Node w, NNMap& next, VecNode& first) {
   560 
   561       int lev=level[w];
   562       Num exc=excess[w];
   563       int newlevel=_node_num;       //bound on the next level of w
   564 
   565       for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
   566 	if ( (*_flow)[e] >= (*_capacity)[e] ) continue;
   567 	Node v=_g->target(e);
   568 
   569 	if( lev > level[v] ) { //Push is allowed now
   570 	  
   571 	  if ( excess[v]<=0 && v!=_target && v!=_source ) {
   572 	    next.set(v,first[level[v]]);
   573 	    first[level[v]]=v;
   574 	  }
   575 
   576 	  Num cap=(*_capacity)[e];
   577 	  Num flo=(*_flow)[e];
   578 	  Num remcap=cap-flo;
   579 	  
   580 	  if ( remcap >= exc ) { //A nonsaturating push.
   581 	    
   582 	    _flow->set(e, flo+exc);
   583 	    excess.set(v, excess[v]+exc);
   584 	    exc=0;
   585 	    break;
   586 
   587 	  } else { //A saturating push.
   588 	    _flow->set(e, cap);
   589 	    excess.set(v, excess[v]+remcap);
   590 	    exc-=remcap;
   591 	  }
   592 	} else if ( newlevel > level[v] ) newlevel = level[v];
   593       } //for out edges wv
   594 
   595       if ( exc > 0 ) {
   596 	for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
   597 	  
   598 	  if( (*_flow)[e] <= 0 ) continue;
   599 	  Node v=_g->source(e);
   600 
   601 	  if( lev > level[v] ) { //Push is allowed now
   602 
   603 	    if ( excess[v]<=0 && v!=_target && v!=_source ) {
   604 	      next.set(v,first[level[v]]);
   605 	      first[level[v]]=v;
   606 	    }
   607 
   608 	    Num flo=(*_flow)[e];
   609 
   610 	    if ( flo >= exc ) { //A nonsaturating push.
   611 
   612 	      _flow->set(e, flo-exc);
   613 	      excess.set(v, excess[v]+exc);
   614 	      exc=0;
   615 	      break;
   616 	    } else {  //A saturating push.
   617 
   618 	      excess.set(v, excess[v]+flo);
   619 	      exc-=flo;
   620 	      _flow->set(e,0);
   621 	    }
   622 	  } else if ( newlevel > level[v] ) newlevel = level[v];
   623 	} //for in edges vw
   624 
   625       } // if w still has excess after the out edge for cycle
   626 
   627       excess.set(w, exc);
   628       
   629       return newlevel;
   630     }
   631     
   632     
   633     
   634     void preflowPreproc(VecNode& first, NNMap& next, 
   635 			VecNode& level_list, NNMap& left, NNMap& right)
   636     {
   637       for(NodeIt v(*_g); v!=INVALID; ++v) level.set(v,_node_num);
   638       std::queue<Node> bfs_queue;
   639       
   640       if ( flow_prop == GEN_FLOW || flow_prop == PRE_FLOW ) {
   641 	//Reverse_bfs from t in the residual graph,
   642 	//to find the starting level.
   643 	level.set(_target,0);
   644 	bfs_queue.push(_target);
   645 	
   646 	while ( !bfs_queue.empty() ) {
   647 	  
   648 	  Node v=bfs_queue.front();
   649 	  bfs_queue.pop();
   650 	  int l=level[v]+1;
   651 	  
   652 	  for(InEdgeIt e(*_g,v) ; e!=INVALID; ++e) {
   653 	    if ( (*_capacity)[e] <= (*_flow)[e] ) continue;
   654 	    Node w=_g->source(e);
   655 	    if ( level[w] == _node_num && w != _source ) {
   656 	      bfs_queue.push(w);
   657 	      Node z=level_list[l];
   658 	      if ( z!=INVALID ) left.set(z,w);
   659 	      right.set(w,z);
   660 	      level_list[l]=w;
   661 	      level.set(w, l);
   662 	    }
   663 	  }
   664 	  
   665 	  for(OutEdgeIt e(*_g,v) ; e!=INVALID; ++e) {
   666 	    if ( 0 >= (*_flow)[e] ) continue;
   667 	    Node w=_g->target(e);
   668 	    if ( level[w] == _node_num && w != _source ) {
   669 	      bfs_queue.push(w);
   670 	      Node z=level_list[l];
   671 	      if ( z!=INVALID ) left.set(z,w);
   672 	      right.set(w,z);
   673 	      level_list[l]=w;
   674 	      level.set(w, l);
   675 	    }
   676 	  }
   677 	} //while
   678       } //if
   679 
   680 
   681       switch (flow_prop) {
   682 	case NO_FLOW:  
   683 	for(EdgeIt e(*_g); e!=INVALID; ++e) _flow->set(e,0);
   684 	case ZERO_FLOW:
   685 	for(NodeIt v(*_g); v!=INVALID; ++v) excess.set(v,0);
   686 	
   687 	//Reverse_bfs from t, to find the starting level.
   688 	level.set(_target,0);
   689 	bfs_queue.push(_target);
   690 	
   691 	while ( !bfs_queue.empty() ) {
   692 	  
   693 	  Node v=bfs_queue.front();
   694 	  bfs_queue.pop();
   695 	  int l=level[v]+1;
   696 	  
   697 	  for(InEdgeIt e(*_g,v) ; e!=INVALID; ++e) {
   698 	    Node w=_g->source(e);
   699 	    if ( level[w] == _node_num && w != _source ) {
   700 	      bfs_queue.push(w);
   701 	      Node z=level_list[l];
   702 	      if ( z!=INVALID ) left.set(z,w);
   703 	      right.set(w,z);
   704 	      level_list[l]=w;
   705 	      level.set(w, l);
   706 	    }
   707 	  }
   708 	}
   709 	
   710 	//the starting flow
   711 	for(OutEdgeIt e(*_g,_source) ; e!=INVALID; ++e) {
   712 	  Num c=(*_capacity)[e];
   713 	  if ( c <= 0 ) continue;
   714 	  Node w=_g->target(e);
   715 	  if ( level[w] < _node_num ) {
   716 	    if ( excess[w] <= 0 && w!=_target ) { //putting into the stack
   717 	      next.set(w,first[level[w]]);
   718 	      first[level[w]]=w;
   719 	    }
   720 	    _flow->set(e, c);
   721 	    excess.set(w, excess[w]+c);
   722 	  }
   723 	}
   724 	break;
   725 
   726 	case GEN_FLOW:
   727 	for(NodeIt v(*_g); v!=INVALID; ++v) excess.set(v,0);
   728 	{
   729 	  Num exc=0;
   730 	  for(InEdgeIt e(*_g,_target) ; e!=INVALID; ++e) exc+=(*_flow)[e];
   731 	  for(OutEdgeIt e(*_g,_target) ; e!=INVALID; ++e) exc-=(*_flow)[e];
   732 	  excess.set(_target,exc);
   733 	}
   734 
   735 	//the starting flow
   736 	for(OutEdgeIt e(*_g,_source); e!=INVALID; ++e)	{
   737 	  Num rem=(*_capacity)[e]-(*_flow)[e];
   738 	  if ( rem <= 0 ) continue;
   739 	  Node w=_g->target(e);
   740 	  if ( level[w] < _node_num ) {
   741 	    if ( excess[w] <= 0 && w!=_target ) { //putting into the stack
   742 	      next.set(w,first[level[w]]);
   743 	      first[level[w]]=w;
   744 	    }   
   745 	    _flow->set(e, (*_capacity)[e]);
   746 	    excess.set(w, excess[w]+rem);
   747 	  }
   748 	}
   749 	
   750 	for(InEdgeIt e(*_g,_source); e!=INVALID; ++e) {
   751 	  if ( (*_flow)[e] <= 0 ) continue;
   752 	  Node w=_g->source(e);
   753 	  if ( level[w] < _node_num ) {
   754 	    if ( excess[w] <= 0 && w!=_target ) {
   755 	      next.set(w,first[level[w]]);
   756 	      first[level[w]]=w;
   757 	    }  
   758 	    excess.set(w, excess[w]+(*_flow)[e]);
   759 	    _flow->set(e, 0);
   760 	  }
   761 	}
   762 	break;
   763 
   764 	case PRE_FLOW:	
   765 	//the starting flow
   766 	for(OutEdgeIt e(*_g,_source) ; e!=INVALID; ++e) {
   767 	  Num rem=(*_capacity)[e]-(*_flow)[e];
   768 	  if ( rem <= 0 ) continue;
   769 	  Node w=_g->target(e);
   770 	  if ( level[w] < _node_num ) _flow->set(e, (*_capacity)[e]);
   771 	}
   772 	
   773 	for(InEdgeIt e(*_g,_source) ; e!=INVALID; ++e) {
   774 	  if ( (*_flow)[e] <= 0 ) continue;
   775 	  Node w=_g->source(e);
   776 	  if ( level[w] < _node_num ) _flow->set(e, 0);
   777 	}
   778 	
   779 	//computing the excess
   780 	for(NodeIt w(*_g); w!=INVALID; ++w) {
   781 	  Num exc=0;
   782 	  for(InEdgeIt e(*_g,w); e!=INVALID; ++e) exc+=(*_flow)[e];
   783 	  for(OutEdgeIt e(*_g,w); e!=INVALID; ++e) exc-=(*_flow)[e];
   784 	  excess.set(w,exc);
   785 	  
   786 	  //putting the active nodes into the stack
   787 	  int lev=level[w];
   788 	    if ( exc > 0 && lev < _node_num && Node(w) != _target ) {
   789 	      next.set(w,first[lev]);
   790 	      first[lev]=w;
   791 	    }
   792 	}
   793 	break;
   794       } //switch
   795     } //preflowPreproc
   796 
   797 
   798     void relabel(Node w, int newlevel, VecNode& first, NNMap& next, 
   799 		 VecNode& level_list, NNMap& left,
   800 		 NNMap& right, int& b, int& k, bool what_heur )
   801     {
   802 
   803       int lev=level[w];
   804 
   805       Node right_n=right[w];
   806       Node left_n=left[w];
   807 
   808       //unlacing starts
   809       if ( right_n!=INVALID ) {
   810 	if ( left_n!=INVALID ) {
   811 	  right.set(left_n, right_n);
   812 	  left.set(right_n, left_n);
   813 	} else {
   814 	  level_list[lev]=right_n;
   815 	  left.set(right_n, INVALID);
   816 	}
   817       } else {
   818 	if ( left_n!=INVALID ) {
   819 	  right.set(left_n, INVALID);
   820 	} else {
   821 	  level_list[lev]=INVALID;
   822 	}
   823       }
   824       //unlacing ends
   825 
   826       if ( level_list[lev]==INVALID ) {
   827 
   828 	//gapping starts
   829 	for (int i=lev; i!=k ; ) {
   830 	  Node v=level_list[++i];
   831 	  while ( v!=INVALID ) {
   832 	    level.set(v,_node_num);
   833 	    v=right[v];
   834 	  }
   835 	  level_list[i]=INVALID;
   836 	  if ( !what_heur ) first[i]=INVALID;
   837 	}
   838 
   839 	level.set(w,_node_num);
   840 	b=lev-1;
   841 	k=b;
   842 	//gapping ends
   843 
   844       } else {
   845 
   846 	if ( newlevel == _node_num ) level.set(w,_node_num);
   847 	else {
   848 	  level.set(w,++newlevel);
   849 	  next.set(w,first[newlevel]);
   850 	  first[newlevel]=w;
   851 	  if ( what_heur ) b=newlevel;
   852 	  if ( k < newlevel ) ++k;      //now k=newlevel
   853 	  Node z=level_list[newlevel];
   854 	  if ( z!=INVALID ) left.set(z,w);
   855 	  right.set(w,z);
   856 	  left.set(w,INVALID);
   857 	  level_list[newlevel]=w;
   858 	}
   859       }
   860     } //relabel
   861 
   862   }; 
   863 
   864   ///\ingroup flowalgs
   865   ///\brief Function type interface for Preflow algorithm.
   866   ///
   867   ///Function type interface for Preflow algorithm.
   868   ///\sa Preflow
   869   template<class GR, class CM, class FM>
   870   Preflow<GR,typename CM::Value,CM,FM> preflow(const GR &g,
   871 			    typename GR::Node source,
   872 			    typename GR::Node target,
   873 			    const CM &cap,
   874 			    FM &flow
   875 			    )
   876   {
   877     return Preflow<GR,typename CM::Value,CM,FM>(g,source,target,cap,flow);
   878   }
   879 
   880 } //namespace lemon
   881 
   882 #endif //LEMON_PREFLOW_H