IO with undirected edgesets and undirected graphs.
Missing features:
InfoReader,
aliased edges in undir edgesets
3 \page graphs How to use graphs
5 The primary data structures of LEMON are the graph classes. They all
6 provide a node list - edge list interface, i.e. they have
7 functionalities to list the nodes and the edges of the graph as well
8 as incoming and outgoing edges of a given node.
11 Each graph should meet the
12 \ref lemon::concept::StaticGraph "StaticGraph" concept.
14 make it possible to change the graph (i.e. it is not possible to add
15 or delete edges or nodes). Most of the graph algorithms will run on
18 The graphs meeting the
19 \ref lemon::concept::ExtendableGraph "ExtendableGraph"
20 concept allow node and
21 edge addition. You can also "clear" such a graph (i.e. erase all edges and nodes ).
23 In case of graphs meeting the full feature
24 \ref lemon::concept::ErasableGraph "ErasableGraph"
26 you can also erase individual edges and nodes in arbitrary order.
28 The implemented graph structures are the following.
29 \li \ref lemon::ListGraph "ListGraph" is the most versatile graph class. It meets
30 the \ref lemon::concept::ErasableGraph "ErasableGraph" concept
31 and it also has some convenient extra features.
32 \li \ref lemon::SmartGraph "SmartGraph" is a more memory
33 efficient version of \ref lemon::ListGraph "ListGraph". The
34 price of this is that it only meets the
35 \ref lemon::concept::ExtendableGraph "ExtendableGraph" concept,
36 so you cannot delete individual edges or nodes.
37 \li \ref lemon::SymListGraph "SymListGraph" and
38 \ref lemon::SymSmartGraph "SymSmartGraph" classes are very similar to
39 \ref lemon::ListGraph "ListGraph" and \ref lemon::SmartGraph "SmartGraph".
40 The difference is that whenever you add a
41 new edge to the graph, it actually adds a pair of oppositely directed edges.
42 They are linked together so it is possible to access the counterpart of an
43 edge. An even more important feature is that using these classes you can also
44 attach data to the edges in such a way that the stored data
45 are shared by the edge pairs.
46 \li \ref lemon::FullGraph "FullGraph"
47 implements a complete graph. It is a
48 \ref lemon::concept::StaticGraph "StaticGraph", so you cannot
49 change the number of nodes once it is constructed. It is extremely memory
50 efficient: it uses constant amount of memory independently from the number of
51 the nodes of the graph. Of course, the size of the \ref maps-page "NodeMap"'s and
52 \ref maps-page "EdgeMap"'s will depend on the number of nodes.
54 \li \ref lemon::NodeSet "NodeSet" implements a graph with no edges. This class
55 can be used as a base class of \ref lemon::EdgeSet "EdgeSet".
56 \li \ref lemon::EdgeSet "EdgeSet" can be used to create a new graph on
57 the node set of another graph. The base graph can be an arbitrary graph and it
58 is possible to attach several \ref lemon::EdgeSet "EdgeSet"'s to a base graph.
60 \todo Don't we need SmartNodeSet and SmartEdgeSet?
61 \todo Some cross-refs are wrong.
63 The graph structures themselves can not store data attached
64 to the edges and nodes. However they all provide
65 \ref maps-page "map classes"
66 to dynamically attach data the to graph components.
68 The following program demonstrates the basic features of LEMON's graph
73 #include <lemon/list_graph.h>
75 using namespace lemon;
79 typedef ListGraph Graph;
82 ListGraph is one of LEMON's graph classes. It is based on linked lists,
83 therefore iterating throuh its edges and nodes is fast.
86 typedef Graph::Edge Edge;
87 typedef Graph::InEdgeIt InEdgeIt;
88 typedef Graph::OutEdgeIt OutEdgeIt;
89 typedef Graph::EdgeIt EdgeIt;
90 typedef Graph::Node Node;
91 typedef Graph::NodeIt NodeIt;
95 for (int i = 0; i < 3; i++)
98 for (NodeIt i(g); i!=INVALID; ++i)
99 for (NodeIt j(g); j!=INVALID; ++j)
100 if (i != j) g.addEdge(i, j);
103 After some convenient typedefs we create a graph and add three nodes to it.
104 Then we add edges to it to form a complete graph.
107 std::cout << "Nodes:";
108 for (NodeIt i(g); i!=INVALID; ++i)
109 std::cout << " " << g.id(i);
110 std::cout << std::endl;
113 Here we iterate through all nodes of the graph. We use a constructor of the
114 node iterator to initialize it to the first node. The operator++ is used to
115 step to the next node. Using operator++ on the iterator pointing to the last
116 node invalidates the iterator i.e. sets its value to
117 \ref lemon::INVALID "INVALID". This is what we exploit in the stop condition.
119 The previous code fragment prints out the following:
126 std::cout << "Edges:";
127 for (EdgeIt i(g); i!=INVALID; ++i)
128 std::cout << " (" << g.id(g.source(i)) << "," << g.id(g.target(i)) << ")";
129 std::cout << std::endl;
133 Edges: (0,2) (1,2) (0,1) (2,1) (1,0) (2,0)
136 We can also iterate through all edges of the graph very similarly. The
138 \c source member functions can be used to access the endpoints of an edge.
141 NodeIt first_node(g);
143 std::cout << "Out-edges of node " << g.id(first_node) << ":";
144 for (OutEdgeIt i(g, first_node); i!=INVALID; ++i)
145 std::cout << " (" << g.id(g.source(i)) << "," << g.id(g.target(i)) << ")";
146 std::cout << std::endl;
148 std::cout << "In-edges of node " << g.id(first_node) << ":";
149 for (InEdgeIt i(g, first_node); i!=INVALID; ++i)
150 std::cout << " (" << g.id(g.source(i)) << "," << g.id(g.target(i)) << ")";
151 std::cout << std::endl;
155 Out-edges of node 2: (2,0) (2,1)
156 In-edges of node 2: (0,2) (1,2)
159 We can also iterate through the in and out-edges of a node. In the above
160 example we print out the in and out-edges of the first node of the graph.
163 Graph::EdgeMap<int> m(g);
165 for (EdgeIt e(g); e!=INVALID; ++e)
166 m.set(e, 10 - g.id(e));
168 std::cout << "Id Edge Value" << std::endl;
169 for (EdgeIt e(g); e!=INVALID; ++e)
170 std::cout << g.id(e) << " (" << g.id(g.source(e)) << "," << g.id(g.target(e))
171 << ") " << m[e] << std::endl;
184 As we mentioned above, graphs are not containers rather
185 incidence structures which are iterable in many ways. LEMON introduces
186 concepts that allow us to attach containers to graphs. These containers are
189 In the example above we create an EdgeMap which assigns an integer value to all
190 edges of the graph. We use the set member function of the map to write values
191 into the map and the operator[] to retrieve them.
193 Here we used the maps provided by the ListGraph class, but you can also write
194 your own maps. You can read more about using maps \ref maps-page "here".