2 #ifndef HUGO_MINCOSTFLOWS_H
3 #define HUGO_MINCOSTFLOWS_H
7 ///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost
10 #include <hugo/dijkstra.h>
11 #include <graph_wrapper.h>
12 #include <hugo/maps.h>
14 #include <for_each_macros.h>
21 ///\brief Implementation of an algorithm for finding a flow of value \c k
22 ///(for small values of \c k) having minimal total cost between 2 nodes
25 /// The class \ref hugo::MinCostFlows "MinCostFlows" implements
26 /// an algorithm for finding a flow of value \c k
27 ///(for small values of \c k) having minimal total cost
28 /// from a given source node to a given target node in an
29 /// edge-weighted directed graph having nonnegative integer capacities.
30 /// The range of the length (weight) function is nonnegative reals but
31 /// the range of capacity function is the set of nonnegative integers.
32 /// It is not a polinomial time algorithm for counting the minimum cost
33 /// maximal flow, since it counts the minimum cost flow for every value 0..M
34 /// where \c M is the value of the maximal flow.
36 ///\author Attila Bernath
37 template <typename Graph, typename LengthMap, typename CapacityMap>
40 typedef typename LengthMap::ValueType Length;
42 //Warning: this should be integer type
43 typedef typename CapacityMap::ValueType Capacity;
45 typedef typename Graph::Node Node;
46 typedef typename Graph::NodeIt NodeIt;
47 typedef typename Graph::Edge Edge;
48 typedef typename Graph::OutEdgeIt OutEdgeIt;
49 typedef typename Graph::template EdgeMap<int> EdgeIntMap;
51 // typedef ConstMap<Edge,int> ConstMap;
53 typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType;
54 typedef typename ResGraphType::Edge ResGraphEdge;
57 //typedef typename ResGraphType::template NodeMap<Length> NodeMap;
58 typedef typename Graph::template NodeMap<Length> NodeMap;
59 const ResGraphType& G;
60 // const EdgeIntMap& rev;
64 typedef typename LengthMap::KeyType KeyType;
65 typedef typename LengthMap::ValueType ValueType;
67 ValueType operator[](typename ResGraphType::Edge e) const {
69 return ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);
71 return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);
74 ModLengthMap(const ResGraphType& _G,
75 const LengthMap &o, const NodeMap &p) :
76 G(_G), /*rev(_rev),*/ ol(o), pot(p){};
83 const LengthMap& length;
84 const CapacityMap& capacity;
90 //To store the potentila (dual variables)
91 typename Graph::template NodeMap<Length> potential;
93 //Container to store found paths
94 //std::vector< std::vector<Edge> > paths;
95 //typedef DirPath<Graph> DPath;
104 MinCostFlows(Graph& _G, LengthMap& _length, CapacityMap& _cap) : G(_G),
105 length(_length), capacity(_cap), flow(_G), potential(_G){ }
108 ///Runs the algorithm.
110 ///Runs the algorithm.
111 ///Returns k if there are at least k edge-disjoint paths from s to t.
112 ///Otherwise it returns the number of found edge-disjoint paths from s to t.
113 int run(Node s, Node t, int k) {
115 //Resetting variables from previous runs
118 FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
122 FOR_EACH_LOC(typename Graph::NodeIt, n, G){
123 //cout << potential[n]<<endl;
129 //We need a residual graph
130 ResGraphType res_graph(G, capacity, flow);
132 //Initialize the copy of the Dijkstra potential to zero
134 //typename ResGraphType::template NodeMap<Length> potential(res_graph);
137 ModLengthMap mod_length(res_graph, length, potential);
139 Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
144 if (!dijkstra.reached(t)){
145 //There are no k paths from s to t
150 //We have to copy the potential
151 typename ResGraphType::NodeIt n;
152 for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) {
153 potential[n] += dijkstra.distMap()[n];
158 //Augmenting on the sortest path
162 e = dijkstra.pred(n);
163 n = dijkstra.predNode(n);
164 res_graph.augment(e,1);
165 //Let's update the total length
166 if (res_graph.forward(e))
167 total_length += length[e];
169 total_length -= length[e];
182 ///This function gives back the total length of the found paths.
183 ///Assumes that \c run() has been run and nothing changed since then.
184 Length totalLength(){
188 //This function checks, whether the given solution is optimal
189 //Running after a \c run() should return with true
190 bool checkSolution(){
193 FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
195 mod_pot = length[e]-potential[G.head(e)]+potential[G.head(e)];
197 if (0<fl_e && fl_e<capacity[e]){
202 if (mod_pot > 0 && fl_e != 0)
204 if (mod_pot < 0 && fl_e != capacity[e])
212 ///\todo To be implemented later
214 ///This function gives back the \c j-th path in argument p.
215 ///Assumes that \c run() has been run and nothing changed since then.
216 /// \warning It is assumed that \c p is constructed to be a path of graph \c G. If \c j is greater than the result of previous \c run, then the result here will be an empty path.
217 template<typename DirPath>
218 void getPath(DirPath& p, int j){
220 typename DirPath::Builder B(p);
221 for(typename std::vector<Edge>::iterator i=paths[j].begin();
222 i!=paths[j].end(); ++i ){
231 }; //class MinCostFlows
237 #endif //HUGO_MINCOSTFLOW_H