src/work/marci/bfs_dfs.h
author alpar
Tue, 27 Jul 2004 19:08:23 +0000
changeset 744 7ac96d31280f
parent 650 588ff2ca55bd
child 774 4297098d9677
permissions -rw-r--r--
Some comments.
     1 // -*- c++ -*-
     2 #ifndef HUGO_BFS_DFS_H
     3 #define HUGO_BFS_DFS_H
     4 
     5 /// \ingroup galgs
     6 /// \file
     7 /// \brief Bfs and dfs iterators.
     8 ///
     9 /// This file contains bfs and dfs iterator classes.
    10 ///
    11 // /// \author Marton Makai
    12 
    13 #include <queue>
    14 #include <stack>
    15 #include <utility>
    16 
    17 #include <hugo/invalid.h>
    18 
    19 namespace hugo {
    20 
    21   /// Bfs searches for the nodes wich are not marked in 
    22   /// \c reached_map
    23   /// Reached have to be a read-write bool node-map.
    24   /// \ingroup galgs
    25   template <typename Graph, /*typename OutEdgeIt,*/ 
    26 	    typename ReachedMap/*=typename Graph::NodeMap<bool>*/ >
    27   class BfsIterator {
    28   protected:
    29     typedef typename Graph::Node Node;
    30     typedef typename Graph::OutEdgeIt OutEdgeIt;
    31     const Graph* graph;
    32     std::queue<Node> bfs_queue;
    33     ReachedMap& reached;
    34     bool b_node_newly_reached;
    35     OutEdgeIt actual_edge;
    36     bool own_reached_map;
    37   public:
    38     /// In that constructor \c _reached have to be a reference 
    39     /// for a bool bode-map. The algorithm will search for the 
    40     /// initially \c false nodes 
    41     /// in a bfs order.
    42     BfsIterator(const Graph& _graph, ReachedMap& _reached) : 
    43       graph(&_graph), reached(_reached), 
    44       own_reached_map(false) { }
    45     /// The same as above, but the map storing the reached nodes 
    46     /// is constructed dynamically to everywhere false.
    47     /// \deprecated
    48     BfsIterator(const Graph& _graph) : 
    49       graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))), 
    50       own_reached_map(true) { }
    51     /// The map storing the reached nodes have to be destroyed if 
    52     /// it was constructed dynamically
    53     ~BfsIterator() { if (own_reached_map) delete &reached; }
    54     /// This method markes \c s reached.
    55     /// If the queue is empty, then \c s is pushed in the bfs queue 
    56     /// and the first out-edge is processed.
    57     /// If the queue is not empty, then \c s is simply pushed.
    58     void pushAndSetReached(Node s) { 
    59       reached.set(s, true);
    60       if (bfs_queue.empty()) {
    61 	bfs_queue.push(s);
    62 	graph->first(actual_edge, s);
    63 	if (graph->valid(actual_edge)) { 
    64 	  Node w=graph->bNode(actual_edge);
    65 	  if (!reached[w]) {
    66 	    bfs_queue.push(w);
    67 	    reached.set(w, true);
    68 	    b_node_newly_reached=true;
    69 	  } else {
    70 	    b_node_newly_reached=false;
    71 	  }
    72 	} 
    73       } else {
    74 	bfs_queue.push(s);
    75       }
    76     }
    77     /// As \c BfsIterator<Graph, ReachedMap> works as an edge-iterator, 
    78     /// its \c operator++() iterates on the edges in a bfs order.
    79     BfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& 
    80     operator++() { 
    81       if (graph->valid(actual_edge)) { 
    82 	graph->next(actual_edge);
    83 	if (graph->valid(actual_edge)) {
    84 	  Node w=graph->bNode(actual_edge);
    85 	  if (!reached[w]) {
    86 	    bfs_queue.push(w);
    87 	    reached.set(w, true);
    88 	    b_node_newly_reached=true;
    89 	  } else {
    90 	    b_node_newly_reached=false;
    91 	  }
    92 	}
    93       } else {
    94 	bfs_queue.pop(); 
    95 	if (!bfs_queue.empty()) {
    96 	  graph->first(actual_edge, bfs_queue.front());
    97 	  if (graph->valid(actual_edge)) {
    98 	    Node w=graph->bNode(actual_edge);
    99 	    if (!reached[w]) {
   100 	      bfs_queue.push(w);
   101 	      reached.set(w, true);
   102 	      b_node_newly_reached=true;
   103 	    } else {
   104 	      b_node_newly_reached=false;
   105 	    }
   106 	  }
   107 	}
   108       }
   109       return *this;
   110     }
   111     /// Returns true iff the algorithm is finished.
   112     bool finished() const { return bfs_queue.empty(); }
   113     /// The conversion operator makes for converting the bfs-iterator 
   114     /// to an \c out-edge-iterator.
   115     ///\bug Edge have to be in HUGO 0.2
   116     operator OutEdgeIt() const { return actual_edge; }
   117     /// Returns if b-node has been reached just now.
   118     bool isBNodeNewlyReached() const { return b_node_newly_reached; }
   119     /// Returns if a-node is examined.
   120     bool isANodeExamined() const { return !(graph->valid(actual_edge)); }
   121     /// Returns a-node of the actual edge, so does if the edge is invalid.
   122     Node aNode() const { return bfs_queue.front(); }
   123     /// \pre The actual edge have to be valid.
   124     Node bNode() const { return graph->bNode(actual_edge); }
   125     /// Guess what?
   126     /// \deprecated 
   127     const ReachedMap& getReachedMap() const { return reached; }
   128     /// Guess what?
   129     /// \deprecated
   130     const std::queue<Node>& getBfsQueue() const { return bfs_queue; }
   131   };
   132 
   133   /// Bfs searches for the nodes wich are not marked in 
   134   /// \c reached_map
   135   /// Reached have to work as a read-write bool Node-map, 
   136   /// Pred is a write edge node-map and
   137   /// Dist is a read-write node-map of integral value, have to be. 
   138   /// \ingroup galgs
   139   template <typename Graph, 
   140 	    typename ReachedMap=typename Graph::template NodeMap<bool>, 
   141 	    typename PredMap
   142 	    =typename Graph::template NodeMap<typename Graph::Edge>, 
   143 	    typename DistMap=typename Graph::template NodeMap<int> > 
   144   class Bfs : public BfsIterator<Graph, ReachedMap> {
   145     typedef BfsIterator<Graph, ReachedMap> Parent;
   146   protected:
   147     typedef typename Parent::Node Node;
   148     PredMap& pred;
   149     DistMap& dist;
   150   public:
   151     /// The algorithm will search in a bfs order for 
   152     /// the nodes which are \c false initially. 
   153     /// The constructor makes no initial changes on the maps.
   154     Bfs<Graph, ReachedMap, PredMap, DistMap>(const Graph& _graph, ReachedMap& _reached, PredMap& _pred, DistMap& _dist) : 
   155       BfsIterator<Graph, ReachedMap>(_graph, _reached), 
   156       pred(_pred), dist(_dist) { }
   157     /// \c s is marked to be reached and pushed in the bfs queue.
   158     /// If the queue is empty, then the first out-edge is processed.
   159     /// If \c s was not marked previously, then 
   160     /// in addition its pred is set to be \c INVALID, and dist to \c 0. 
   161     /// if \c s was marked previuosly, then it is simply pushed.
   162     void push(Node s) { 
   163       if (this->reached[s]) {
   164 	Parent::pushAndSetReached(s);
   165       } else {
   166 	Parent::pushAndSetReached(s);
   167 	pred.set(s, INVALID);
   168 	dist.set(s, 0);
   169       }
   170     }
   171     /// A bfs is processed from \c s.
   172     void run(Node s) {
   173       push(s);
   174       while (!this->finished()) this->operator++();
   175     }
   176     /// Beside the bfs iteration, \c pred and \dist are saved in a 
   177     /// newly reached node. 
   178     Bfs<Graph, ReachedMap, PredMap, DistMap>& operator++() {
   179       Parent::operator++();
   180       if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached) 
   181       {
   182 	pred.set(this->bNode(), this->actual_edge);
   183 	dist.set(this->bNode(), dist[this->aNode()]);
   184       }
   185       return *this;
   186     }
   187     /// Guess what?
   188     /// \deprecated 
   189     const PredMap& getPredMap() const { return pred; }
   190     /// Guess what?
   191     /// \deprecated
   192     const DistMap& getDistMap() const { return dist; }
   193   };
   194 
   195   /// Dfs searches for the nodes wich are not marked in 
   196   /// \c reached_map
   197   /// Reached have to be a read-write bool Node-map.
   198   /// \ingroup galgs
   199   template <typename Graph, /*typename OutEdgeIt,*/ 
   200 	    typename ReachedMap/*=typename Graph::NodeMap<bool>*/ >
   201   class DfsIterator {
   202   protected:
   203     typedef typename Graph::Node Node;
   204     typedef typename Graph::OutEdgeIt OutEdgeIt;
   205     const Graph* graph;
   206     std::stack<OutEdgeIt> dfs_stack;
   207     bool b_node_newly_reached;
   208     OutEdgeIt actual_edge;
   209     Node actual_node;
   210     ReachedMap& reached;
   211     bool own_reached_map;
   212   public:
   213     /// In that constructor \c _reached have to be a reference 
   214     /// for a bool node-map. The algorithm will search in a dfs order for 
   215     /// the nodes which are \c false initially
   216     DfsIterator(const Graph& _graph, ReachedMap& _reached) : 
   217       graph(&_graph), reached(_reached), 
   218       own_reached_map(false) { }
   219     /// The same as above, but the map of reached nodes is 
   220     /// constructed dynamically 
   221     /// to everywhere false.
   222     DfsIterator(const Graph& _graph) : 
   223       graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))), 
   224       own_reached_map(true) { }
   225     ~DfsIterator() { if (own_reached_map) delete &reached; }
   226     /// This method markes s reached and first out-edge is processed.
   227     void pushAndSetReached(Node s) { 
   228       actual_node=s;
   229       reached.set(s, true);
   230       OutEdgeIt e;
   231       graph->first(e, s);
   232       dfs_stack.push(e); 
   233     }
   234     /// As \c DfsIterator<Graph, ReachedMap> works as an edge-iterator, 
   235     /// its \c operator++() iterates on the edges in a dfs order.
   236     DfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& 
   237     operator++() { 
   238       actual_edge=dfs_stack.top();
   239       //actual_node=G.aNode(actual_edge);
   240       if (graph->valid(actual_edge)/*.valid()*/) { 
   241 	Node w=graph->bNode(actual_edge);
   242 	actual_node=w;
   243 	if (!reached[w]) {
   244 	  OutEdgeIt e;
   245 	  graph->first(e, w);
   246 	  dfs_stack.push(e);
   247 	  reached.set(w, true);
   248 	  b_node_newly_reached=true;
   249 	} else {
   250 	  actual_node=graph->aNode(actual_edge);
   251 	  graph->next(dfs_stack.top());
   252 	  b_node_newly_reached=false;
   253 	}
   254       } else {
   255 	//actual_node=G.aNode(dfs_stack.top());
   256 	dfs_stack.pop();
   257       }
   258       return *this;
   259     }
   260     /// Returns true iff the algorithm is finished.
   261     bool finished() const { return dfs_stack.empty(); }
   262     /// The conversion operator makes for converting the bfs-iterator 
   263     /// to an \c out-edge-iterator.
   264     ///\bug Edge have to be in HUGO 0.2
   265     operator OutEdgeIt() const { return actual_edge; }
   266     /// Returns if b-node has been reached just now.
   267     bool isBNodeNewlyReached() const { return b_node_newly_reached; }
   268     /// Returns if a-node is examined.
   269     bool isANodeExamined() const { return !(graph->valid(actual_edge)); }
   270     /// Returns a-node of the actual edge, so does if the edge is invalid.
   271     Node aNode() const { return actual_node; /*FIXME*/}
   272     /// Returns b-node of the actual edge. 
   273     /// \pre The actual edge have to be valid.
   274     Node bNode() const { return graph->bNode(actual_edge); }
   275     /// Guess what?
   276     /// \deprecated
   277     const ReachedMap& getReachedMap() const { return reached; }
   278     /// Guess what?
   279     /// \deprecated
   280     const std::stack<OutEdgeIt>& getDfsStack() const { return dfs_stack; }
   281   };
   282 
   283   /// Dfs searches for the nodes wich are not marked in 
   284   /// \c reached_map
   285   /// Reached is a read-write bool node-map, 
   286   /// Pred is a write node-map, have to be.
   287   /// \ingroup galgs
   288   template <typename Graph, 
   289 	    typename ReachedMap=typename Graph::template NodeMap<bool>, 
   290 	    typename PredMap
   291 	    =typename Graph::template NodeMap<typename Graph::Edge> > 
   292   class Dfs : public DfsIterator<Graph, ReachedMap> {
   293     typedef DfsIterator<Graph, ReachedMap> Parent;
   294   protected:
   295     typedef typename Parent::Node Node;
   296     PredMap& pred;
   297   public:
   298     /// The algorithm will search in a dfs order for 
   299     /// the nodes which are \c false initially. 
   300     /// The constructor makes no initial changes on the maps.
   301     Dfs<Graph, ReachedMap, PredMap>(const Graph& _graph, ReachedMap& _reached, PredMap& _pred) : DfsIterator<Graph, ReachedMap>(_graph, _reached), pred(_pred) { }
   302     /// \c s is marked to be reached and pushed in the bfs queue.
   303     /// If the queue is empty, then the first out-edge is processed.
   304     /// If \c s was not marked previously, then 
   305     /// in addition its pred is set to be \c INVALID. 
   306     /// if \c s was marked previuosly, then it is simply pushed.
   307     void push(Node s) { 
   308       if (this->reached[s]) {
   309 	Parent::pushAndSetReached(s);
   310       } else {
   311 	Parent::pushAndSetReached(s);
   312 	pred.set(s, INVALID);
   313       }
   314     }
   315     /// A bfs is processed from \c s.
   316     void run(Node s) {
   317       push(s);
   318       while (!this->finished()) this->operator++();
   319     }
   320     /// Beside the dfs iteration, \c pred is saved in a 
   321     /// newly reached node. 
   322     Dfs<Graph, ReachedMap, PredMap>& operator++() {
   323       Parent::operator++();
   324       if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached) 
   325       {
   326 	pred.set(this->bNode(), this->actual_edge);
   327       }
   328       return *this;
   329     }
   330     /// Guess what?
   331     /// \deprecated
   332     const PredMap& getPredMap() const { return pred; }
   333   };
   334 
   335 
   336 } // namespace hugo
   337 
   338 #endif //HUGO_BFS_DFS_H