src/lemon/xy.h
author deba
Sat, 09 Apr 2005 19:30:49 +0000
changeset 1331 7e93d3f0406d
parent 1257 7101e2c3a881
child 1352 bdbb9144a49e
permissions -rw-r--r--
Documentation improvments.
     1 /* -*- C++ -*-
     2  * src/lemon/xy.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_XY_H
    18 #define LEMON_XY_H
    19 
    20 #include <iostream>
    21 
    22 ///\ingroup misc
    23 ///\file
    24 ///\brief A simple two dimensional vector and a bounding box implementation 
    25 ///
    26 /// The class \ref lemon::xy "xy" implements
    27 ///a two dimensional vector with the usual
    28 /// operations.
    29 ///
    30 /// The class \ref lemon::BoundingBox "BoundingBox" can be used to determine
    31 /// the rectangular bounding box a set of \ref lemon::xy "xy"'s.
    32 ///
    33 ///\author Attila Bernath
    34 
    35 
    36 namespace lemon {
    37 
    38   /// \addtogroup misc
    39   /// @{
    40 
    41   /// A simple two dimensional vector (plainvector) implementation
    42 
    43   /// A simple two dimensional vector (plainvector) implementation
    44   ///with the usual vector
    45   /// operators.
    46   ///
    47   ///\author Attila Bernath
    48   template<typename T>
    49     class xy {
    50 
    51     public:
    52 
    53       typedef T Value;
    54 
    55       T x,y;     
    56       
    57       ///Default constructor
    58       xy() {}
    59 
    60       ///Constructing the instance from coordinates
    61       xy(T a, T b) : x(a), y(b) { }
    62 
    63 
    64       ///Conversion constructor
    65       template<class TT> xy(const xy<TT> &p) : x(p.x), y(p.y) {}
    66 
    67       ///Gives back the square of the norm of the vector
    68       T normSquare() const {
    69 	return x*x+y*y;
    70       };
    71   
    72       ///Increments the left hand side by u
    73       xy<T>& operator +=(const xy<T>& u) {
    74 	x += u.x;
    75 	y += u.y;
    76 	return *this;
    77       };
    78   
    79       ///Decrements the left hand side by u
    80       xy<T>& operator -=(const xy<T>& u) {
    81 	x -= u.x;
    82 	y -= u.y;
    83 	return *this;
    84       };
    85 
    86       ///Multiplying the left hand side with a scalar
    87       xy<T>& operator *=(const T &u) {
    88 	x *= u;
    89 	y *= u;
    90 	return *this;
    91       };
    92 
    93       ///Dividing the left hand side by a scalar
    94       xy<T>& operator /=(const T &u) {
    95 	x /= u;
    96 	y /= u;
    97 	return *this;
    98       };
    99   
   100       ///Returns the scalar product of two vectors
   101       T operator *(const xy<T>& u) const {
   102 	return x*u.x+y*u.y;
   103       };
   104   
   105       ///Returns the sum of two vectors
   106       xy<T> operator+(const xy<T> &u) const {
   107 	xy<T> b=*this;
   108 	return b+=u;
   109       };
   110 
   111       ///Returns the neg of the vectors
   112       xy<T> operator-() const {
   113 	xy<T> b=*this;
   114 	b.x=-b.x; b.y=-b.y;
   115 	return b;
   116       };
   117 
   118       ///Returns the difference of two vectors
   119       xy<T> operator-(const xy<T> &u) const {
   120 	xy<T> b=*this;
   121 	return b-=u;
   122       };
   123 
   124       ///Returns a vector multiplied by a scalar
   125       xy<T> operator*(const T &u) const {
   126 	xy<T> b=*this;
   127 	return b*=u;
   128       };
   129 
   130       ///Returns a vector divided by a scalar
   131       xy<T> operator/(const T &u) const {
   132 	xy<T> b=*this;
   133 	return b/=u;
   134       };
   135 
   136       ///Testing equality
   137       bool operator==(const xy<T> &u) const {
   138 	return (x==u.x) && (y==u.y);
   139       };
   140 
   141       ///Testing inequality
   142       bool operator!=(xy u) const {
   143 	return  (x!=u.x) || (y!=u.y);
   144       };
   145 
   146     };
   147 
   148   ///Returns a vector multiplied by a scalar
   149 
   150   ///Returns a vector multiplied by a scalar
   151   ///\relates xy
   152   template<typename T> xy<T> operator*(const T &u,const xy<T> &x) {
   153     return x*u;
   154   };
   155 
   156   ///Read a plainvector from a stream
   157 
   158   ///Read a plainvector from a stream
   159   ///\relates xy
   160   ///
   161   template<typename T>
   162   inline
   163   std::istream& operator>>(std::istream &is, xy<T> &z)
   164   {
   165 
   166     is >> z.x >> z.y;
   167     return is;
   168   }
   169 
   170   ///Write a plainvector to a stream
   171 
   172   ///Write a plainvector to a stream
   173   ///\relates xy
   174   ///
   175   template<typename T>
   176   inline
   177   std::ostream& operator<<(std::ostream &os, xy<T> z)
   178   {
   179     os << "(" << z.x << ", " << z.y << ")";
   180     return os;
   181   }
   182 
   183   ///Rotate by 90 degrees
   184 
   185   ///Returns its parameter rotated by 90 degrees in positive direction.
   186   ///\relates xy
   187   ///
   188   template<typename T>
   189   inline xy<T> rot90(const xy<T> &z)
   190   {
   191     return xy<T>(-z.y,z.x);
   192   }
   193 
   194   ///Rotate by 270 degrees
   195 
   196   ///Returns its parameter rotated by 90 degrees in negative direction.
   197   ///\relates xy
   198   ///
   199   template<typename T>
   200   inline xy<T> rot270(const xy<T> &z)
   201   {
   202     return xy<T>(z.y,-z.x);
   203   }
   204 
   205   
   206 
   207   /// A class to calculate or store the bounding box of plainvectors.
   208 
   209   /// A class to calculate or store the bounding box of plainvectors.
   210   ///
   211   ///\author Attila Bernath
   212   template<typename T>
   213     class BoundingBox {
   214       xy<T> bottom_left, top_right;
   215       bool _empty;
   216     public:
   217       
   218       ///Default constructor: an empty bounding box
   219       BoundingBox() { _empty = true; }
   220 
   221       ///Constructing the instance from one point
   222       BoundingBox(xy<T> a) { bottom_left=top_right=a; _empty = false; }
   223 
   224       ///Is there any point added
   225       bool empty() const {
   226 	return _empty;
   227       }
   228 
   229       ///Gives back the bottom left corner (if the bounding box is empty, then the return value is not defined) 
   230       xy<T> bottomLeft() const {
   231 	return bottom_left;
   232       };
   233 
   234       ///Gives back the top right corner (if the bounding box is empty, then the return value is not defined) 
   235       xy<T> topRight() const {
   236 	return top_right;
   237       };
   238 
   239       ///Gives back the bottom right corner (if the bounding box is empty, then the return value is not defined) 
   240       xy<T> bottomRight() const {
   241 	return xy<T>(top_right.x,bottom_left.y);
   242       };
   243 
   244       ///Gives back the top left corner (if the bounding box is empty, then the return value is not defined) 
   245       xy<T> topLeft() const {
   246 	return xy<T>(bottom_left.x,top_right.y);
   247       };
   248 
   249       ///Gives back the bottom of the box (if the bounding box is empty, then the return value is not defined) 
   250       T bottom() const {
   251 	return bottom_left.y;
   252       };
   253 
   254       ///Gives back the top of the box (if the bounding box is empty, then the return value is not defined) 
   255       T top() const {
   256 	return top_right.y;
   257       };
   258 
   259       ///Gives back the left side of the box (if the bounding box is empty, then the return value is not defined) 
   260       T left() const {
   261 	return bottom_left.x;
   262       };
   263 
   264       ///Gives back the right side of the box (if the bounding box is empty, then the return value is not defined) 
   265       T right() const {
   266 	return top_right.x;
   267       };
   268 
   269       ///Gives back the height of the box (if the bounding box is empty, then the return value is not defined) 
   270       T height() const {
   271 	return top_right.y-bottom_left.y;
   272       };
   273 
   274       ///Gives back the width of the box (if the bounding box is empty, then the return value is not defined) 
   275       T width() const {
   276 	return top_right.x-bottom_left.x;
   277       };
   278 
   279       ///Checks whether a point is inside a bounding box
   280       bool inside(const xy<T>& u){
   281 	if (_empty)
   282 	  return false;
   283 	else{
   284 	  return ((u.x-bottom_left.x)*(top_right.x-u.x) >= 0 &&
   285 		  (u.y-bottom_left.y)*(top_right.y-u.y) >= 0 );
   286 	}
   287       }
   288   
   289       ///Increments a bounding box with a point
   290       BoundingBox& operator +=(const xy<T>& u){
   291 	if (_empty){
   292 	  bottom_left=top_right=u;
   293 	  _empty = false;
   294 	}
   295 	else{
   296 	  if (bottom_left.x > u.x) bottom_left.x = u.x;
   297 	  if (bottom_left.y > u.y) bottom_left.y = u.y;
   298 	  if (top_right.x < u.x) top_right.x = u.x;
   299 	  if (top_right.y < u.y) top_right.y = u.y;
   300 	}
   301 	return *this;
   302       };
   303   
   304       ///Sums a bounding box and a point
   305       BoundingBox operator +(const xy<T>& u){
   306 	BoundingBox b = *this;
   307 	return b += u;
   308       };
   309 
   310       ///Increments a bounding box with an other bounding box
   311       BoundingBox& operator +=(const BoundingBox &u){
   312 	if ( !u.empty() ){
   313 	  *this += u.bottomLeft();
   314 	  *this += u.topRight();
   315 	}
   316 	return *this;
   317       };
   318   
   319       ///Sums two bounding boxes
   320       BoundingBox operator +(const BoundingBox& u){
   321 	BoundingBox b = *this;
   322 	return b += u;
   323       };
   324 
   325     };//class Boundingbox
   326 
   327 
   328   ///Map of x-coordinates of an xy<>-map
   329 
   330   ///\ingroup maps
   331   ///
   332   template<class M>
   333   class XMap 
   334   {
   335     M &_map;
   336   public:
   337     typedef typename M::Value::Value Value;
   338     typedef typename M::Key Key;
   339     ///\e
   340     XMap(M &map) : _map(map) {}
   341     Value operator[](Key k) const {return _map[k].x;}
   342     Value set(Key k,Value v) {_map.set(k,typename M::Value(v,_map[k].y));}
   343   };
   344     
   345   ///Returns an \ref XMap class
   346 
   347   ///This function just returns an \ref XMap class.
   348   ///
   349   ///\ingroup maps
   350   ///\relates XMap
   351   template<class M> 
   352   inline XMap<M> xMap(M &m) 
   353   {
   354     return XMap<M>(m);
   355   }
   356 
   357   ///Constant (read only) version of \ref XMap
   358 
   359   ///\ingroup maps
   360   ///
   361   template<class M>
   362   class ConstXMap 
   363   {
   364     const M &_map;
   365   public:
   366     typedef typename M::Value::Value Value;
   367     typedef typename M::Key Key;
   368     ///\e
   369     ConstXMap(const M &map) : _map(map) {}
   370     Value operator[](Key k) const {return _map[k].x;}
   371   };
   372     
   373   ///Returns a \ref ConstXMap class
   374 
   375   ///This function just returns an \ref ConstXMap class.
   376   ///
   377   ///\ingroup maps
   378   ///\relates ConstXMap
   379   template<class M> 
   380   inline ConstXMap<M> xMap(const M &m) 
   381   {
   382     return ConstXMap<M>(m);
   383   }
   384 
   385   ///Map of y-coordinates of an xy<>-map
   386     
   387   ///\ingroup maps
   388   ///
   389   template<class M>
   390   class YMap 
   391   {
   392     M &_map;
   393   public:
   394     typedef typename M::Value::Value Value;
   395     typedef typename M::Key Key;
   396     ///\e
   397     YMap(M &map) : _map(map) {}
   398     Value operator[](Key k) const {return _map[k].y;}
   399     Value set(Key k,Value v) {_map.set(k,typename M::Value(_map[k].x,v));}
   400   };
   401 
   402   ///Returns an \ref YMap class
   403 
   404   ///This function just returns an \ref YMap class.
   405   ///
   406   ///\ingroup maps
   407   ///\relates YMap
   408   template<class M> 
   409   inline YMap<M> yMap(M &m) 
   410   {
   411     return YMap<M>(m);
   412   }
   413 
   414   ///Constant (read only) version of \ref YMap
   415 
   416   ///\ingroup maps
   417   ///
   418   template<class M>
   419   class ConstYMap 
   420   {
   421     const M &_map;
   422   public:
   423     typedef typename M::Value::Value Value;
   424     typedef typename M::Key Key;
   425     ///\e
   426     ConstYMap(const M &map) : _map(map) {}
   427     Value operator[](Key k) const {return _map[k].y;}
   428   };
   429     
   430   ///Returns a \ref ConstYMap class
   431 
   432   ///This function just returns an \ref ConstYMap class.
   433   ///
   434   ///\ingroup maps
   435   ///\relates ConstYMap
   436   template<class M> 
   437   inline ConstYMap<M> yMap(const M &m) 
   438   {
   439     return ConstYMap<M>(m);
   440   }
   441 
   442 
   443   /// @}
   444 
   445 
   446 } //namespace lemon
   447 
   448 #endif //LEMON_XY_H