Magic triangle is a bit more DONE, and is already not only a triangle.
2 * src/lemon/maps.h - Part of LEMON, a generic C++ optimization library
4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Combinatorial Optimization Research Group, EGRES).
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
24 ///\brief Miscellaneous property maps
26 ///\todo This file has the same name as the concept file in concept/,
27 /// and this is not easily detectable in docs...
36 /// Base class of maps.
38 /// Base class of maps.
39 /// It provides the necessary <tt>typedef</tt>s required by the map concept.
40 template<typename K, typename T>
50 /// Null map. (a.k.a. DoNothingMap)
52 /// If you have to provide a map only for its type definitions,
53 /// or if you have to provide a writable map, but
54 /// data written to it will sent to <tt>/dev/null</tt>...
55 template<typename K, typename T>
56 class NullMap : public MapBase<K,T>
60 /// Gives back a default constructed element.
61 T operator[](const K&) const { return T(); }
62 /// Absorbs the value.
63 void set(const K&, const T&) {}
69 /// This is a readable map which assigns a specified value to each key.
70 /// In other aspects it is equivalent to the \ref NullMap.
71 /// \todo set could be used to set the value.
72 template<typename K, typename T>
73 class ConstMap : public MapBase<K,T>
78 /// Default constructor
80 /// The value of the map will be uninitialized.
81 /// (More exactly it will be default constructed.)
85 /// \param _v The initial value of the map.
87 ConstMap(const T &_v) : v(_v) {}
89 T operator[](const K&) const { return v; }
90 void set(const K&, const T&) {}
94 typedef ConstMap<K,T1> other;
98 ConstMap(const ConstMap<K,T1> &, const T &_v) : v(_v) {}
101 ///Returns a \ref ConstMap class
103 ///This function just returns a \ref ConstMap class.
105 template<class V,class K>
106 inline ConstMap<V,K> constMap(const K &k)
108 return ConstMap<V,K>(k);
113 template<typename T, T v>
116 template<typename K, typename V, V v>
117 class ConstMap<K, Const<V, v> > : public MapBase<K, V>
121 V operator[](const K&) const { return v; }
122 void set(const K&, const V&) { }
125 /// \c std::map wrapper
127 /// This is essentially a wrapper for \c std::map. With addition that
128 /// you can specify a default value different from \c Value() .
130 /// \todo Provide allocator parameter...
131 template <typename K, typename T, typename Compare = std::less<K> >
132 class StdMap : public std::map<K,T,Compare> {
133 typedef std::map<K,T,Compare> parent;
135 typedef typename parent::value_type PairType;
140 typedef T& Reference;
141 typedef const T& ConstReference;
145 /// Constructor with specified default value
146 StdMap(const T& _v) : v(_v) {}
148 /// \brief Constructs the map from an appropriate std::map.
150 /// \warning Inefficient: copies the content of \c m !
151 StdMap(const parent &m) : parent(m) {}
152 /// \brief Constructs the map from an appropriate std::map, and explicitly
153 /// specifies a default value.
155 /// \warning Inefficient: copies the content of \c m !
156 StdMap(const parent &m, const T& _v) : parent(m), v(_v) {}
158 template<typename T1, typename Comp1>
159 StdMap(const StdMap<Key,T1,Comp1> &m, const T &_v) {
163 Reference operator[](const Key &k) {
164 return insert(PairType(k,v)).first -> second;
166 ConstReference operator[](const Key &k) const {
167 typename parent::iterator i = lower_bound(k);
168 if (i == parent::end() || parent::key_comp()(k, (*i).first))
172 void set(const Key &k, const T &t) {
173 parent::operator[](k) = t;
176 /// Changes the default value of the map.
177 /// \return Returns the previous default value.
179 /// \warning The value of some keys (which has already been queried, but
180 /// the value has been unchanged from the default) may change!
181 T setDefault(const T &_v) { T old=v; v=_v; return old; }
183 template<typename T1>
185 typedef StdMap<Key,T1,Compare> other;
189 ///Convert the \c Value of a maps to another type.
191 ///This \ref concept::ReadMap "read only map"
192 ///converts the \c Value of a maps to type \c T.
193 ///Its \c Value is inherited from \c M.
197 /// ConvertMap<X> sh(x,v);
199 ///it is equivalent with
201 /// ConstMap<X::Key, X::Value> c_tmp(v);
202 /// AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
204 ///\bug wrong documentation
205 template<class M, class T>
210 typedef typename M::Key Key;
216 ///\param _m is the undelying map
217 ///\param _v is the convert value
218 ConvertMap(const M &_m) : m(_m) {};
219 Value operator[](Key k) const {return m[k];}
222 ///Returns an \ref ConvertMap class
224 ///This function just returns an \ref ConvertMap class.
225 ///\relates ConvertMap
226 ///\todo The order of the template parameters are changed.
227 template<class T, class M>
228 inline ConvertMap<M,T> convertMap(const M &m)
230 return ConvertMap<M,T>(m);
235 ///This \ref concept::ReadMap "read only map" returns the sum of the two
236 ///given maps. Its \c Key and \c Value will be inherited from \c M1.
237 ///The \c Key and \c Value of M2 must be convertible to those of \c M1.
239 template<class M1,class M2>
245 typedef typename M1::Key Key;
246 typedef typename M1::Value Value;
252 AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
253 Value operator[](Key k) const {return m1[k]+m2[k];}
256 ///Returns an \ref AddMap class
258 ///This function just returns an \ref AddMap class.
259 ///\todo How to call these type of functions?
262 ///\todo Wrong scope in Doxygen when \c \\relates is used
263 template<class M1,class M2>
264 inline AddMap<M1,M2> addMap(const M1 &m1,const M2 &m2)
266 return AddMap<M1,M2>(m1,m2);
269 ///Shift a maps with a constant.
271 ///This \ref concept::ReadMap "read only map" returns the sum of the
272 ///given map and a constant value.
273 ///Its \c Key and \c Value is inherited from \c M.
277 /// ShiftMap<X> sh(x,v);
279 ///it is equivalent with
281 /// ConstMap<X::Key, X::Value> c_tmp(v);
282 /// AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
290 typedef typename M::Key Key;
291 typedef typename M::Value Value;
296 ///\param _m is the undelying map
297 ///\param _v is the shift value
298 ShiftMap(const M &_m,const Value &_v ) : m(_m), v(_v) {};
299 Value operator[](Key k) const {return m[k]+v;}
302 ///Returns an \ref ShiftMap class
304 ///This function just returns an \ref ShiftMap class.
306 ///\todo A better name is required.
308 inline ShiftMap<M> shiftMap(const M &m,const typename M::Value &v)
310 return ShiftMap<M>(m,v);
313 ///Difference of two maps
315 ///This \ref concept::ReadMap "read only map" returns the difference
316 ///of the values returned by the two
317 ///given maps. Its \c Key and \c Value will be inherited from \c M1.
318 ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
320 template<class M1,class M2>
326 typedef typename M1::Key Key;
327 typedef typename M1::Value Value;
333 SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
334 Value operator[](Key k) const {return m1[k]-m2[k];}
337 ///Returns a \ref SubMap class
339 ///This function just returns a \ref SubMap class.
342 template<class M1,class M2>
343 inline SubMap<M1,M2> subMap(const M1 &m1,const M2 &m2)
345 return SubMap<M1,M2>(m1,m2);
348 ///Product of two maps
350 ///This \ref concept::ReadMap "read only map" returns the product of the
351 ///values returned by the two
353 ///maps. Its \c Key and \c Value will be inherited from \c M1.
354 ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
356 template<class M1,class M2>
362 typedef typename M1::Key Key;
363 typedef typename M1::Value Value;
369 MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
370 Value operator[](Key k) const {return m1[k]*m2[k];}
373 ///Returns a \ref MulMap class
375 ///This function just returns a \ref MulMap class.
377 template<class M1,class M2>
378 inline MulMap<M1,M2> mulMap(const M1 &m1,const M2 &m2)
380 return MulMap<M1,M2>(m1,m2);
383 ///Scale a maps with a constant.
385 ///This \ref concept::ReadMap "read only map" returns the value of the
386 ///given map multipied with a constant value.
387 ///Its \c Key and \c Value is inherited from \c M.
391 /// ScaleMap<X> sc(x,v);
393 ///it is equivalent with
395 /// ConstMap<X::Key, X::Value> c_tmp(v);
396 /// MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v);
404 typedef typename M::Key Key;
405 typedef typename M::Value Value;
410 ///\param _m is the undelying map
411 ///\param _v is the scaling value
412 ScaleMap(const M &_m,const Value &_v ) : m(_m), v(_v) {};
413 Value operator[](Key k) const {return m[k]*v;}
416 ///Returns an \ref ScaleMap class
418 ///This function just returns an \ref ScaleMap class.
420 ///\todo A better name is required.
422 inline ScaleMap<M> scaleMap(const M &m,const typename M::Value &v)
424 return ScaleMap<M>(m,v);
427 ///Quotient of two maps
429 ///This \ref concept::ReadMap "read only map" returns the quotient of the
430 ///values returned by the two
431 ///given maps. Its \c Key and \c Value will be inherited from \c M1.
432 ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
434 template<class M1,class M2>
440 typedef typename M1::Key Key;
441 typedef typename M1::Value Value;
447 DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
448 Value operator[](Key k) const {return m1[k]/m2[k];}
451 ///Returns a \ref DivMap class
453 ///This function just returns a \ref DivMap class.
455 template<class M1,class M2>
456 inline DivMap<M1,M2> divMap(const M1 &m1,const M2 &m2)
458 return DivMap<M1,M2>(m1,m2);
461 ///Composition of two maps
463 ///This \ref concept::ReadMap "read only map" returns the composition of
465 ///given maps. That is to say, if \c m1 is of type \c M1 and \c m2 is
469 /// ComposeMap<M1,M2> cm(m1,m2);
471 /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>
473 ///Its \c Key is inherited from \c M2 and its \c Value is from
475 ///The \c M2::Value must be convertible to \c M1::Key.
476 ///\todo Check the requirements.
478 template<class M1,class M2>
484 typedef typename M2::Key Key;
485 typedef typename M1::Value Value;
491 ComposeMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
492 Value operator[](Key k) const {return m1[m2[k]];}
494 ///Returns a \ref ComposeMap class
496 ///This function just returns a \ref ComposeMap class.
498 ///\relates ComposeMap
499 template<class M1,class M2>
500 inline ComposeMap<M1,M2> composeMap(const M1 &m1,const M2 &m2)
502 return ComposeMap<M1,M2>(m1,m2);
505 ///Combine of two maps using an STL (binary) functor.
507 ///Combine of two maps using an STL (binary) functor.
510 ///This \ref concept::ReadMap "read only map" takes to maps and a
511 ///binary functor and returns the composition of
513 ///given maps unsing the functor.
514 ///That is to say, if \c m1 and \c m2 is of type \c M1 and \c M2
515 ///and \c f is of \c F,
518 /// CombineMap<M1,M2,F,V> cm(m1,m2,f);
520 /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>
522 ///Its \c Key is inherited from \c M1 and its \c Value is \c V.
523 ///The \c M2::Value and \c M1::Value must be convertible to the corresponding
524 ///input parameter of \c F and the return type of \c F must be convertible
526 ///\todo Check the requirements.
528 template<class M1,class M2,class F,class V>
535 typedef typename M1::Key Key;
542 CombineMap(const M1 &_m1,const M2 &_m2,const F &_f)
543 : m1(_m1), m2(_m2), f(_f) {};
544 Value operator[](Key k) const {return f(m1[k],m2[k]);}
547 ///Returns a \ref CombineMap class
549 ///This function just returns a \ref CombineMap class.
551 ///Only the first template parameter (the value type) must be given.
553 ///For example if \c m1 and \c m2 are both \c double valued maps, then
555 ///combineMap<double>(m1,m2,std::plus<double>)
557 ///is equivalent with
562 ///\relates CombineMap
563 template<class V,class M1,class M2,class F>
564 inline CombineMap<M1,M2,F,V> combineMap(const M1 &m1,const M2 &m2,const F &f)
566 return CombineMap<M1,M2,F,V>(m1,m2,f);
569 ///Negative value of a map
571 ///This \ref concept::ReadMap "read only map" returns the negative
573 ///value returned by the
574 ///given map. Its \c Key and \c Value will be inherited from \c M.
575 ///The unary \c - operator must be defined for \c Value, of course.
582 typedef typename M::Key Key;
583 typedef typename M::Value Value;
589 NegMap(const M &_m) : m(_m) {};
590 Value operator[](Key k) const {return -m[k];}
593 ///Returns a \ref NegMap class
595 ///This function just returns a \ref NegMap class.
598 inline NegMap<M> negMap(const M &m)
604 ///Absolute value of a map
606 ///This \ref concept::ReadMap "read only map" returns the absolute value
608 ///value returned by the
609 ///given map. Its \c Key and \c Value will be inherited
610 ///from <tt>M</tt>. <tt>Value</tt>
611 ///must be comparable to <tt>0</tt> and the unary <tt>-</tt>
612 ///operator must be defined for it, of course.
614 ///\bug We need a unified way to handle the situation below:
616 /// struct _UnConvertible {};
617 /// template<class A> inline A t_abs(A a) {return _UnConvertible();}
618 /// template<> inline int t_abs<>(int n) {return abs(n);}
619 /// template<> inline long int t_abs<>(long int n) {return labs(n);}
620 /// template<> inline long long int t_abs<>(long long int n) {return ::llabs(n);}
621 /// template<> inline float t_abs<>(float n) {return fabsf(n);}
622 /// template<> inline double t_abs<>(double n) {return fabs(n);}
623 /// template<> inline long double t_abs<>(long double n) {return fabsl(n);}
632 typedef typename M::Key Key;
633 typedef typename M::Value Value;
639 AbsMap(const M &_m) : m(_m) {};
640 Value operator[](Key k) const {Value tmp=m[k]; return tmp>=0?tmp:-tmp;}
643 ///Returns a \ref AbsMap class
645 ///This function just returns a \ref AbsMap class.
648 inline AbsMap<M> absMap(const M &m)
653 ///Converts an STL style functor to a a map
655 ///This \ref concept::ReadMap "read only map" returns the value
659 ///Template parameters \c K and \c V will become its
660 ///\c Key and \c Value. They must be given explicitely
661 ///because a functor does not provide such typedefs.
663 ///Parameter \c F is the type of the used functor.
666 template<class K,class V,class F>
678 FunctorMap(const F &_f) : f(_f) {};
679 Value operator[](Key k) const {return f(k);}
682 ///Returns a \ref FunctorMap class
684 ///This function just returns a \ref FunctorMap class.
686 ///The third template parameter isn't necessary to be given.
687 ///\relates FunctorMap
688 template<class K,class V, class F>
689 inline FunctorMap<K,V,F> functorMap(const F &f)
691 return FunctorMap<K,V,F>(f);
694 ///Converts a map to an STL style (unary) functor
696 ///This class Converts a map to an STL style (unary) functor.
697 ///that is it provides an <tt>operator()</tt> to read its values.
699 ///For the sake of convenience it also works as
700 ///a ususal \ref concept::ReadMap "readable map", i.e
701 ///<tt>operator[]</tt> and the \c Key and \c Value typedefs also exist.
708 typedef typename M::Key argument_type;
709 typedef typename M::Value result_type;
710 typedef typename M::Key Key;
711 typedef typename M::Value Value;
717 MapFunctor(const M &_m) : m(_m) {};
718 ///Returns a value of the map
722 Value operator()(Key k) const {return m[k];}
725 Value operator[](Key k) const {return m[k];}
728 ///Returns a \ref MapFunctor class
730 ///This function just returns a \ref MapFunctor class.
731 ///\relates MapFunctor
733 inline MapFunctor<M> mapFunctor(const M &m)
735 return MapFunctor<M>(m);
739 ///Apply all map setting operations to two maps
741 ///This map has two \ref concept::WriteMap "writable map"
742 ///parameters and each write request will be passed to both of them.
743 ///If \c M1 is also \ref concept::ReadMap "readable",
744 ///then the read operations will return the
745 ///corresponding values \c M1.
747 ///The \c Key and \c Value will be inherited from \c M1.
748 ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
750 template<class M1,class M2>
756 typedef typename M1::Key Key;
757 typedef typename M1::Value Value;
763 ForkMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
764 Value operator[](Key k) const {return m1[k];}
765 void set(Key k,const Value &v) {m1.set(k,v); m2.set(k,v);}
768 ///Returns an \ref ForkMap class
770 ///This function just returns an \ref ForkMap class.
771 ///\todo How to call these type of functions?
774 ///\todo Wrong scope in Doxygen when \c \\relates is used
775 template<class M1,class M2>
776 inline ForkMap<M1,M2> forkMap(const M1 &m1,const M2 &m2)
778 return ForkMap<M1,M2>(m1,m2);
786 #endif // LEMON_MAPS_H