src/hugo/bfs.h
author alpar
Tue, 28 Sep 2004 07:00:58 +0000
changeset 911 89a4fbb99cad
parent 906 17f31d280385
permissions -rw-r--r--
Fix many doxygen command bugs.
     1 /* -*- C++ -*-
     2  * src/hugo/bfs.h - Part of HUGOlib, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef HUGO_BFS_H
    18 #define HUGO_BFS_H
    19 
    20 ///\ingroup flowalgs
    21 ///\file
    22 ///\brief Bfs algorithm.
    23 ///
    24 ///\todo Revise Manual.
    25 
    26 #include <hugo/bin_heap.h>
    27 #include <hugo/invalid.h>
    28 
    29 namespace hugo {
    30 
    31 /// \addtogroup flowalgs
    32 /// @{
    33 
    34   ///%BFS algorithm class.
    35 
    36   ///This class provides an efficient implementation of %BFS algorithm.
    37   ///\param GR The graph type the algorithm runs on.
    38   ///This class does the same as Dijkstra does with constant 1 edge length,
    39   ///but it is faster.
    40   ///
    41   ///\author Alpar Juttner
    42 
    43 #ifdef DOXYGEN
    44   template <typename GR>
    45 #else
    46   template <typename GR>
    47 #endif
    48   class Bfs{
    49   public:
    50     ///The type of the underlying graph.
    51     typedef GR Graph;
    52     ///\e
    53     typedef typename Graph::Node Node;
    54     ///\e
    55     typedef typename Graph::NodeIt NodeIt;
    56     ///\e
    57     typedef typename Graph::Edge Edge;
    58     ///\e
    59     typedef typename Graph::OutEdgeIt OutEdgeIt;
    60     
    61     ///\brief The type of the map that stores the last
    62     ///edges of the shortest paths.
    63     typedef typename Graph::template NodeMap<Edge> PredMap;
    64     ///\brief The type of the map that stores the last but one
    65     ///nodes of the shortest paths.
    66     typedef typename Graph::template NodeMap<Node> PredNodeMap;
    67     ///The type of the map that stores the dists of the nodes.
    68     typedef typename Graph::template NodeMap<int> DistMap;
    69 
    70   private:
    71     /// Pointer to the underlying graph.
    72     const Graph *G;
    73     ///Pointer to the map of predecessors edges.
    74     PredMap *predecessor;
    75     ///Indicates if \ref predecessor is locally allocated (\c true) or not.
    76     bool local_predecessor;
    77     ///Pointer to the map of predecessors nodes.
    78     PredNodeMap *pred_node;
    79     ///Indicates if \ref pred_node is locally allocated (\c true) or not.
    80     bool local_pred_node;
    81     ///Pointer to the map of distances.
    82     DistMap *distance;
    83     ///Indicates if \ref distance is locally allocated (\c true) or not.
    84     bool local_distance;
    85 
    86     ///The source node of the last execution.
    87     Node source;
    88 
    89 
    90     ///Initializes the maps.
    91     void init_maps() 
    92     {
    93       if(!predecessor) {
    94 	local_predecessor = true;
    95 	predecessor = new PredMap(*G);
    96       }
    97       if(!pred_node) {
    98 	local_pred_node = true;
    99 	pred_node = new PredNodeMap(*G);
   100       }
   101       if(!distance) {
   102 	local_distance = true;
   103 	distance = new DistMap(*G);
   104       }
   105     }
   106     
   107   public :    
   108     ///Constructor.
   109     
   110     ///\param _G the graph the algorithm will run on.
   111     ///
   112     Bfs(const Graph& _G) :
   113       G(&_G),
   114       predecessor(NULL), local_predecessor(false),
   115       pred_node(NULL), local_pred_node(false),
   116       distance(NULL), local_distance(false)
   117     { }
   118     
   119     ///Destructor.
   120     ~Bfs() 
   121     {
   122       if(local_predecessor) delete predecessor;
   123       if(local_pred_node) delete pred_node;
   124       if(local_distance) delete distance;
   125     }
   126 
   127     ///Sets the map storing the predecessor edges.
   128 
   129     ///Sets the map storing the predecessor edges.
   130     ///If you don't use this function before calling \ref run(),
   131     ///it will allocate one. The destuctor deallocates this
   132     ///automatically allocated map, of course.
   133     ///\return <tt> (*this) </tt>
   134     Bfs &setPredMap(PredMap &m) 
   135     {
   136       if(local_predecessor) {
   137 	delete predecessor;
   138 	local_predecessor=false;
   139       }
   140       predecessor = &m;
   141       return *this;
   142     }
   143 
   144     ///Sets the map storing the predecessor nodes.
   145 
   146     ///Sets the map storing the predecessor nodes.
   147     ///If you don't use this function before calling \ref run(),
   148     ///it will allocate one. The destuctor deallocates this
   149     ///automatically allocated map, of course.
   150     ///\return <tt> (*this) </tt>
   151     Bfs &setPredNodeMap(PredNodeMap &m) 
   152     {
   153       if(local_pred_node) {
   154 	delete pred_node;
   155 	local_pred_node=false;
   156       }
   157       pred_node = &m;
   158       return *this;
   159     }
   160 
   161     ///Sets the map storing the distances calculated by the algorithm.
   162 
   163     ///Sets the map storing the distances calculated by the algorithm.
   164     ///If you don't use this function before calling \ref run(),
   165     ///it will allocate one. The destuctor deallocates this
   166     ///automatically allocated map, of course.
   167     ///\return <tt> (*this) </tt>
   168     Bfs &setDistMap(DistMap &m) 
   169     {
   170       if(local_distance) {
   171 	delete distance;
   172 	local_distance=false;
   173       }
   174       distance = &m;
   175       return *this;
   176     }
   177     
   178   ///Runs %BFS algorithm from node \c s.
   179 
   180   ///This method runs the %BFS algorithm from a root node \c s
   181   ///in order to
   182   ///compute a
   183   ///shortest path to each node. The algorithm computes
   184   ///- The %BFS tree.
   185   ///- The distance of each node from the root.
   186  
   187     void run(Node s) {
   188       
   189       init_maps();
   190       
   191       source = s;
   192       
   193       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
   194 	predecessor->set(u,INVALID);
   195 	pred_node->set(u,INVALID);
   196       }
   197       
   198       int N=G->nodeNum();
   199       std::vector<typename Graph::Node> Q(N);
   200       int Qh=0;
   201       int Qt=0;
   202       
   203       Q[Qh++]=source;
   204       distance->set(s, 0);
   205       do {
   206 	Node m;
   207 	Node n=Q[Qt++];
   208 	int d= (*distance)[n]+1;
   209 	
   210 	for(OutEdgeIt e(*G,n);e!=INVALID;++e)
   211 	  if((m=G->head(e))!=s && (*predecessor)[m]==INVALID) {
   212 	    Q[Qh++]=m;
   213 	    predecessor->set(m,e);
   214 	    pred_node->set(m,n);
   215 	    distance->set(m,d);
   216 	  }
   217       } while(Qt!=Qh);
   218     }
   219     
   220     ///The distance of a node from the root.
   221 
   222     ///Returns the distance of a node from the root.
   223     ///\pre \ref run() must be called before using this function.
   224     ///\warning If node \c v in unreachable from the root the return value
   225     ///of this funcion is undefined.
   226     int dist(Node v) const { return (*distance)[v]; }
   227 
   228     ///Returns the 'previous edge' of the %BFS path tree.
   229 
   230     ///For a node \c v it returns the 'previous edge' of the %BFS tree,
   231     ///i.e. it returns the last edge of a shortest path from the root to \c
   232     ///v. It is \ref INVALID
   233     ///if \c v is unreachable from the root or if \c v=s. The
   234     ///%BFS tree used here is equal to the %BFS tree used in
   235     ///\ref predNode(Node v).  \pre \ref run() must be called before using
   236     ///this function.
   237     Edge pred(Node v) const { return (*predecessor)[v]; }
   238 
   239     ///Returns the 'previous node' of the %BFS tree.
   240 
   241     ///For a node \c v it returns the 'previous node' on the %BFS tree,
   242     ///i.e. it returns the last but one node from a shortest path from the
   243     ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
   244     ///\c v=s. The shortest path tree used here is equal to the %BFS
   245     ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
   246     ///using this function.
   247     Node predNode(Node v) const { return (*pred_node)[v]; }
   248     
   249     ///Returns a reference to the NodeMap of distances.
   250     
   251     ///Returns a reference to the NodeMap of distances. \pre \ref run() must
   252     ///be called before using this function.
   253     const DistMap &distMap() const { return *distance;}
   254  
   255     ///Returns a reference to the %BFS tree map.
   256 
   257     ///Returns a reference to the NodeMap of the edges of the
   258     ///%BFS tree.
   259     ///\pre \ref run() must be called before using this function.
   260     const PredMap &predMap() const { return *predecessor;}
   261  
   262     ///Returns a reference to the map of last but one nodes of shortest paths.
   263 
   264     ///Returns a reference to the NodeMap of the last but one nodes on the
   265     ///%BFS tree.
   266     ///\pre \ref run() must be called before using this function.
   267     const PredNodeMap &predNodeMap() const { return *pred_node;}
   268 
   269     ///Checks if a node is reachable from the root.
   270 
   271     ///Returns \c true if \c v is reachable from the root.
   272     ///\note The root node is reported to be reached!
   273     ///
   274     ///\pre \ref run() must be called before using this function.
   275     ///
   276     bool reached(Node v) { return v==source || (*predecessor)[v]!=INVALID; }
   277     
   278   };
   279   
   280 /// @}
   281   
   282 } //END OF NAMESPACE HUGO
   283 
   284 #endif
   285 
   286