7 ///\brief Bfs algorithm.
9 ///\todo Revise Manual.
11 #include <hugo/bin_heap.h>
12 #include <hugo/invalid.h>
16 /// \addtogroup flowalgs
19 ///%Bfs algorithm class.
21 ///This class provides an efficient implementation of %Bfs algorithm.
22 ///The edge lengths are passed to the algorithm using a
23 ///\ref ReadMapSkeleton "readable map",
24 ///so it is easy to change it to any kind of length.
26 ///The type of the length is determined by the \c ValueType of the length map.
28 ///It is also possible to change the underlying priority heap.
30 ///\param GR The graph type the algorithm runs on.
31 ///\param LM This read-only
34 ///lengths of the edges. It is read once for each edge, so the map
35 ///may involve in relatively time consuming process to compute the edge
36 ///length if it is necessary. The default map type is
37 ///\ref GraphSkeleton::EdgeMap "Graph::EdgeMap<int>"
38 ///\param Heap The heap type used by the %Bfs
39 ///algorithm. The default
40 ///is using \ref BinHeap "binary heap".
42 ///\author Jacint Szabo and Alpar Juttner
43 ///\todo We need a typedef-names should be standardized. (-:
44 ///\todo Type of \c PredMap, \c PredNodeMap and \c DistMap
45 ///should not be fixed. (Problematic to solve).
48 template <typename GR>
50 template <typename GR>
54 ///The type of the underlying graph.
56 typedef typename Graph::Node Node;
57 typedef typename Graph::NodeIt NodeIt;
58 typedef typename Graph::Edge Edge;
59 typedef typename Graph::OutEdgeIt OutEdgeIt;
61 ///\brief The type of the map that stores the last
62 ///edges of the shortest paths.
63 typedef typename Graph::template NodeMap<Edge> PredMap;
64 ///\brief The type of the map that stores the last but one
65 ///nodes of the shortest paths.
66 typedef typename Graph::template NodeMap<Node> PredNodeMap;
67 ///The type of the map that stores the dists of the nodes.
68 typedef typename Graph::template NodeMap<int> DistMap;
73 bool local_predecessor;
74 PredNodeMap *pred_node;
79 //The source node of the last execution.
85 ///\todo Error if \c G or are \c NULL.
86 ///\todo Better memory allocation (instead of new).
90 // local_length = true;
91 // length = new LM(G);
94 local_predecessor = true;
95 predecessor = new PredMap(*G);
98 local_pred_node = true;
99 pred_node = new PredNodeMap(*G);
102 local_distance = true;
103 distance = new DistMap(*G);
108 Bfs(const Graph& _G) :
110 predecessor(NULL), local_predecessor(false),
111 pred_node(NULL), local_pred_node(false),
112 distance(NULL), local_distance(false)
117 // if(local_length) delete length;
118 if(local_predecessor) delete predecessor;
119 if(local_pred_node) delete pred_node;
120 if(local_distance) delete distance;
123 ///Sets the graph the algorithm will run on.
125 ///Sets the graph the algorithm will run on.
126 ///\return <tt> (*this) </tt>
127 Bfs &setGraph(const Graph &_G)
132 ///Sets the length map.
134 ///Sets the map storing the predecessor edges.
136 ///Sets the map storing the predecessor edges.
137 ///If you don't use this function before calling \ref run(),
138 ///it will allocate one. The destuctor deallocates this
139 ///automatically allocated map, of course.
140 ///\return <tt> (*this) </tt>
141 Bfs &setPredMap(PredMap &m)
143 if(local_predecessor) {
145 local_predecessor=false;
151 ///Sets the map storing the predecessor nodes.
153 ///Sets the map storing the predecessor nodes.
154 ///If you don't use this function before calling \ref run(),
155 ///it will allocate one. The destuctor deallocates this
156 ///automatically allocated map, of course.
157 ///\return <tt> (*this) </tt>
158 Bfs &setPredNodeMap(PredNodeMap &m)
160 if(local_pred_node) {
162 local_pred_node=false;
168 ///Sets the map storing the distances calculated by the algorithm.
170 ///Sets the map storing the distances calculated by the algorithm.
171 ///If you don't use this function before calling \ref run(),
172 ///it will allocate one. The destuctor deallocates this
173 ///automatically allocated map, of course.
174 ///\return <tt> (*this) </tt>
175 Bfs &setDistMap(DistMap &m)
179 local_distance=false;
185 ///Runs %BFS algorithm from node \c s.
187 ///This method runs the %BFS algorithm from a root node \c s
190 ///shortest path to each node. The algorithm computes
191 ///- The shortest path tree.
192 ///- The distance of each node from the root.
200 for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
201 predecessor->set(u,INVALID);
202 pred_node->set(u,INVALID);
206 std::vector<typename Graph::Node> Q(N);
215 int d= (*distance)[n]+1;
217 for(OutEdgeIt e(*G,n);e!=INVALID;++e)
218 if((m=G->head(e))!=s && (*predecessor)[m]==INVALID) {
220 predecessor->set(m,e);
227 ///The distance of a node from the root.
229 ///Returns the distance of a node from the root.
230 ///\pre \ref run() must be called before using this function.
231 ///\warning If node \c v in unreachable from the root the return value
232 ///of this funcion is undefined.
233 int dist(Node v) const { return (*distance)[v]; }
235 ///Returns the 'previous edge' of the shortest path tree.
237 ///For a node \c v it returns the 'previous edge' of the shortest path tree,
238 ///i.e. it returns the last edge from a shortest path from the root to \c
239 ///v. It is \ref INVALID
240 ///if \c v is unreachable from the root or if \c v=s. The
241 ///shortest path tree used here is equal to the shortest path tree used in
242 ///\ref predNode(Node v). \pre \ref run() must be called before using
244 Edge pred(Node v) const { return (*predecessor)[v]; }
246 ///Returns the 'previous node' of the shortest path tree.
248 ///For a node \c v it returns the 'previous node' of the shortest path tree,
249 ///i.e. it returns the last but one node from a shortest path from the
250 ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
251 ///\c v=s. The shortest path tree used here is equal to the shortest path
252 ///tree used in \ref pred(Node v). \pre \ref run() must be called before
253 ///using this function.
254 Node predNode(Node v) const { return (*pred_node)[v]; }
256 ///Returns a reference to the NodeMap of distances.
258 ///Returns a reference to the NodeMap of distances. \pre \ref run() must
259 ///be called before using this function.
260 const DistMap &distMap() const { return *distance;}
262 ///Returns a reference to the shortest path tree map.
264 ///Returns a reference to the NodeMap of the edges of the
265 ///shortest path tree.
266 ///\pre \ref run() must be called before using this function.
267 const PredMap &predMap() const { return *predecessor;}
269 ///Returns a reference to the map of nodes of shortest paths.
271 ///Returns a reference to the NodeMap of the last but one nodes of the
272 ///shortest path tree.
273 ///\pre \ref run() must be called before using this function.
274 const PredNodeMap &predNodeMap() const { return *pred_node;}
276 ///Checks if a node is reachable from the root.
278 ///Returns \c true if \c v is reachable from the root.
279 ///\warning The root node is reported to be reached!
281 ///\pre \ref run() must be called before using this function.
283 bool reached(Node v) { return v==source || (*predecessor)[v]==INVALID; }
288 // **********************************************************************
290 // **********************************************************************
294 } //END OF NAMESPACE HUGO