src/hugo/mincostflows.h
author marci
Thu, 16 Sep 2004 14:01:36 +0000
changeset 868 805963ea8654
parent 788 c3187cafcabf
child 893 89d5c283a485
permissions -rw-r--r--
This is needed for the demo.
     1 // -*- c++ -*-
     2 #ifndef HUGO_MINCOSTFLOWS_H
     3 #define HUGO_MINCOSTFLOWS_H
     4 
     5 ///\ingroup flowalgs
     6 ///\file
     7 ///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost 
     8 
     9 
    10 #include <hugo/dijkstra.h>
    11 #include <hugo/graph_wrapper.h>
    12 #include <hugo/maps.h>
    13 #include <vector>
    14 
    15 namespace hugo {
    16 
    17 /// \addtogroup flowalgs
    18 /// @{
    19 
    20   ///\brief Implementation of an algorithm for finding a flow of value \c k 
    21   ///(for small values of \c k) having minimal total cost between 2 nodes 
    22   /// 
    23   ///
    24   /// The class \ref hugo::MinCostFlows "MinCostFlows" implements
    25   /// an algorithm for finding a flow of value \c k 
    26   /// having minimal total cost  
    27   /// from a given source node to a given target node in an
    28   /// edge-weighted directed graph having nonnegative integer capacities.
    29   /// The range of the length (weight or cost) function can be nonnegative reals but 
    30   /// the range of the capacity function has to be the set of nonnegative integers.
    31   /// This algorithm is intended to use only for for small values of \c k, since  /// it is not a polinomial time algorithm for finding the minimum cost
    32   /// maximal flow (in order to find the minimum cost flow of value \c k it 
    33   /// finds the minimum cost flow of value \c i for every 
    34   /// \c i between 0 and \c k). 
    35   ///
    36   ///\param Graph The directed graph type the algorithm runs on.
    37   ///\param LengthMap The type of the length map.
    38   ///\param CapacityMap The capacity map type.
    39   ///
    40   ///\author Attila Bernath
    41   template <typename Graph, typename LengthMap, typename CapacityMap>
    42   class MinCostFlows {
    43 
    44 
    45 
    46     typedef typename LengthMap::ValueType Length;
    47 
    48     //Warning: this should be integer type
    49     typedef typename CapacityMap::ValueType Capacity;
    50     
    51     typedef typename Graph::Node Node;
    52     typedef typename Graph::NodeIt NodeIt;
    53     typedef typename Graph::Edge Edge;
    54     typedef typename Graph::OutEdgeIt OutEdgeIt;
    55     typedef typename Graph::template EdgeMap<int> EdgeIntMap;
    56 
    57 
    58     typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType;
    59     typedef typename ResGraphType::Edge ResGraphEdge;
    60 
    61     class ModLengthMap {   
    62       typedef typename Graph::template NodeMap<Length> NodeMap;
    63       const ResGraphType& G;
    64       const LengthMap &ol;
    65       const NodeMap &pot;
    66     public :
    67       typedef typename LengthMap::KeyType KeyType;
    68       typedef typename LengthMap::ValueType ValueType;
    69 	
    70       ValueType operator[](typename ResGraphType::Edge e) const {     
    71 	if (G.forward(e))
    72 	  return  ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    73 	else
    74 	  return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    75       }     
    76 	
    77       ModLengthMap(const ResGraphType& _G,
    78 		   const LengthMap &o,  const NodeMap &p) : 
    79 	G(_G), /*rev(_rev),*/ ol(o), pot(p){}; 
    80     };//ModLengthMap
    81 
    82 
    83   protected:
    84     
    85     //Input
    86     const Graph& G;
    87     const LengthMap& length;
    88     const CapacityMap& capacity;
    89 
    90 
    91     //auxiliary variables
    92 
    93     //To store the flow
    94     EdgeIntMap flow; 
    95     //To store the potential (dual variables)
    96     typedef typename Graph::template NodeMap<Length> PotentialMap;
    97     PotentialMap potential;
    98     
    99 
   100     Length total_length;
   101 
   102 
   103   public :
   104 
   105     /// The constructor of the class.
   106     
   107     ///\param _G The directed graph the algorithm runs on. 
   108     ///\param _length The length (weight or cost) of the edges. 
   109     ///\param _cap The capacity of the edges. 
   110     MinCostFlows(Graph& _G, LengthMap& _length, CapacityMap& _cap) : G(_G), 
   111       length(_length), capacity(_cap), flow(_G), potential(_G){ }
   112 
   113     
   114     ///Runs the algorithm.
   115     
   116     ///Runs the algorithm.
   117     ///Returns k if there is a flow of value at least k edge-disjoint 
   118     ///from s to t.
   119     ///Otherwise it returns the maximum value of a flow from s to t.
   120     ///
   121     ///\param s The source node.
   122     ///\param t The target node.
   123     ///\param k The value of the flow we are looking for.
   124     ///
   125     ///\todo May be it does make sense to be able to start with a nonzero 
   126     /// feasible primal-dual solution pair as well.
   127     int run(Node s, Node t, int k) {
   128 
   129       //Resetting variables from previous runs
   130       total_length = 0;
   131       
   132       for (typename Graph::EdgeIt e(G); e!=INVALID; ++e) flow.set(e, 0);
   133 
   134       //Initialize the potential to zero
   135       for (typename Graph::NodeIt n(G); n!=INVALID; ++n) potential.set(n, 0);
   136       
   137       
   138       //We need a residual graph
   139       ResGraphType res_graph(G, capacity, flow);
   140 
   141 
   142       ModLengthMap mod_length(res_graph, length, potential);
   143 
   144       Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
   145 
   146       int i;
   147       for (i=0; i<k; ++i){
   148 	dijkstra.run(s);
   149 	if (!dijkstra.reached(t)){
   150 	  //There are no flow of value k from s to t
   151 	  break;
   152 	};
   153 	
   154 	//We have to change the potential
   155         for(typename ResGraphType::NodeIt n(res_graph); n!=INVALID; ++n)
   156 	  potential[n] += dijkstra.distMap()[n];
   157 
   158 
   159 	//Augmenting on the sortest path
   160 	Node n=t;
   161 	ResGraphEdge e;
   162 	while (n!=s){
   163 	  e = dijkstra.pred(n);
   164 	  n = dijkstra.predNode(n);
   165 	  res_graph.augment(e,1);
   166 	  //Let's update the total length
   167 	  if (res_graph.forward(e))
   168 	    total_length += length[e];
   169 	  else 
   170 	    total_length -= length[e];	    
   171 	}
   172 
   173 	  
   174       }
   175       
   176 
   177       return i;
   178     }
   179 
   180 
   181 
   182     /// Gives back the total weight of the found flow.
   183 
   184     ///This function gives back the total weight of the found flow.
   185     ///Assumes that \c run() has been run and nothing changed since then.
   186     Length totalLength(){
   187       return total_length;
   188     }
   189 
   190     ///Returns a const reference to the EdgeMap \c flow. 
   191 
   192     ///Returns a const reference to the EdgeMap \c flow. 
   193     ///\pre \ref run() must
   194     ///be called before using this function.
   195     const EdgeIntMap &getFlow() const { return flow;}
   196 
   197     ///Returns a const reference to the NodeMap \c potential (the dual solution).
   198 
   199     ///Returns a const reference to the NodeMap \c potential (the dual solution).
   200     /// \pre \ref run() must be called before using this function.
   201     const PotentialMap &getPotential() const { return potential;}
   202 
   203     /// Checking the complementary slackness optimality criteria
   204 
   205     ///This function checks, whether the given solution is optimal
   206     ///If executed after the call of \c run() then it should return with true.
   207     ///This function only checks optimality, doesn't bother with feasibility.
   208     ///It is meant for testing purposes.
   209     ///
   210     bool checkComplementarySlackness(){
   211       Length mod_pot;
   212       Length fl_e;
   213         for(typename Graph::EdgeIt e(G); e!=INVALID; ++e) {
   214 	//C^{\Pi}_{i,j}
   215 	mod_pot = length[e]-potential[G.head(e)]+potential[G.tail(e)];
   216 	fl_e = flow[e];
   217 	//	std::cout << fl_e << std::endl;
   218 	if (0<fl_e && fl_e<capacity[e]){
   219 	  if (mod_pot != 0)
   220 	    return false;
   221 	}
   222 	else{
   223 	  if (mod_pot > 0 && fl_e != 0)
   224 	    return false;
   225 	  if (mod_pot < 0 && fl_e != capacity[e])
   226 	    return false;
   227 	}
   228       }
   229       return true;
   230     }
   231     
   232 
   233   }; //class MinCostFlows
   234 
   235   ///@}
   236 
   237 } //namespace hugo
   238 
   239 #endif //HUGO_MINCOSTFLOWS_H