src/work/jacint/matching.h
author alpar
Wed, 16 Mar 2005 07:50:20 +0000
changeset 1215 81b4731f8a6b
permissions -rw-r--r--
- '.lgf' could be the standard 'lemon graph format' extension.
- heap_test is fixed in order that 'make discheck' work.
- heap_test now checks whether the input file exists.
     1 // -*- C++ -*-
     2 #ifndef LEMON_MAX_MATCHING_H
     3 #define LEMON_MAX_MATCHING_H
     4 
     5 ///\ingroup galgs
     6 ///\file
     7 ///\brief Maximum matching algorithm.
     8 
     9 #include <queue>
    10 
    11 
    12 #include <iostream>
    13 
    14 
    15 
    16 #include <invalid.h>
    17 #include <unionfind.h>
    18 #include <lemon/graph_utils.h>
    19 
    20 namespace lemon {
    21 
    22   /// \addtogroup galgs
    23   /// @{
    24 
    25   ///Maximum matching algorithms class.
    26 
    27   ///This class provides Edmonds' alternating forest matching
    28   ///algorithm. The starting matching (if any) can be passed to the
    29   ///algorithm using read-in functions \ref readNMapNode, \ref
    30   ///readNMapEdge or \ref readEMapBool depending on the container. The
    31   ///resulting maximum matching can be attained by write-out functions
    32   ///\ref writeNMapNode, \ref writeNMapEdge or \ref writeEMapBool
    33   ///depending on the preferred container. 
    34   ///
    35   ///The dual side of a mathcing is a map of the nodes to
    36   ///MaxMatching::pos_enum, having values D, A and C showing the
    37   ///Gallai-Edmonds decomposition of the graph. The nodes in D induce
    38   ///a graph with factor-critical components, the nodes in A form the
    39   ///barrier, and the nodes in C induce a graph having a perfect
    40   ///matching. This decomposition can be attained by calling \ref
    41   ///writePos after running the algorithm. Before subsequent runs,
    42   ///the function \ref resetPos() must be called.
    43   ///
    44   ///\param Graph The undirected graph type the algorithm runs on.
    45   ///
    46   ///\author Jacint Szabo  
    47   template <typename Graph>
    48   class MaxMatching {
    49     typedef typename Graph::Node Node;
    50     typedef typename Graph::Edge Edge;
    51     typedef typename Graph::UndirEdgeIt UndirEdgeIt;
    52     typedef typename Graph::NodeIt NodeIt;
    53     typedef typename Graph::IncEdgeIt IncEdgeIt;
    54 
    55     typedef UnionFindEnum<Node, Graph::template NodeMap> UFE;
    56 
    57   public:
    58     
    59     ///Indicates the Gallai-Edmonds decomposition of the graph.
    60 
    61     ///Indicates the Gallai-Edmonds decomposition of the graph, which
    62     ///shows an upper bound on the size of a maximum matching. The
    63     ///nodes with pos_enum \c D induce a graph with factor-critical
    64     ///components, the nodes in \c A form the canonical barrier, and the
    65     ///nodes in \c C induce a graph having a perfect matching. 
    66     enum pos_enum {
    67       D=0,
    68       A=1,
    69       C=2
    70     }; 
    71 
    72   private:
    73 
    74     static const int HEUR_density=2;
    75     const Graph& g;
    76     typename Graph::template NodeMap<Node> mate;
    77     typename Graph::template NodeMap<pos_enum> position;
    78      
    79   public:
    80     
    81     MaxMatching(const Graph& _g) : g(_g), mate(_g,INVALID), position(_g,C) {}
    82 
    83     ///Runs Edmonds' algorithm.
    84 
    85     ///Runs Edmonds' algorithm for sparse graphs (countEdges <=
    86     ///2*countNodes), and a heuristical Edmonds' algorithm with a
    87     ///heuristic of postponing shrinks for dense graphs. \pre Before
    88     ///the subsequent calls \ref resetPos must be called.
    89     inline void run();
    90 
    91     ///Runs Edmonds' algorithm.
    92     
    93     ///If heur=0 it runs Edmonds' algorithm. If heur=1 it runs
    94     ///Edmonds' algorithm with a heuristic of postponing shrinks,
    95     ///giving a faster algorithm for dense graphs.  \pre Before the
    96     ///subsequent calls \ref resetPos must be called.
    97     void runEdmonds( int heur );
    98 
    99     ///Finds a greedy matching starting from the actual matching.
   100     
   101     ///Starting form the actual matching stored, it finds a maximal
   102     ///greedy matching.
   103     void greedyMatching();
   104 
   105     ///Returns the size of the actual matching stored.
   106 
   107     ///Returns the size of the actual matching stored. After \ref
   108     ///run() it returns the size of a maximum matching in the graph.
   109     int size () const;
   110 
   111     ///Resets the map storing the Gallai-Edmonds decomposition.
   112     
   113     ///Resets the map storing the Gallai-Edmonds decomposition of the
   114     ///graph, making it possible to run the algorithm. Must be called
   115     ///before all runs of the Edmonds algorithm, except for the first
   116     ///run.
   117     void resetPos();
   118 
   119     ///Resets the actual matching to the empty matching.
   120 
   121     ///Resets the actual matching to the empty matching.  
   122     ///
   123     void resetMatching();
   124 
   125     ///Reads a matching from a \c Node map of \c Nodes.
   126 
   127     ///Reads a matching from a \c Node map of \c Nodes. This map must be \e
   128     ///symmetric, i.e. if \c map[u]=v then \c map[v]=u must hold, and
   129     ///\c uv will be an edge of the matching.
   130     template<typename NMapN>
   131     void readNMapNode(NMapN& map) {
   132       for(NodeIt v(g); v!=INVALID; ++v) {
   133 	mate.set(v,map[v]);   
   134       } 
   135     } 
   136     
   137     ///Writes the stored matching to a \c Node map of \c Nodes.
   138 
   139     ///Writes the stored matching to a \c Node map of \c Nodes. The
   140     ///resulting map will be \e symmetric, i.e. if \c map[u]=v then \c
   141     ///map[v]=u will hold, and now \c uv is an edge of the matching.
   142     template<typename NMapN>
   143     void writeNMapNode (NMapN& map) const {
   144       for(NodeIt v(g); v!=INVALID; ++v) {
   145 	map.set(v,mate[v]);   
   146       } 
   147     } 
   148 
   149     ///Reads a matching from a \c Node map of \c Edges.
   150 
   151     ///Reads a matching from a \c Node map of incident \c Edges. This
   152     ///map must have the property that if \c G.target(map[u])=v then \c
   153     ///G.target(map[v])=u must hold, and now this edge is an edge of
   154     ///the matching.
   155     template<typename NMapE>
   156     void readNMapEdge(NMapE& map) {
   157      for(NodeIt v(g); v!=INVALID; ++v) {
   158 	Edge e=map[v];
   159 	if ( g.valid(e) )
   160 	  g.source(e) == v ? mate.set(v,g.target(e)) : mate.set(v,g.source(e)); 
   161       } 
   162     } 
   163     
   164     ///Writes the matching stored to a \c Node map of \c Edges.
   165 
   166     ///Writes the stored matching to a \c Node map of incident \c
   167     ///Edges. This map will have the property that if \c
   168     ///g.target(map[u])=v then \c g.target(map[v])=u holds, and now this
   169     ///edge is an edge of the matching.
   170     template<typename NMapE>
   171     void writeNMapEdge (NMapE& map)  const {
   172       typename Graph::template NodeMap<bool> todo(g,true); 
   173       for(NodeIt v(g); v!=INVALID; ++v) {
   174 	if ( todo[v] && mate[v]!=INVALID ) {
   175 	  Node u=mate[v];
   176 	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
   177 	    if ( g.target(e) == u ) {
   178 	      map.set(u,e);
   179 	      map.set(v,e);
   180 	      todo.set(u,false);
   181 	      todo.set(v,false);
   182 	      break;
   183 	    }
   184 	  }
   185 	}
   186       } 
   187     }
   188 
   189 
   190     ///Reads a matching from an \c Edge map of \c bools.
   191     
   192     ///Reads a matching from an \c Edge map of \c bools. This map must
   193     ///have the property that there are no two adjacent edges \c e, \c
   194     ///f with \c map[e]=map[f]=true. The edges \c e with \c
   195     ///map[e]=true form the matching.
   196     template<typename EMapB>
   197     void readEMapBool(EMapB& map) {
   198       for(UndirEdgeIt e(g); e!=INVALID; ++e) {
   199 	if ( map[e] ) {
   200 	  Node u=g.source(e);	  
   201 	  Node v=g.target(e);
   202 	  mate.set(u,v);
   203 	  mate.set(v,u);
   204 	} 
   205       } 
   206     }
   207     //iterable boolmap?
   208 
   209 
   210     ///Writes the matching stored to an \c Edge map of \c bools.
   211 
   212     ///Writes the matching stored to an \c Edge map of \c bools. This
   213     ///map will have the property that there are no two adjacent edges
   214     ///\c e, \c f with \c map[e]=map[f]=true. The edges \c e with \c
   215     ///map[e]=true form the matching.
   216     template<typename EMapB>
   217     void writeEMapBool (EMapB& map) const {
   218       for(UndirEdgeIt e(g); e!=INVALID; ++e) map.set(e,false);
   219 
   220       typename Graph::template NodeMap<bool> todo(g,true); 
   221       for(NodeIt v(g); v!=INVALID; ++v) {
   222 	if ( todo[v] && mate[v]!=INVALID ) {
   223 	  Node u=mate[v];
   224 	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
   225 	    if ( g.target(e) == u ) {
   226 	      map.set(e,true);
   227 	      todo.set(u,false);
   228 	      todo.set(v,false);
   229 	      break;
   230 	    }
   231 	  }
   232 	}
   233       } 
   234     }
   235 
   236 
   237     ///Writes the canonical decomposition of the graph after running
   238     ///the algorithm.
   239 
   240     ///After calling any run methods of the class, and before calling
   241     ///\ref resetPos(), it writes the Gallai-Edmonds canonical
   242     ///decomposition of the graph. \c map must be a node map
   243     ///of \ref pos_enum 's.
   244     template<typename NMapEnum>
   245     void writePos (NMapEnum& map) const {
   246       for(NodeIt v(g); v!=INVALID; ++v)  map.set(v,position[v]);
   247     }
   248 
   249   private: 
   250 
   251     void lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
   252 		    UFE& blossom, UFE& tree);
   253 
   254     void normShrink(Node v, typename Graph::NodeMap<Node>& ear,  
   255 		    UFE& blossom, UFE& tree);
   256 
   257     bool noShrinkStep(Node x, typename Graph::NodeMap<Node>& ear,  
   258 		      UFE& blossom, UFE& tree, std::queue<Node>& Q);
   259 
   260     void shrinkStep(Node& top, Node& middle, Node& bottom, typename Graph::NodeMap<Node>& ear,  
   261 		    UFE& blossom, UFE& tree, std::queue<Node>& Q);
   262 
   263     void augment(Node x, typename Graph::NodeMap<Node>& ear,  
   264 		 UFE& blossom, UFE& tree);
   265   };
   266 
   267 
   268   // **********************************************************************
   269   //  IMPLEMENTATIONS
   270   // **********************************************************************
   271 
   272 
   273   template <typename Graph>
   274   void MaxMatching<Graph>::run() {
   275     if ( countUndirEdges(g) < HEUR_density*countNodes(g) ) {
   276       greedyMatching();
   277       runEdmonds(1);
   278     } else runEdmonds(0);
   279   }
   280 
   281 
   282   template <typename Graph>
   283   void MaxMatching<Graph>::runEdmonds( int heur=1 ) {
   284       
   285     std::cout<<"Entering runEdmonds"<<std::endl;
   286 
   287     typename Graph::template NodeMap<Node> ear(g,INVALID); 
   288     //undefined for the base nodes of the blossoms (i.e. for the
   289     //representative elements of UFE blossom) and for the nodes in C
   290  
   291     typename UFE::MapType blossom_base(g);
   292     UFE blossom(blossom_base);
   293     typename UFE::MapType tree_base(g);
   294     UFE tree(tree_base);
   295 
   296     for(NodeIt v(g); v!=INVALID; ++v) {
   297       if ( position[v]==C && mate[v]==INVALID ) {
   298 	blossom.insert(v);
   299 	tree.insert(v); 
   300 	position.set(v,D);
   301 	if ( heur == 1 ) lateShrink( v, ear, blossom, tree );
   302 	else normShrink( v, ear, blossom, tree );
   303       }
   304     }
   305 
   306 
   307     std::cout<<" runEdmonds end"<<std::endl;
   308 
   309 
   310   }
   311     
   312   template <typename Graph>
   313   void MaxMatching<Graph>::lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
   314 				      UFE& blossom, UFE& tree) {
   315      
   316 
   317     std::cout<<"Entering lateShrink"<<std::endl;
   318 
   319 
   320     std::queue<Node> Q;   //queue of the totally unscanned nodes
   321     Q.push(v);  
   322     std::queue<Node> R;   
   323     //queue of the nodes which must be scanned for a possible shrink
   324       
   325     while ( !Q.empty() ) {
   326       Node x=Q.front();
   327       Q.pop();
   328       if ( noShrinkStep( x, ear, blossom, tree, Q ) ) return;
   329       else R.push(x);
   330     }
   331       
   332     while ( !R.empty() ) {
   333       Node x=R.front();
   334       R.pop();
   335 	
   336       for( IncEdgeIt e(g,x); e!=INVALID ; ++e ) {
   337 	Node y=g.target(e);
   338 
   339 	if ( position[y] == D && blossom.find(x) != blossom.find(y) ) { 
   340 	  //x and y must be in the same tree//biztos? az oddbol d-belive lettek is?
   341 	
   342 	  typename Graph::template NodeMap<bool> path(g,false);
   343 
   344 	  Node b=blossom.find(x);
   345 	  path.set(b,true);
   346 	  b=mate[b];
   347 	  while ( b!=INVALID ) { 
   348 	    b=blossom.find(ear[b]);
   349 	    path.set(b,true);
   350 	    b=mate[b];
   351 	  } //going till the root
   352 	
   353 	  Node top=y;
   354 	  Node middle=blossom.find(top);
   355 	  Node bottom=x;
   356 	  while ( !path[middle] )
   357 	    shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   358 		  
   359 	  Node base=middle;
   360 	  top=x;
   361 	  middle=blossom.find(top);
   362 	  bottom=y;
   363 	  Node blossom_base=blossom.find(base);
   364 	  while ( middle!=blossom_base )
   365 	    shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   366 		  
   367 	  blossom.makeRep(base);
   368 	} // if shrink is needed
   369 
   370 	//most nehany odd node is d-beli lett, es rajuk az is megnezendo hogy mely d-beliekkel szonszedosak mas faban
   371 
   372 	while ( !Q.empty() ) {
   373 	  Node x=Q.front();
   374 	  Q.pop();
   375 	  if ( noShrinkStep(x, ear, blossom, tree, Q) ) return;
   376 	  else R.push(x);
   377 	}
   378       } //for e
   379     } // while ( !R.empty() )
   380   }
   381 
   382 
   383   template <typename Graph>
   384   void MaxMatching<Graph>::normShrink(Node v, typename Graph::NodeMap<Node>& ear,  
   385 				      UFE& blossom, UFE& tree) {
   386 
   387 
   388     std::cout<<"Entering normShrink with node "<<g.id(v)<<std::endl;
   389 
   390 
   391     std::queue<Node> Q;   //queue of the unscanned nodes
   392     Q.push(v);  
   393     while ( !Q.empty() ) {
   394 
   395       std::cout<<"beginning of norm while"<<std::endl;
   396 
   397       Node x=Q.front();
   398       Q.pop();
   399 	
   400       for( IncEdgeIt e(g,x); e!=INVALID; ++e ) {
   401 
   402 
   403 	for( IncEdgeIt f(g,x); f!=INVALID; ++f ) {
   404 	  std::cout<<"Starting for." <<std::endl;
   405 	  std::cout<<"edges " << g.id(f)<< " : " << g.id(g.target(f))<<std::endl;
   406 	  std::cout<<"Ending for." <<std::endl;
   407 	}
   408 
   409 	std::cout<<"Ending the whole for." <<std::endl;
   410 	std::cout<<"for (In normShrink) with edge " << g.id(e)<< " : " << g.id(x);
   411 
   412 	Node y=g.target(e);
   413 	
   414 	std::cout<<" "<<g.id(y)<<std::endl;
   415 	      
   416 	switch ( position[y] ) {
   417 	case D:          //x and y must be in the same tree //asszem nem!!!
   418 
   419 	  std::cout<<" pos[y] " << position[y]<<std::endl;
   420 	  std::cout<<" blossom.find(x) ="<< g.id(blossom.find(x))<<std::endl;
   421 	  std::cout<<" blossom.find(y) ="<< g.id(blossom.find(y))<<std::endl;
   422 
   423 
   424 	  if ( blossom.find(x) != blossom.find(y) ) { //shrink
   425 	    typename Graph::template NodeMap<bool> path(g,false);
   426 	      
   427 	    Node b=blossom.find(x);
   428 	    path.set(b,true);
   429 	    b=mate[b];
   430 	    while ( b!=INVALID ) { 
   431 	      b=blossom.find(ear[b]);
   432 	      path.set(b,true);
   433 	      b=mate[b];
   434 	    } //going till the root
   435 	
   436 	    Node top=y;
   437 	    Node middle=blossom.find(top);
   438 	    Node bottom=x;
   439 	    while ( !path[middle] )
   440 	      shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   441 		
   442 	    Node base=middle;
   443 	    top=x;
   444 	    middle=blossom.find(top);
   445 	    bottom=y;
   446 	    Node blossom_base=blossom.find(base);
   447 	    while ( middle!=blossom_base )
   448 	      shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   449 		
   450 	    blossom.makeRep(base);
   451 	  }
   452 	  break;
   453 	case C:
   454 	  if ( mate[y]!=INVALID ) {   //grow
   455 	    
   456 	    std::cout<<"grow"<<std::endl;
   457 
   458 	    ear.set(y,x);
   459 	    Node w=mate[y];
   460 	    blossom.insert(w);
   461 	    position.set(y,A); 
   462 	    position.set(w,D); 
   463 	    tree.insert(y);
   464 	    tree.insert(w);
   465 	    tree.join(y,blossom.find(x));  
   466 	    tree.join(w,y);  
   467 	    Q.push(w);
   468 
   469 	  } else {                 //augment  
   470 
   471 	    std::cout<<"augment"<<std::endl;
   472 
   473 	    augment(x, ear, blossom, tree);
   474 	    mate.set(x,y);
   475 	    mate.set(y,x);
   476 	    return;
   477 	  } //if 
   478 
   479 	  std::cout<<"end c eset"<<std::endl;
   480 	  break;
   481 	default: break;
   482 	}
   483 	std::cout<<"end switch"<<std::endl;
   484       }
   485     }
   486   }
   487 
   488   template <typename Graph>
   489   void MaxMatching<Graph>::greedyMatching() {
   490     for(NodeIt v(g); v!=INVALID; ++v)
   491       if ( mate[v]==INVALID ) {
   492 	for( IncEdgeIt e(g,v); e!=INVALID ; ++e ) {
   493 	  Node y=g.target(e);
   494 	  if ( mate[y]==INVALID && y!=v ) {
   495 	    mate.set(v,y);
   496 	    mate.set(y,v);
   497 	    break;
   498 	  }
   499 	}
   500       } 
   501   }
   502    
   503   template <typename Graph>
   504   int MaxMatching<Graph>::size() const {
   505     int s=0;
   506     for(NodeIt v(g); v!=INVALID; ++v) {
   507       if ( mate[v]!=INVALID ) {
   508 	++s;
   509       }
   510     }
   511     return (int)s/2;
   512   }
   513 
   514   template <typename Graph>
   515   void MaxMatching<Graph>::resetPos() {
   516     for(NodeIt v(g); v!=INVALID; ++v)
   517       position.set(v,C);      
   518   }
   519 
   520   template <typename Graph>
   521   void MaxMatching<Graph>::resetMatching() {
   522     for(NodeIt v(g); v!=INVALID; ++v)
   523       mate.set(v,INVALID);      
   524   }
   525 
   526   template <typename Graph>
   527   bool MaxMatching<Graph>::noShrinkStep(Node x, typename Graph::NodeMap<Node>& ear,  
   528 					UFE& blossom, UFE& tree, std::queue<Node>& Q) {
   529     for( IncEdgeIt e(g,x); e!= INVALID; ++e ) {
   530       Node y=g.target(e);
   531 	
   532       if ( position[y]==C ) {
   533 	if ( mate[y]!=INVALID ) {       //grow
   534 	  ear.set(y,x);
   535 	  Node w=mate[y];
   536 	  blossom.insert(w);
   537 	  position.set(y,A);
   538 	  position.set(w,D);
   539 	  tree.insert(y);
   540 	  tree.insert(w);
   541 	  tree.join(y,blossom.find(x));  
   542 	  tree.join(w,y);  
   543 	  Q.push(w);
   544 	} else {                      //augment 
   545 	  augment(x, ear, blossom, tree);
   546 	  mate.set(x,y);
   547 	  mate.set(y,x);
   548 	  return true;
   549 	}
   550       }
   551     }
   552     return false;
   553   }
   554 
   555   template <typename Graph>
   556   void MaxMatching<Graph>::shrinkStep(Node& top, Node& middle, Node& bottom, typename Graph::NodeMap<Node>& ear,  
   557 				      UFE& blossom, UFE& tree, std::queue<Node>& Q) {
   558     ear.set(top,bottom);
   559     Node t=top;
   560     while ( t!=middle ) {
   561       Node u=mate[t];
   562       t=ear[u];
   563       ear.set(t,u);
   564     } 
   565     bottom=mate[middle];
   566     position.set(bottom,D);
   567     Q.push(bottom);
   568     top=ear[bottom];		
   569     Node oldmiddle=middle;
   570     middle=blossom.find(top);
   571     tree.erase(bottom);
   572     tree.erase(oldmiddle);
   573     blossom.insert(bottom);
   574     blossom.join(bottom, oldmiddle);
   575     blossom.join(top, oldmiddle);
   576   }
   577 
   578   template <typename Graph>
   579   void MaxMatching<Graph>::augment(Node x, typename Graph::NodeMap<Node>& ear,  
   580 				   UFE& blossom, UFE& tree) { 
   581     Node v=mate[x];
   582     while ( v!=INVALID ) {
   583 	
   584       Node u=ear[v];
   585       mate.set(v,u);
   586       Node tmp=v;
   587       v=mate[u];
   588       mate.set(u,tmp);
   589     }
   590     typename UFE::ItemIt it;
   591     for (tree.first(it,blossom.find(x)); tree.valid(it); tree.next(it)) {   
   592       if ( position[it] == D ) {
   593 	typename UFE::ItemIt b_it;
   594 	for (blossom.first(b_it,it); blossom.valid(b_it); blossom.next(b_it)) {  
   595 	  position.set( b_it ,C);
   596 	}
   597 	blossom.eraseClass(it);
   598       } else position.set( it ,C);
   599     }
   600     tree.eraseClass(x);
   601 
   602   }
   603 
   604   /// @}
   605   
   606 } //END OF NAMESPACE LEMON
   607 
   608 #endif //EDMONDS_H