src/work/peter/path/path.h
author alpar
Wed, 29 Sep 2004 15:30:04 +0000
changeset 921 818510fa3d99
parent 815 468c9ec86928
child 959 c80ef5912903
permissions -rw-r--r--
hugo -> lemon
     1 // -*- c++ -*- //
     2 
     3 /**
     4 @defgroup paths Path Structures
     5 @ingroup datas
     6 \brief Path structures implemented in LEMON.
     7 
     8 LEMON provides flexible data structures
     9 to work with paths.
    10 
    11 All of them have the same interface, especially they can be built or extended
    12 using a standard Builder subclass. This make is easy to have e.g. the Dijkstra
    13 algorithm to store its result in any kind of path structure.
    14 
    15 \sa lemon::skeleton::Path
    16 
    17 */
    18 
    19 ///\ingroup paths
    20 ///\file
    21 ///\brief Classes for representing paths in graphs.
    22 
    23 #ifndef LEMON_PATH_H
    24 #define LEMON_PATH_H
    25 
    26 #include <deque>
    27 #include <vector>
    28 #include <algorithm>
    29 
    30 #include <lemon/invalid.h>
    31 #include <lemon/error.h>
    32 #include <debug.h>
    33 
    34 namespace lemon {
    35 
    36   /// \addtogroup paths
    37   /// @{
    38 
    39 
    40   //! \brief A structure for representing directed paths in a graph.
    41   //!
    42   //! A structure for representing directed path in a graph.
    43   //! \param Graph The graph type in which the path is.
    44   //! \param DM DebugMode, defaults to DefaultDebugMode.
    45   //! 
    46   //! In a sense, the path can be treated as a graph, for is has \c NodeIt
    47   //! and \c EdgeIt with the same usage. These types converts to the \c Node
    48   //! and \c Edge of the original graph.
    49   //!
    50   //! \todo Thoroughfully check all the range and consistency tests.
    51   template<typename Graph, typename DM = DefaultDebugMode>
    52   class DirPath {
    53   public:
    54     /// Edge type of the underlying graph.
    55     typedef typename Graph::Edge GraphEdge; 
    56     /// Node type of the underlying graph.
    57     typedef typename Graph::Node GraphNode;
    58     class NodeIt;
    59     class EdgeIt;
    60 
    61   protected:
    62     const Graph *gr;
    63     typedef std::vector<GraphEdge> Container;
    64     Container edges;
    65 
    66   public:
    67 
    68     /// \param _G The graph in which the path is.
    69     ///
    70     DirPath(const Graph &_G) : gr(&_G) {}
    71 
    72     /// \brief Subpath constructor.
    73     ///
    74     /// Subpath defined by two nodes.
    75     /// \warning It is an error if the two edges are not in order!
    76     DirPath(const DirPath &P, const NodeIt &a, const NodeIt &b) {
    77       if( DM::range_check && (!a.valid() || !b.valid) ) {
    78 	// FIXME: this check should be more elaborate...
    79 	fault("DirPath, subpath ctor: invalid bounding nodes");
    80       }
    81       gr = P.gr;
    82       edges.insert(edges.end(), P.edges.begin()+a.idx, P.edges.begin()+b.idx);
    83     }
    84 
    85     /// \brief Subpath constructor.
    86     ///
    87     /// Subpath defined by two edges. Contains edges in [a,b)
    88     /// \warning It is an error if the two edges are not in order!
    89     DirPath(const DirPath &P, const EdgeIt &a, const EdgeIt &b) {
    90       if( DM::range_check && (!a.valid() || !b.valid) ) {
    91 	// FIXME: this check should be more elaborate...
    92 	fault("DirPath, subpath ctor: invalid bounding nodes");
    93       }
    94       gr = P.gr;
    95       edges.insert(edges.end(), P.edges.begin()+a.idx, P.edges.begin()+b.idx);
    96     }
    97 
    98     /// Length of the path.
    99     size_t length() const { return edges.size(); }
   100     /// Returns whether the path is empty.
   101     bool empty() const { return edges.empty(); }
   102 
   103     /// Resets the path to an empty path.
   104     void clear() { edges.clear(); }
   105 
   106     /// \brief Starting point of the path.
   107     ///
   108     /// Starting point of the path.
   109     /// Returns INVALID if the path is empty.
   110     GraphNode from() const {
   111       return empty() ? INVALID : gr->tail(edges[0]);
   112     }
   113     /// \brief End point of the path.
   114     ///
   115     /// End point of the path.
   116     /// Returns INVALID if the path is empty.
   117     GraphNode to() const {
   118       return empty() ? INVALID : gr->head(edges[length()-1]);
   119     }
   120 
   121     /// \brief Initializes node or edge iterator to point to the first
   122     /// node or edge.
   123     ///
   124     /// \sa nth
   125     template<typename It>
   126     It& first(It &i) const { return i=It(*this); }
   127 
   128     /// \brief Initializes node iterator to point to the node of a given index.
   129     NodeIt& nth(NodeIt &i, int n) const {
   130       if( DM::range_check && (n<0 || n>int(length())) )
   131 	fault("DirPath::nth: index out of range");
   132       return i=NodeIt(*this, n);
   133     }
   134 
   135     /// \brief Initializes edge iterator to point to the edge of a given index.
   136     EdgeIt& nth(EdgeIt &i, int n) const {
   137       if( DM::range_check && (n<0 || n>=int(length())) )
   138 	fault("DirPath::nth: index out of range");
   139       return i=EdgeIt(*this, n);
   140     }
   141 
   142     /// Checks validity of a node or edge iterator.
   143     template<typename It>
   144     static
   145     bool valid(const It &i) { return i.valid(); }
   146 
   147     /// Steps the given node or edge iterator.
   148     template<typename It>
   149     static
   150     It& next(It &e) {
   151       if( DM::range_check && !e.valid() )
   152 	fault("DirPath::next() on invalid iterator");
   153       return ++e;
   154     }
   155 
   156     /// \brief Returns node iterator pointing to the head node of the
   157     /// given edge iterator.
   158     NodeIt head(const EdgeIt& e) const {
   159       if( DM::range_check && !e.valid() )
   160 	fault("DirPath::head() on invalid iterator");
   161       return NodeIt(*this, e.idx+1);
   162     }
   163 
   164     /// \brief Returns node iterator pointing to the tail node of the
   165     /// given edge iterator.
   166     NodeIt tail(const EdgeIt& e) const {
   167       if( DM::range_check && !e.valid() )
   168 	fault("DirPath::tail() on invalid iterator");
   169       return NodeIt(*this, e.idx);
   170     }
   171 
   172 
   173     /* Iterator classes */
   174 
   175     /**
   176      * \brief Iterator class to iterate on the edges of the paths
   177      * 
   178      * \ingroup paths
   179      * This class is used to iterate on the edges of the paths
   180      *
   181      * Of course it converts to Graph::Edge
   182      * 
   183      * \todo Its interface differs from the standard edge iterator.
   184      * Yes, it shouldn't.
   185      */
   186     class EdgeIt {
   187       friend class DirPath;
   188 
   189       int idx;
   190       const DirPath *p;
   191     public:
   192       /// Default constructor
   193       EdgeIt() {}
   194       /// Invalid constructor
   195       EdgeIt(Invalid) : idx(-1), p(0) {}
   196       /// Constructor with starting point
   197       EdgeIt(const DirPath &_p, int _idx = 0) :
   198 	idx(_idx), p(&_p) { validate(); }
   199 
   200       ///Validity check
   201       bool valid() const { return idx!=-1; }
   202 
   203       ///Conversion to Graph::Edge
   204       operator GraphEdge () const {
   205 	return valid() ? p->edges[idx] : INVALID;
   206       }
   207 
   208       /// Next edge
   209       EdgeIt& operator++() { ++idx; validate(); return *this; }
   210 
   211       /// Comparison operator
   212       bool operator==(const EdgeIt& e) const { return idx==e.idx; }
   213       /// Comparison operator
   214       bool operator!=(const EdgeIt& e) const { return idx!=e.idx; }
   215       /// Comparison operator
   216       bool operator<(const EdgeIt& e) const { return idx<e.idx; }
   217 
   218     private:
   219       // FIXME: comparison between signed and unsigned...
   220       // Jo ez igy? Vagy esetleg legyen a length() int?
   221       void validate() { if( size_t(idx) >= p->length() ) idx=-1; }
   222     };
   223 
   224     /**
   225      * \brief Iterator class to iterate on the nodes of the paths
   226      * 
   227      * \ingroup paths
   228      * This class is used to iterate on the nodes of the paths
   229      *
   230      * Of course it converts to Graph::Node
   231      * 
   232      * \todo Its interface differs from the standard node iterator.
   233      * Yes, it shouldn't.
   234      */
   235     class NodeIt {
   236       friend class DirPath;
   237 
   238       int idx;
   239       const DirPath *p;
   240     public:
   241       /// Default constructor
   242       NodeIt() {}
   243       /// Invalid constructor
   244       NodeIt(Invalid) : idx(-1), p(0) {}
   245       /// Constructor with starting point
   246       NodeIt(const DirPath &_p, int _idx = 0) :
   247 	idx(_idx), p(&_p) { validate(); }
   248 
   249       ///Validity check
   250       bool valid() const { return idx!=-1; }
   251 
   252       ///Conversion to Graph::Node
   253       operator const GraphNode& () const {
   254 	if(idx >= p->length())
   255 	  return p->to();
   256 	else if(idx >= 0)
   257 	  return p->gr->tail(p->edges[idx]);
   258 	else
   259 	  return INVALID;
   260       }
   261       /// Next node
   262       NodeIt& operator++() { ++idx; validate(); return *this; }
   263 
   264       /// Comparison operator
   265       bool operator==(const NodeIt& e) const { return idx==e.idx; }
   266       /// Comparison operator
   267       bool operator!=(const NodeIt& e) const { return idx!=e.idx; }
   268       /// Comparison operator
   269       bool operator<(const NodeIt& e) const { return idx<e.idx; }
   270 
   271     private:
   272       void validate() { if( size_t(idx) > p->length() ) idx=-1; }
   273     };
   274 
   275     friend class Builder;    
   276 
   277     /**
   278      * \brief Class to build paths
   279      * 
   280      * \ingroup paths
   281      * This class is used to fill a path with edges.
   282      *
   283      * You can push new edges to the front and to the back of the path in
   284      * arbitrary order then you should commit these changes to the graph.
   285      *
   286      * Fundamentally, for most "Paths" (classes fulfilling the
   287      * PathConcept) while the builder is active (after the first modifying
   288      * operation and until the commit()) the original Path is in a
   289      * "transitional" state (operations on it have undefined result). But
   290      * in the case of DirPath the original path remains unchanged until the
   291      * commit. However we don't recomend that you use this feature.
   292      */
   293     class Builder {
   294       DirPath &P;
   295       Container front, back;
   296 
   297     public:
   298       ///\param _P the path you want to fill in.
   299       ///
   300       Builder(DirPath &_P) : P(_P) {}
   301 
   302       /// Sets the starting node of the path.
   303       
   304       /// Sets the starting node of the path. Edge added to the path
   305       /// afterwards have to be incident to this node.
   306       /// It should be called iff the path is empty and before any call to
   307       /// \ref pushFront() or \ref pushBack()
   308       void setStartNode(const GraphNode &) {}
   309 
   310       ///Push a new edge to the front of the path
   311 
   312       ///Push a new edge to the front of the path.
   313       ///\sa setStartNode
   314       void pushFront(const GraphEdge& e) {
   315 	if( DM::consistensy_check && !empty() && P.gr->head(e)!=from() ) {
   316 	  fault("DirPath::Builder::pushFront: nonincident edge");
   317 	}
   318 	front.push_back(e);
   319       }
   320 
   321       ///Push a new edge to the back of the path
   322 
   323       ///Push a new edge to the back of the path.
   324       ///\sa setStartNode
   325       void pushBack(const GraphEdge& e) {
   326 	if( DM::consistensy_check && !empty() && P.gr->tail(e)!=to() ) {
   327 	  fault("DirPath::Builder::pushBack: nonincident edge");
   328 	}
   329 	back.push_back(e);
   330       }
   331 
   332       ///Commit the changes to the path.
   333       void commit() {
   334 	if( !(front.empty() && back.empty()) ) {
   335 	  Container tmp;
   336 	  tmp.reserve(front.size()+back.size()+P.length());
   337 	  tmp.insert(tmp.end(), front.rbegin(), front.rend());
   338 	  tmp.insert(tmp.end(), P.edges.begin(), P.edges.end());
   339 	  tmp.insert(tmp.end(), back.begin(), back.end());
   340 	  P.edges.swap(tmp);
   341 	  front.clear();
   342 	  back.clear();
   343 	}
   344       }
   345 
   346       // FIXME: Hmm, pontosan hogy is kene ezt csinalni?
   347       // Hogy kenyelmes egy ilyet hasznalni?
   348   
   349       ///Reserve storage for the builder in advance.
   350 
   351       ///If you know an reasonable upper bound of the number of the edges
   352       ///to add, using this function you can speed up the building.
   353       void reserve(size_t r) {
   354 	front.reserve(r);
   355 	back.reserve(r);
   356       }
   357 
   358     private:
   359       bool empty() {
   360 	return front.empty() && back.empty() && P.empty();
   361       }
   362 
   363       GraphNode from() const {
   364 	if( ! front.empty() )
   365 	  return P.gr->tail(front[front.size()-1]);
   366 	else if( ! P.empty() )
   367 	  return P.gr->tail(P.edges[0]);
   368 	else if( ! back.empty() )
   369 	  return P.gr->tail(back[0]);
   370 	else
   371 	  return INVALID;
   372       }
   373       GraphNode to() const {
   374 	if( ! back.empty() )
   375 	  return P.gr->head(back[back.size()-1]);
   376 	else if( ! P.empty() )
   377 	  return P.gr->head(P.edges[P.length()-1]);
   378 	else if( ! front.empty() )
   379 	  return P.gr->head(front[0]);
   380 	else
   381 	  return INVALID;
   382       }
   383 
   384     };
   385 
   386   };
   387 
   388 
   389 
   390 
   391 
   392 
   393 
   394 
   395 
   396 
   397   /**********************************************************************/
   398 
   399 
   400   //! \brief A structure for representing undirected path in a graph.
   401   //!
   402   //! A structure for representing undirected path in a graph. Ie. this is
   403   //! a path in a \e directed graph but the edges should not be directed
   404   //! forward.
   405   //!
   406   //! \param Graph The graph type in which the path is.
   407   //! \param DM DebugMode, defaults to DefaultDebugMode.
   408   //! 
   409   //! In a sense, the path can be treated as a graph, for is has \c NodeIt
   410   //! and \c EdgeIt with the same usage. These types converts to the \c Node
   411   //! and \c Edge of the original graph.
   412   //!
   413   //! \todo Thoroughfully check all the range and consistency tests.
   414   template<typename Graph, typename DM = DefaultDebugMode>
   415   class UndirPath {
   416   public:
   417     /// Edge type of the underlying graph.
   418     typedef typename Graph::Edge GraphEdge;
   419      /// Node type of the underlying graph.
   420    typedef typename Graph::Node GraphNode;
   421     class NodeIt;
   422     class EdgeIt;
   423 
   424   protected:
   425     const Graph *gr;
   426     typedef std::vector<GraphEdge> Container;
   427     Container edges;
   428 
   429   public:
   430 
   431     /// \param _G The graph in which the path is.
   432     ///
   433     UndirPath(const Graph &_G) : gr(&_G) {}
   434 
   435     /// \brief Subpath constructor.
   436     ///
   437     /// Subpath defined by two nodes.
   438     /// \warning It is an error if the two edges are not in order!
   439     UndirPath(const UndirPath &P, const NodeIt &a, const NodeIt &b) {
   440       if( DM::range_check && (!a.valid() || !b.valid) ) {
   441 	// FIXME: this check should be more elaborate...
   442 	fault("UndirPath, subpath ctor: invalid bounding nodes");
   443       }
   444       gr = P.gr;
   445       edges.insert(edges.end(), P.edges.begin()+a.idx, P.edges.begin()+b.idx);
   446     }
   447 
   448     /// \brief Subpath constructor.
   449     ///
   450     /// Subpath defined by two edges. Contains edges in [a,b)
   451     /// \warning It is an error if the two edges are not in order!
   452     UndirPath(const UndirPath &P, const EdgeIt &a, const EdgeIt &b) {
   453       if( DM::range_check && (!a.valid() || !b.valid) ) {
   454 	// FIXME: this check should be more elaborate...
   455 	fault("UndirPath, subpath ctor: invalid bounding nodes");
   456       }
   457       gr = P.gr;
   458       edges.insert(edges.end(), P.edges.begin()+a.idx, P.edges.begin()+b.idx);
   459     }
   460 
   461     /// Length of the path.
   462     size_t length() const { return edges.size(); }
   463     /// Returns whether the path is empty.
   464     bool empty() const { return edges.empty(); }
   465 
   466     /// Resets the path to an empty path.
   467     void clear() { edges.clear(); }
   468 
   469     /// \brief Starting point of the path.
   470     ///
   471     /// Starting point of the path.
   472     /// Returns INVALID if the path is empty.
   473     GraphNode from() const {
   474       return empty() ? INVALID : gr->tail(edges[0]);
   475     }
   476     /// \brief End point of the path.
   477     ///
   478     /// End point of the path.
   479     /// Returns INVALID if the path is empty.
   480     GraphNode to() const {
   481       return empty() ? INVALID : gr->head(edges[length()-1]);
   482     }
   483 
   484     /// \brief Initializes node or edge iterator to point to the first
   485     /// node or edge.
   486     ///
   487     /// \sa nth
   488     template<typename It>
   489     It& first(It &i) const { return i=It(*this); }
   490 
   491     /// \brief Initializes node iterator to point to the node of a given index.
   492     NodeIt& nth(NodeIt &i, int n) const {
   493       if( DM::range_check && (n<0 || n>int(length())) )
   494 	fault("UndirPath::nth: index out of range");
   495       return i=NodeIt(*this, n);
   496     }
   497 
   498     /// \brief Initializes edge iterator to point to the edge of a given index.
   499     EdgeIt& nth(EdgeIt &i, int n) const {
   500       if( DM::range_check && (n<0 || n>=int(length())) )
   501 	fault("UndirPath::nth: index out of range");
   502       return i=EdgeIt(*this, n);
   503     }
   504 
   505     /// Checks validity of a node or edge iterator.
   506     template<typename It>
   507     static
   508     bool valid(const It &i) { return i.valid(); }
   509 
   510     /// Steps the given node or edge iterator.
   511     template<typename It>
   512     static
   513     It& next(It &e) {
   514       if( DM::range_check && !e.valid() )
   515 	fault("UndirPath::next() on invalid iterator");
   516       return ++e;
   517     }
   518 
   519     /// \brief Returns node iterator pointing to the head node of the
   520     /// given edge iterator.
   521     NodeIt head(const EdgeIt& e) const {
   522       if( DM::range_check && !e.valid() )
   523 	fault("UndirPath::head() on invalid iterator");
   524       return NodeIt(*this, e.idx+1);
   525     }
   526 
   527     /// \brief Returns node iterator pointing to the tail node of the
   528     /// given edge iterator.
   529     NodeIt tail(const EdgeIt& e) const {
   530       if( DM::range_check && !e.valid() )
   531 	fault("UndirPath::tail() on invalid iterator");
   532       return NodeIt(*this, e.idx);
   533     }
   534 
   535 
   536 
   537     /**
   538      * \brief Iterator class to iterate on the edges of the paths
   539      * 
   540      * \ingroup paths
   541      * This class is used to iterate on the edges of the paths
   542      *
   543      * Of course it converts to Graph::Edge
   544      * 
   545      * \todo Its interface differs from the standard edge iterator.
   546      * Yes, it shouldn't.
   547      */
   548     class EdgeIt {
   549       friend class UndirPath;
   550 
   551       int idx;
   552       const UndirPath *p;
   553     public:
   554       /// Default constructor
   555       EdgeIt() {}
   556       /// Invalid constructor
   557       EdgeIt(Invalid) : idx(-1), p(0) {}
   558       /// Constructor with starting point
   559       EdgeIt(const UndirPath &_p, int _idx = 0) :
   560 	idx(_idx), p(&_p) { validate(); }
   561 
   562       ///Validity check
   563       bool valid() const { return idx!=-1; }
   564 
   565       ///Conversion to Graph::Edge
   566       operator GraphEdge () const {
   567 	return valid() ? p->edges[idx] : INVALID;
   568       }
   569       /// Next edge
   570      EdgeIt& operator++() { ++idx; validate(); return *this; }
   571 
   572       /// Comparison operator
   573       bool operator==(const EdgeIt& e) const { return idx==e.idx; }
   574       /// Comparison operator
   575       bool operator!=(const EdgeIt& e) const { return idx!=e.idx; }
   576       /// Comparison operator
   577       bool operator<(const EdgeIt& e) const { return idx<e.idx; }
   578 
   579     private:
   580       // FIXME: comparison between signed and unsigned...
   581       // Jo ez igy? Vagy esetleg legyen a length() int?
   582       void validate() { if( size_t(idx) >= p->length() ) idx=-1; }
   583     };
   584 
   585     /**
   586      * \brief Iterator class to iterate on the nodes of the paths
   587      * 
   588      * \ingroup paths
   589      * This class is used to iterate on the nodes of the paths
   590      *
   591      * Of course it converts to Graph::Node
   592      * 
   593      * \todo Its interface differs from the standard node iterator.
   594      * Yes, it shouldn't.
   595      */
   596     class NodeIt {
   597       friend class UndirPath;
   598 
   599       int idx;
   600       const UndirPath *p;
   601     public:
   602       /// Default constructor
   603       NodeIt() {}
   604       /// Invalid constructor
   605       NodeIt(Invalid) : idx(-1), p(0) {}
   606       /// Constructor with starting point
   607       NodeIt(const UndirPath &_p, int _idx = 0) :
   608 	idx(_idx), p(&_p) { validate(); }
   609 
   610       ///Validity check
   611       bool valid() const { return idx!=-1; }
   612 
   613       ///Conversion to Graph::Node
   614       operator const GraphNode& () const {
   615 	if(idx >= p->length())
   616 	  return p->to();
   617 	else if(idx >= 0)
   618 	  return p->gr->tail(p->edges[idx]);
   619 	else
   620 	  return INVALID;
   621       }
   622       /// Next node
   623       NodeIt& operator++() { ++idx; validate(); return *this; }
   624 
   625       /// Comparison operator
   626       bool operator==(const NodeIt& e) const { return idx==e.idx; }
   627       /// Comparison operator
   628       bool operator!=(const NodeIt& e) const { return idx!=e.idx; }
   629        /// Comparison operator
   630      bool operator<(const NodeIt& e) const { return idx<e.idx; }
   631 
   632     private:
   633       void validate() { if( size_t(idx) > p->length() ) idx=-1; }
   634     };
   635 
   636     friend class Builder;    
   637 
   638     /**
   639      * \brief Class to build paths
   640      * 
   641      * \ingroup paths
   642      * This class is used to fill a path with edges.
   643      *
   644      * You can push new edges to the front and to the back of the path in
   645      * arbitrary order then you should commit these changes to the graph.
   646      *
   647      * Fundamentally, for most "Paths" (classes fulfilling the
   648      * PathConcept) while the builder is active (after the first modifying
   649      * operation and until the commit()) the original Path is in a
   650      * "transitional" state (operations ot it have undefined result). But
   651      * in the case of UndirPath the original path is unchanged until the
   652      * commit. However we don't recomend that you use this feature.
   653      */
   654     class Builder {
   655       UndirPath &P;
   656       Container front, back;
   657 
   658     public:
   659       ///\param _P the path you want to fill in.
   660       ///
   661       Builder(UndirPath &_P) : P(_P) {}
   662 
   663       /// Sets the starting node of the path.
   664       
   665       /// Sets the starting node of the path. Edge added to the path
   666       /// afterwards have to be incident to this node.
   667       /// It should be called iff the path is empty and before any call to
   668       /// \ref pushFront() or \ref pushBack()
   669       void setStartNode(const GraphNode &) {}
   670 
   671       ///Push a new edge to the front of the path
   672 
   673       ///Push a new edge to the front of the path.
   674       ///\sa setStartNode
   675       void pushFront(const GraphEdge& e) {
   676 	if( DM::consistensy_check && !empty() && P.gr->head(e)!=from() ) {
   677 	  fault("UndirPath::Builder::pushFront: nonincident edge");
   678 	}
   679 	front.push_back(e);
   680       }
   681 
   682       ///Push a new edge to the back of the path
   683 
   684       ///Push a new edge to the back of the path.
   685       ///\sa setStartNode
   686       void pushBack(const GraphEdge& e) {
   687 	if( DM::consistensy_check && !empty() && P.gr->tail(e)!=to() ) {
   688 	  fault("UndirPath::Builder::pushBack: nonincident edge");
   689 	}
   690 	back.push_back(e);
   691       }
   692 
   693       ///Commit the changes to the path.
   694       void commit() {
   695 	if( !(front.empty() && back.empty()) ) {
   696 	  Container tmp;
   697 	  tmp.reserve(front.size()+back.size()+P.length());
   698 	  tmp.insert(tmp.end(), front.rbegin(), front.rend());
   699 	  tmp.insert(tmp.end(), P.edges.begin(), P.edges.end());
   700 	  tmp.insert(tmp.end(), back.begin(), back.end());
   701 	  P.edges.swap(tmp);
   702 	  front.clear();
   703 	  back.clear();
   704 	}
   705       }
   706 
   707       // FIXME: Hmm, pontosan hogy is kene ezt csinalni?
   708       // Hogy kenyelmes egy ilyet hasznalni?
   709 
   710       ///Reserve storage for the builder in advance.
   711 
   712       ///If you know an reasonable upper bound of the number of the edges
   713       ///to add, using this function you can speed up the building.
   714        void reserve(size_t r) {
   715 	front.reserve(r);
   716 	back.reserve(r);
   717       }
   718 
   719     private:
   720       bool empty() {
   721 	return front.empty() && back.empty() && P.empty();
   722       }
   723 
   724       GraphNode from() const {
   725 	if( ! front.empty() )
   726 	  return P.gr->tail(front[front.size()-1]);
   727 	else if( ! P.empty() )
   728 	  return P.gr->tail(P.edges[0]);
   729 	else if( ! back.empty() )
   730 	  return P.gr->tail(back[0]);
   731 	else
   732 	  return INVALID;
   733       }
   734       GraphNode to() const {
   735 	if( ! back.empty() )
   736 	  return P.gr->head(back[back.size()-1]);
   737 	else if( ! P.empty() )
   738 	  return P.gr->head(P.edges[P.length()-1]);
   739 	else if( ! front.empty() )
   740 	  return P.gr->head(front[0]);
   741 	else
   742 	  return INVALID;
   743       }
   744 
   745     };
   746 
   747   };
   748 
   749 
   750 
   751 
   752 
   753 
   754 
   755 
   756 
   757 
   758   /**********************************************************************/
   759 
   760 
   761   /* Ennek az allocatorosdinak sokkal jobban utana kene nezni a hasznalata
   762      elott. Eleg bonyinak nez ki, ahogyan azokat az STL-ben hasznaljak. */
   763 
   764   template<typename Graph>
   765   class DynamicPath {
   766 
   767   public:
   768     typedef typename Graph::Edge GraphEdge;
   769     typedef typename Graph::Node GraphNode;
   770     class NodeIt;
   771     class EdgeIt;
   772 
   773   protected:
   774     Graph& G;
   775     // FIXME: ehelyett eleg lenne tarolni ket boolt: a ket szelso el
   776     // iranyitasat:
   777     GraphNode _first, _last;
   778     typedef std::deque<GraphEdge> Container;
   779     Container edges;
   780 
   781   public:
   782 
   783     DynamicPath(Graph &_G) : G(_G), _first(INVALID), _last(INVALID) {}
   784 
   785     /// Subpath defined by two nodes.
   786     /// Nodes may be in reversed order, then
   787     /// we contstruct the reversed path.
   788     DynamicPath(const DynamicPath &P, const NodeIt &a, const NodeIt &b);
   789     /// Subpath defined by two edges. Contains edges in [a,b)
   790     /// It is an error if the two edges are not in order!
   791     DynamicPath(const DynamicPath &P, const EdgeIt &a, const EdgeIt &b);
   792     
   793     size_t length() const { return edges.size(); }
   794     GraphNode from() const { return _first; }
   795     GraphNode to() const { return _last; }
   796 
   797     NodeIt& first(NodeIt &n) const { return nth(n, 0); }
   798     EdgeIt& first(EdgeIt &e) const { return nth(e, 0); }
   799     template<typename It>
   800     It first() const { 
   801       It e;
   802       first(e);
   803       return e; 
   804     }
   805 
   806     NodeIt& nth(NodeIt &, size_t) const;
   807     EdgeIt& nth(EdgeIt &, size_t) const;
   808     template<typename It>
   809     It nth(size_t n) const { 
   810       It e;
   811       nth(e, n);
   812       return e; 
   813     }
   814 
   815     bool valid(const NodeIt &n) const { return n.idx <= length(); }
   816     bool valid(const EdgeIt &e) const { return e.it < edges.end(); }
   817 
   818     bool isForward(const EdgeIt &e) const { return e.forw; }
   819 
   820     /// index of a node on the path. Returns length+2 for the invalid NodeIt
   821     int index(const NodeIt &n) const { return n.idx; }
   822     /// index of an edge on the path. Returns length+1 for the invalid EdgeIt
   823     int index(const EdgeIt &e) const { return e.it - edges.begin(); }
   824 
   825     EdgeIt& next(EdgeIt &e) const;
   826     NodeIt& next(NodeIt &n) const;
   827     template <typename It>
   828     It getNext(It it) const {
   829       It tmp(it); return next(tmp);
   830     }
   831 
   832     // A path is constructed using the following four functions.
   833     // They return false if the requested operation is inconsistent
   834     // with the path constructed so far.
   835     // If your path has only one edge you MUST set either "from" or "to"!
   836     // So you probably SHOULD call it in any case to be safe (and check the
   837     // returned value to check if your path is consistent with your idea).
   838     bool pushFront(const GraphEdge &e);
   839     bool pushBack(const GraphEdge &e);
   840     bool setFrom(const GraphNode &n);
   841     bool setTo(const GraphNode &n);
   842 
   843     // WARNING: these two functions return the head/tail of an edge with
   844     // respect to the direction of the path!
   845     // So G.head(P.graphEdge(e)) == P.graphNode(P.head(e)) holds only if 
   846     // P.forward(e) is true (or the edge is a loop)!
   847     NodeIt head(const EdgeIt& e) const;
   848     NodeIt tail(const EdgeIt& e) const;
   849 
   850     // FIXME: ezeknek valami jobb nev kellene!!!
   851     GraphEdge graphEdge(const EdgeIt& e) const;
   852     GraphNode graphNode(const NodeIt& n) const;
   853 
   854 
   855     /*** Iterator classes ***/
   856     class EdgeIt {
   857       friend class DynamicPath;
   858 
   859       typename Container::const_iterator it;
   860       bool forw;
   861     public:
   862       // FIXME: jarna neki ilyen is...
   863       // EdgeIt(Invalid);
   864 
   865       bool forward() const { return forw; }
   866 
   867       bool operator==(const EdgeIt& e) const { return it==e.it; }
   868       bool operator!=(const EdgeIt& e) const { return it!=e.it; }
   869       bool operator<(const EdgeIt& e) const { return it<e.it; }
   870     };
   871 
   872     class NodeIt {
   873       friend class DynamicPath;
   874 
   875       size_t idx;
   876       bool tail;  // Is this node the tail of the edge with same idx?
   877 
   878     public:
   879       // FIXME: jarna neki ilyen is...
   880       // NodeIt(Invalid);
   881 
   882       bool operator==(const NodeIt& n) const { return idx==n.idx; }
   883       bool operator!=(const NodeIt& n) const { return idx!=n.idx; }
   884       bool operator<(const NodeIt& n) const { return idx<n.idx; }
   885     };
   886 
   887   private:
   888     bool edgeIncident(const GraphEdge &e, const GraphNode &a,
   889 		      GraphNode &b);
   890     bool connectTwoEdges(const GraphEdge &e, const GraphEdge &f);
   891   };
   892 
   893   template<typename Gr>
   894   typename DynamicPath<Gr>::EdgeIt&
   895   DynamicPath<Gr>::next(DynamicPath::EdgeIt &e) const {
   896     if( e.it == edges.end() ) 
   897       return e;
   898 
   899     GraphNode common_node = ( e.forw ? G.head(*e.it) : G.tail(*e.it) );
   900     ++e.it;
   901 
   902     // Invalid edgeit is always forward :)
   903     if( e.it == edges.end() ) {
   904       e.forw = true;
   905       return e;
   906     }
   907 
   908     e.forw = ( G.tail(*e.it) == common_node );
   909     return e;
   910   }
   911 
   912   template<typename Gr>
   913   typename DynamicPath<Gr>::NodeIt& DynamicPath<Gr>::next(NodeIt &n) const {
   914     if( n.idx >= length() ) {
   915       // FIXME: invalid
   916       n.idx = length()+1;
   917       return n;
   918     }
   919 
   920     
   921     GraphNode next_node = ( n.tail ? G.head(edges[n.idx]) :
   922 			      G.tail(edges[n.idx]) );
   923     ++n.idx;
   924     if( n.idx < length() ) {
   925       n.tail = ( next_node == G.tail(edges[n.idx]) );
   926     }
   927     else {
   928       n.tail = true;
   929     }
   930 
   931     return n;
   932   }
   933 
   934   template<typename Gr>
   935   bool DynamicPath<Gr>::edgeIncident(const GraphEdge &e, const GraphNode &a,
   936 			  GraphNode &b) {
   937     if( G.tail(e) == a ) {
   938       b=G.head(e);
   939       return true;
   940     }
   941     if( G.head(e) == a ) {
   942       b=G.tail(e);
   943       return true;
   944     }
   945     return false;
   946   }
   947 
   948   template<typename Gr>
   949   bool DynamicPath<Gr>::connectTwoEdges(const GraphEdge &e,
   950 			     const GraphEdge &f) {
   951     if( edgeIncident(f, G.tail(e), _last) ) {
   952       _first = G.head(e);
   953       return true;
   954     }
   955     if( edgeIncident(f, G.head(e), _last) ) {
   956       _first = G.tail(e);
   957       return true;
   958     }
   959     return false;
   960   }
   961 
   962   template<typename Gr>
   963   bool DynamicPath<Gr>::pushFront(const GraphEdge &e) {
   964     if( G.valid(_first) ) {
   965 	if( edgeIncident(e, _first, _first) ) {
   966 	  edges.push_front(e);
   967 	  return true;
   968 	}
   969 	else
   970 	  return false;
   971     }
   972     else if( length() < 1 || connectTwoEdges(e, edges[0]) ) {
   973       edges.push_front(e);
   974       return true;
   975     }
   976     else
   977       return false;
   978   }
   979 
   980   template<typename Gr>
   981   bool DynamicPath<Gr>::pushBack(const GraphEdge &e) {
   982     if( G.valid(_last) ) {
   983 	if( edgeIncident(e, _last, _last) ) {
   984 	  edges.push_back(e);
   985 	  return true;
   986 	}
   987 	else
   988 	  return false;
   989     }
   990     else if( length() < 1 || connectTwoEdges(edges[0], e) ) {
   991       edges.push_back(e);
   992       return true;
   993     }
   994     else
   995       return false;
   996   }
   997 
   998 
   999   template<typename Gr>
  1000   bool DynamicPath<Gr>::setFrom(const GraphNode &n) {
  1001     if( G.valid(_first) ) {
  1002       return _first == n;
  1003     }
  1004     else {
  1005       if( length() > 0) {
  1006 	if( edgeIncident(edges[0], n, _last) ) {
  1007 	  _first = n;
  1008 	  return true;
  1009 	}
  1010 	else return false;
  1011       }
  1012       else {
  1013 	_first = _last = n;
  1014 	return true;
  1015       }
  1016     }
  1017   }
  1018 
  1019   template<typename Gr>
  1020   bool DynamicPath<Gr>::setTo(const GraphNode &n) {
  1021     if( G.valid(_last) ) {
  1022       return _last == n;
  1023     }
  1024     else {
  1025       if( length() > 0) {
  1026 	if( edgeIncident(edges[0], n, _first) ) {
  1027 	  _last = n;
  1028 	  return true;
  1029 	}
  1030 	else return false;
  1031       }
  1032       else {
  1033 	_first = _last = n;
  1034 	return true;
  1035       }
  1036     }
  1037   }
  1038 
  1039 
  1040   template<typename Gr>
  1041   typename DynamicPath<Gr>::NodeIt
  1042   DynamicPath<Gr>::tail(const EdgeIt& e) const {
  1043     NodeIt n;
  1044 
  1045     if( e.it == edges.end() ) {
  1046       // FIXME: invalid-> invalid
  1047       n.idx = length() + 1;
  1048       n.tail = true;
  1049       return n;
  1050     }
  1051 
  1052     n.idx = e.it-edges.begin();
  1053     n.tail = e.forw;
  1054     return n;
  1055   }
  1056 
  1057   template<typename Gr>
  1058   typename DynamicPath<Gr>::NodeIt
  1059   DynamicPath<Gr>::head(const EdgeIt& e) const {
  1060     if( e.it == edges.end()-1 ) {
  1061       return _last;
  1062     }
  1063 
  1064     EdgeIt next_edge = e;
  1065     next(next_edge);
  1066     return tail(next_edge);
  1067   }
  1068       
  1069   template<typename Gr>
  1070   typename DynamicPath<Gr>::GraphEdge
  1071   DynamicPath<Gr>::graphEdge(const EdgeIt& e) const {
  1072     if( e.it != edges.end() ) {
  1073       return *e.it;
  1074     }
  1075     else {
  1076       return INVALID;
  1077     }
  1078   }
  1079   
  1080   template<typename Gr>
  1081   typename DynamicPath<Gr>::GraphNode
  1082   DynamicPath<Gr>::graphNode(const NodeIt& n) const {
  1083     if( n.idx < length() ) {
  1084       return n.tail ? G.tail(edges[n.idx]) : G.head(edges[n.idx]);
  1085     }
  1086     else if( n.idx == length() ) {
  1087       return _last;
  1088     }
  1089     else {
  1090       return INVALID;
  1091     }
  1092   }
  1093 
  1094   template<typename Gr>
  1095   typename DynamicPath<Gr>::EdgeIt&
  1096   DynamicPath<Gr>::nth(EdgeIt &e, size_t k) const {
  1097     if( k>=length() ) {
  1098       // FIXME: invalid EdgeIt
  1099       e.it = edges.end();
  1100       e.forw = true;
  1101       return e;
  1102     }
  1103 
  1104     e.it = edges.begin()+k;
  1105     if(k==0) {
  1106       e.forw = ( G.tail(*e.it) == _first );
  1107     }
  1108     else {
  1109       e.forw = ( G.tail(*e.it) == G.tail(edges[k-1]) ||
  1110 		 G.tail(*e.it) == G.head(edges[k-1]) );
  1111     }
  1112     return e;
  1113   }
  1114     
  1115   template<typename Gr>
  1116   typename DynamicPath<Gr>::NodeIt&
  1117   DynamicPath<Gr>::nth(NodeIt &n, size_t k) const {
  1118     if( k>length() ) {
  1119       // FIXME: invalid NodeIt
  1120       n.idx = length()+1;
  1121       n.tail = true;
  1122       return n;
  1123     }
  1124     if( k==length() ) {
  1125       n.idx = length();
  1126       n.tail = true;
  1127       return n;
  1128     }
  1129     n = tail(nth<EdgeIt>(k));
  1130     return n;
  1131   }
  1132 
  1133   // Reszut konstruktorok:
  1134 
  1135 
  1136   template<typename Gr>
  1137   DynamicPath<Gr>::DynamicPath(const DynamicPath &P, const EdgeIt &a,
  1138 			       const EdgeIt &b) :
  1139     G(P.G), edges(a.it, b.it)    // WARNING: if b.it < a.it this will blow up! 
  1140   {
  1141     if( G.valid(P._first) && a.it < P.edges.end() ) {
  1142       _first = ( a.forw ? G.tail(*a.it) : G.head(*a.it) );
  1143       if( b.it < P.edges.end() ) {
  1144 	_last = ( b.forw ? G.tail(*b.it) : G.head(*b.it) );
  1145       }
  1146       else {
  1147 	_last = P._last;
  1148       }
  1149     }
  1150   }
  1151 
  1152   template<typename Gr>
  1153   DynamicPath<Gr>::DynamicPath(const DynamicPath &P, const NodeIt &a,
  1154 			       const NodeIt &b) : G(P.G)
  1155   {
  1156     if( !P.valid(a) || !P.valid(b) )
  1157       return;
  1158 
  1159     int ai = a.idx, bi = b.idx;
  1160     if( bi<ai )
  1161       std::swap(ai,bi);
  1162     
  1163     edges.resize(bi-ai);
  1164     copy(P.edges.begin()+ai, P.edges.begin()+bi, edges.begin());
  1165 
  1166     _first = P.graphNode(a);
  1167     _last = P.graphNode(b);
  1168   }
  1169 
  1170   ///@}
  1171 
  1172 } // namespace lemon
  1173 
  1174 #endif // LEMON_PATH_H