src/work/athos/kruskal.h
author alpar
Thu, 31 Mar 2005 13:30:27 +0000
changeset 1282 81e89e2b90d1
parent 250 81a3d0abe5f3
permissions -rw-r--r--
length() returns int istead of size_t
     1 /*
     2 Kruskal's algorithm to find a spanning tree of minimum weight
     3 If the graph is not connected, it gives a forest. 
     4 */
     5 #ifndef KRUSKAL_H
     6 #define KRUSKAL_H
     7 
     8 #include <union_find.h>
     9 
    10 namespace lemon {
    11   
    12   template <typename graph_type, typename T>
    13     class Kruskal {
    14 
    15     
    16     //Hasznos typedef-ek
    17     typedef typename graph_type::NodeIt NodeIt;
    18     typedef typename graph_type::EdgeIt EdgeIt;
    19     typedef typename graph_type::EachNodeIt EachNodeIt;
    20     typedef typename graph_type::EachEdgeIt EachEdgeIt;
    21     typedef typename graph_type::SymEdgeIt SymEdgeIt;
    22 
    23     //input
    24     graph_type& G;
    25     typename graph_type::EdgeMap<T> &weight;
    26 
    27     //Auxilliary variables
    28     typename graph_type::NodeMap<int> component(flowG);
    29 
    30     Kruskal(
    31 	    graph_type& _G, 
    32 	    typename graph_type::EdgeMap<T> & _weight)
    33       : G(_G),
    34       weight(_weight),
    35       component(-1)
    36       { 
    37       }
    38 
    39       /*Originally by Misi.*/
    40       struct Edge_comp
    41       {
    42 	NodeMap<graph_type, T> &d;
    43 	Node_dist_comp(NodeMap<graph_type, T> &_d) : d(_d) {} 
    44 	
    45 	bool operator()(const NodeIt& u, const NodeIt& v) const 
    46 	{ return d.get(u) < d.get(v); }
    47       };
    48 
    49 
    50       //Runs the algorithm
    51       void run() {
    52 	
    53 
    54 	
    55       }
    56      
    57   }
    58 
    59 }//namespacc lemon
    60 
    61 #endif