Doc review+corrections in my own documentation according to the reviewers comments.
2 * lemon/xy.h - Part of LEMON, a generic C++ optimization library
4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
21 #include <lemon/utility.h>
25 ///\brief A simple two dimensional vector and a bounding box implementation
27 /// The class \ref lemon::xy "xy" implements
28 ///a two dimensional vector with the usual
31 /// The class \ref lemon::BoundingBox "BoundingBox" can be used to determine
32 /// the rectangular bounding box of a set of \ref lemon::xy "xy"'s.
34 ///\author Attila Bernath
42 /// A simple two dimensional vector (plainvector) implementation
44 /// A simple two dimensional vector (plainvector) implementation
45 ///with the usual vector
48 ///\author Attila Bernath
58 ///Default constructor
61 ///Constructing the instance from coordinates
62 xy(T a, T b) : x(a), y(b) { }
65 ///Conversion constructor
66 template<class TT> xy(const xy<TT> &p) : x(p.x), y(p.y) {}
68 ///Gives back the square of the norm of the vector
69 T normSquare() const {
73 ///Increments the left hand side by u
74 xy<T>& operator +=(const xy<T>& u) {
80 ///Decrements the left hand side by u
81 xy<T>& operator -=(const xy<T>& u) {
87 ///Multiplying the left hand side with a scalar
88 xy<T>& operator *=(const T &u) {
94 ///Dividing the left hand side by a scalar
95 xy<T>& operator /=(const T &u) {
101 ///Returns the scalar product of two vectors
102 T operator *(const xy<T>& u) const {
106 ///Returns the sum of two vectors
107 xy<T> operator+(const xy<T> &u) const {
112 ///Returns the neg of the vectors
113 xy<T> operator-() const {
119 ///Returns the difference of two vectors
120 xy<T> operator-(const xy<T> &u) const {
125 ///Returns a vector multiplied by a scalar
126 xy<T> operator*(const T &u) const {
131 ///Returns a vector divided by a scalar
132 xy<T> operator/(const T &u) const {
138 bool operator==(const xy<T> &u) const {
139 return (x==u.x) && (y==u.y);
142 ///Testing inequality
143 bool operator!=(xy u) const {
144 return (x!=u.x) || (y!=u.y);
149 ///Returns a vector multiplied by a scalar
151 ///Returns a vector multiplied by a scalar
153 template<typename T> xy<T> operator*(const T &u,const xy<T> &x) {
157 ///Read a plainvector from a stream
159 ///Read a plainvector from a stream
163 inline std::istream& operator>>(std::istream &is, xy<T> &z) {
166 if (c != '(') is.putback(c);
170 if (!(is >> z.x)) return is;
172 if (c != ',') is.putback(c);
176 if (!(is >> z.y)) return is;
178 if (c != ')') is.putback(c);
185 ///Write a plainvector to a stream
187 ///Write a plainvector to a stream
191 inline std::ostream& operator<<(std::ostream &os, const xy<T>& z)
193 os << "(" << z.x << ", " << z.y << ")";
197 ///Rotate by 90 degrees
199 ///Returns its parameter rotated by 90 degrees in positive direction.
203 inline xy<T> rot90(const xy<T> &z)
205 return xy<T>(-z.y,z.x);
208 ///Rotate by 270 degrees
210 ///Returns its parameter rotated by 90 degrees in negative direction.
214 inline xy<T> rot270(const xy<T> &z)
216 return xy<T>(z.y,-z.x);
221 /// A class to calculate or store the bounding box of plainvectors.
223 /// A class to calculate or store the bounding box of plainvectors.
225 ///\author Attila Bernath
228 xy<T> bottom_left, top_right;
232 ///Default constructor: creates an empty bounding box
233 BoundingBox() { _empty = true; }
235 ///Constructing the instance from one point
236 BoundingBox(xy<T> a) { bottom_left=top_right=a; _empty = false; }
238 ///Were any points added?
243 ///Makes the BoundingBox empty
248 ///Gives back the bottom left corner (if the bounding box is empty, then the return value is not defined)
249 xy<T> bottomLeft() const {
253 ///Gives back the top right corner (if the bounding box is empty, then the return value is not defined)
254 xy<T> topRight() const {
258 ///Gives back the bottom right corner (if the bounding box is empty, then the return value is not defined)
259 xy<T> bottomRight() const {
260 return xy<T>(top_right.x,bottom_left.y);
263 ///Gives back the top left corner (if the bounding box is empty, then the return value is not defined)
264 xy<T> topLeft() const {
265 return xy<T>(bottom_left.x,top_right.y);
268 ///Gives back the bottom of the box (if the bounding box is empty, then the return value is not defined)
270 return bottom_left.y;
273 ///Gives back the top of the box (if the bounding box is empty, then the return value is not defined)
278 ///Gives back the left side of the box (if the bounding box is empty, then the return value is not defined)
280 return bottom_left.x;
283 ///Gives back the right side of the box (if the bounding box is empty, then the return value is not defined)
288 ///Gives back the height of the box (if the bounding box is empty, then the return value is not defined)
290 return top_right.y-bottom_left.y;
293 ///Gives back the width of the box (if the bounding box is empty, then the return value is not defined)
295 return top_right.x-bottom_left.x;
298 ///Checks whether a point is inside a bounding box
299 bool inside(const xy<T>& u){
303 return ((u.x-bottom_left.x)*(top_right.x-u.x) >= 0 &&
304 (u.y-bottom_left.y)*(top_right.y-u.y) >= 0 );
308 ///Increments a bounding box with a point
309 BoundingBox& operator +=(const xy<T>& u){
311 bottom_left=top_right=u;
315 if (bottom_left.x > u.x) bottom_left.x = u.x;
316 if (bottom_left.y > u.y) bottom_left.y = u.y;
317 if (top_right.x < u.x) top_right.x = u.x;
318 if (top_right.y < u.y) top_right.y = u.y;
323 ///Sums a bounding box and a point
324 BoundingBox operator +(const xy<T>& u){
325 BoundingBox b = *this;
329 ///Increments a bounding box with an other bounding box
330 BoundingBox& operator +=(const BoundingBox &u){
332 *this += u.bottomLeft();
333 *this += u.topRight();
338 ///Sums two bounding boxes
339 BoundingBox operator +(const BoundingBox& u){
340 BoundingBox b = *this;
344 };//class Boundingbox
347 ///Map of x-coordinates of an xy<>-map
354 typename SmartReference<M>::Type _map;
356 typedef True NeedCopy;
358 typedef typename M::Value::Value Value;
359 typedef typename M::Key Key;
361 XMap(typename SmartParameter<M>::Type map) : _map(map) {}
362 Value operator[](Key k) const {return _map[k].x;}
363 void set(Key k,Value v) {_map.set(k,typename M::Value(v,_map[k].y));}
366 ///Returns an \ref XMap class
368 ///This function just returns an \ref XMap class.
373 inline XMap<M> xMap(M &m)
379 inline XMap<M> xMap(const M &m)
384 ///Constant (read only) version of \ref XMap
391 typename SmartConstReference<M>::Type _map;
393 typedef True NeedCopy;
395 typedef typename M::Value::Value Value;
396 typedef typename M::Key Key;
398 ConstXMap(const M &map) : _map(map) {}
399 Value operator[](Key k) const {return _map[k].x;}
402 ///Returns a \ref ConstXMap class
404 ///This function just returns an \ref ConstXMap class.
407 ///\relates ConstXMap
409 inline ConstXMap<M> xMap(const M &m)
411 return ConstXMap<M>(m);
414 ///Map of y-coordinates of an xy<>-map
421 typename SmartReference<M>::Type _map;
423 typedef True NeedCopy;
425 typedef typename M::Value::Value Value;
426 typedef typename M::Key Key;
428 YMap(typename SmartParameter<M>::Type map) : _map(map) {}
429 Value operator[](Key k) const {return _map[k].y;}
430 void set(Key k,Value v) {_map.set(k,typename M::Value(_map[k].x,v));}
433 ///Returns an \ref YMap class
435 ///This function just returns an \ref YMap class.
440 inline YMap<M> yMap(M &m)
446 inline YMap<M> yMap(const M &m)
451 ///Constant (read only) version of \ref YMap
458 typename SmartConstReference<M>::Type _map;
460 typedef True NeedCopy;
462 typedef typename M::Value::Value Value;
463 typedef typename M::Key Key;
465 ConstYMap(const M &map) : _map(map) {}
466 Value operator[](Key k) const {return _map[k].y;}
469 ///Returns a \ref ConstYMap class
471 ///This function just returns an \ref ConstYMap class.
474 ///\relates ConstYMap
476 inline ConstYMap<M> yMap(const M &m)
478 return ConstYMap<M>(m);
482 ///Map of the \ref xy::normSquare() "normSquare()" of an \ref xy "xy"-map
484 ///Map of the \ref xy::normSquare() "normSquare()" of an \ref xy "xy"-map
490 typename SmartConstReference<M>::Type _map;
492 typedef True NeedCopy;
494 typedef typename M::Value::Value Value;
495 typedef typename M::Key Key;
497 NormSquareMap(const M &map) : _map(map) {}
498 Value operator[](Key k) const {return _map[k].normSquare();}
501 ///Returns a \ref NormSquareMap class
503 ///This function just returns an \ref NormSquareMap class.
506 ///\relates NormSquareMap
508 inline NormSquareMap<M> normSquareMap(const M &m)
510 return NormSquareMap<M>(m);