3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_PREFLOW_H
20 #define LEMON_PREFLOW_H
25 #include <lemon/error.h>
26 #include <lemon/bits/invalid.h>
27 #include <lemon/tolerance.h>
28 #include <lemon/maps.h>
29 #include <lemon/graph_utils.h>
33 /// \brief Implementation of the preflow algorithm.
38 ///\brief %Preflow algorithms class.
40 ///This class provides an implementation of the \e preflow \e
41 ///algorithm producing a flow of maximum value in a directed
42 ///graph. The preflow algorithms are the fastest known max flow algorithms
43 ///up to now. The \e source node, the \e target node, the \e
44 ///capacity of the edges and the \e starting \e flow value of the
45 ///edges should be passed to the algorithm through the
46 ///constructor. It is possible to change these quantities using the
47 ///functions \ref source, \ref target, \ref capacityMap and \ref
50 ///After running \ref lemon::Preflow::phase1() "phase1()"
51 ///or \ref lemon::Preflow::run() "run()", the maximal flow
52 ///value can be obtained by calling \ref flowValue(). The minimum
53 ///value cut can be written into a <tt>bool</tt> node map by
54 ///calling \ref minCut(). (\ref minMinCut() and \ref maxMinCut() writes
55 ///the inclusionwise minimum and maximum of the minimum value cuts,
58 ///\param Graph The directed graph type the algorithm runs on.
59 ///\param Num The number type of the capacities and the flow values.
60 ///\param CapacityMap The capacity map type.
61 ///\param FlowMap The flow map type.
63 ///\author Jacint Szabo
64 ///\todo Second template parameter is superfluous
65 template <typename Graph, typename Num,
66 typename CapacityMap=typename Graph::template EdgeMap<Num>,
67 typename FlowMap=typename Graph::template EdgeMap<Num>,
68 typename TOL=Tolerance<Num> >
71 typedef typename Graph::Node Node;
72 typedef typename Graph::NodeIt NodeIt;
73 typedef typename Graph::EdgeIt EdgeIt;
74 typedef typename Graph::OutEdgeIt OutEdgeIt;
75 typedef typename Graph::InEdgeIt InEdgeIt;
77 typedef typename Graph::template NodeMap<Node> NNMap;
78 typedef typename std::vector<Node> VecNode;
83 const CapacityMap* _capacity;
88 int _node_num; //the number of nodes of G
90 typename Graph::template NodeMap<int> level;
91 typename Graph::template NodeMap<Num> excess;
93 // constants used for heuristics
94 static const int H0=20;
95 static const int H1=1;
99 ///\ref Exception for the case when s=t.
101 ///\ref Exception for the case when the source equals the target.
102 class InvalidArgument : public lemon::LogicError {
104 virtual const char* exceptionName() const {
105 return "lemon::Preflow::InvalidArgument";
110 ///Indicates the property of the starting flow map.
112 ///Indicates the property of the starting flow map.
115 ///indicates an unspecified edge map. \c flow will be
116 ///set to the constant zero flow in the beginning of
117 ///the algorithm in this case.
119 ///constant zero flow
121 ///any flow, i.e. the sum of the in-flows equals to
122 ///the sum of the out-flows in every node except the \c source and
125 ///any preflow, i.e. the sum of the in-flows is at
126 ///least the sum of the out-flows in every node except the \c source.
130 ///Indicates the state of the preflow algorithm.
132 ///Indicates the state of the preflow algorithm.
135 ///before running the algorithm or
136 ///at an unspecified state.
138 ///right after running \ref phase1()
139 AFTER_PREFLOW_PHASE_1,
140 ///after running \ref phase2()
141 AFTER_PREFLOW_PHASE_2
146 StatusEnum status; // Do not needle this flag only if necessary.
149 ///The constructor of the class.
151 ///The constructor of the class.
152 ///\param _gr The directed graph the algorithm runs on.
153 ///\param _s The source node.
154 ///\param _t The target node.
155 ///\param _cap The capacity of the edges.
156 ///\param _f The flow of the edges.
157 ///\param tol Tolerance class.
158 ///Except the graph, all of these parameters can be reset by
159 ///calling \ref source, \ref target, \ref capacityMap and \ref
161 Preflow(const Graph& _gr, Node _s, Node _t,
162 const CapacityMap& _cap, FlowMap& _f,
163 const TOL &tol=TOL()) :
164 _g(&_gr), _source(_s), _target(_t), _capacity(&_cap),
165 _flow(&_f), surely(tol),
166 _node_num(countNodes(_gr)), level(_gr), excess(_gr,0),
167 flow_prop(NO_FLOW), status(AFTER_NOTHING) {
168 if ( _source==_target )
169 throw InvalidArgument();
172 ///Give a reference to the tolerance handler class
174 ///Give a reference to the tolerance handler class
176 TOL &tolerance() { return surely; }
178 ///Runs the preflow algorithm.
180 ///Runs the preflow algorithm.
187 ///Runs the preflow algorithm.
189 ///Runs the preflow algorithm.
190 ///\pre The starting flow map must be
191 /// - a constant zero flow if \c fp is \c ZERO_FLOW,
192 /// - an arbitrary flow if \c fp is \c GEN_FLOW,
193 /// - an arbitrary preflow if \c fp is \c PRE_FLOW,
194 /// - any map if \c fp is NO_FLOW.
195 ///If the starting flow map is a flow or a preflow then
196 ///the algorithm terminates faster.
197 void run(FlowEnum fp) {
202 ///Runs the first phase of the preflow algorithm.
204 ///The preflow algorithm consists of two phases, this method runs
205 ///the first phase. After the first phase the maximum flow value
206 ///and a minimum value cut can already be computed, although a
207 ///maximum flow is not yet obtained. So after calling this method
208 ///\ref flowValue returns the value of a maximum flow and \ref
209 ///minCut returns a minimum cut.
210 ///\warning \ref minMinCut and \ref maxMinCut do not give minimum
211 ///value cuts unless calling \ref phase2.
212 ///\pre The starting flow must be
213 ///- a constant zero flow if \c fp is \c ZERO_FLOW,
214 ///- an arbitary flow if \c fp is \c GEN_FLOW,
215 ///- an arbitary preflow if \c fp is \c PRE_FLOW,
216 ///- any map if \c fp is NO_FLOW.
217 void phase1(FlowEnum fp)
224 ///Runs the first phase of the preflow algorithm.
226 ///The preflow algorithm consists of two phases, this method runs
227 ///the first phase. After the first phase the maximum flow value
228 ///and a minimum value cut can already be computed, although a
229 ///maximum flow is not yet obtained. So after calling this method
230 ///\ref flowValue returns the value of a maximum flow and \ref
231 ///minCut returns a minimum cut.
232 ///\warning \ref minMinCut() and \ref maxMinCut() do not
233 ///give minimum value cuts unless calling \ref phase2().
236 int heur0=(int)(H0*_node_num); //time while running 'bound decrease'
237 int heur1=(int)(H1*_node_num); //time while running 'highest label'
238 int heur=heur1; //starting time interval (#of relabels)
242 //It is 0 in case 'bound decrease' and 1 in case 'highest label'
245 //Needed for 'bound decrease', true means no active
246 //nodes are above bound b.
248 int k=_node_num-2; //bound on the highest level under n containing a node
249 int b=k; //bound on the highest level under n of an active node
251 VecNode first(_node_num, INVALID);
252 NNMap next(*_g, INVALID);
254 NNMap left(*_g, INVALID);
255 NNMap right(*_g, INVALID);
256 VecNode level_list(_node_num,INVALID);
257 //List of the nodes in level i<n, set to n.
259 preflowPreproc(first, next, level_list, left, right);
261 //Push/relabel on the highest level active nodes.
264 if ( !what_heur && !end && k > 0 ) {
270 if ( first[b]==INVALID ) --b;
275 int newlevel=push(w, next, first);
276 if ( excess[w] > 0 ) relabel(w, newlevel, first, next, level_list,
277 left, right, b, k, what_heur);
280 if ( numrelabel >= heur ) {
295 status=AFTER_PREFLOW_PHASE_1;
300 // list 'level_list' on the nodes on level i implemented by hand
301 // stack 'active' on the active nodes on level i
302 // runs heuristic 'highest label' for H1*n relabels
303 // runs heuristic 'bound decrease' for H0*n relabels,
304 // starts with 'highest label'
305 // Parameters H0 and H1 are initialized to 20 and 1.
308 ///Runs the second phase of the preflow algorithm.
310 ///The preflow algorithm consists of two phases, this method runs
311 ///the second phase. After calling \ref phase1() and then
313 /// \ref flowMap() return a maximum flow, \ref flowValue
314 ///returns the value of a maximum flow, \ref minCut returns a
315 ///minimum cut, while the methods \ref minMinCut and \ref
316 ///maxMinCut return the inclusionwise minimum and maximum cuts of
317 ///minimum value, resp. \pre \ref phase1 must be called before.
321 int k=_node_num-2; //bound on the highest level under n containing a node
322 int b=k; //bound on the highest level under n of an active node
325 VecNode first(_node_num, INVALID);
326 NNMap next(*_g, INVALID);
327 level.set(_source,0);
328 std::queue<Node> bfs_queue;
329 bfs_queue.push(_source);
331 while ( !bfs_queue.empty() ) {
333 Node v=bfs_queue.front();
337 for(InEdgeIt e(*_g,v); e!=INVALID; ++e) {
338 if ( (*_capacity)[e] <= (*_flow)[e] ) continue;
339 Node u=_g->source(e);
340 if ( level[u] >= _node_num ) {
343 if ( excess[u] > 0 ) {
344 next.set(u,first[l]);
350 for(OutEdgeIt e(*_g,v); e!=INVALID; ++e) {
351 if ( 0 >= (*_flow)[e] ) continue;
352 Node u=_g->target(e);
353 if ( level[u] >= _node_num ) {
356 if ( excess[u] > 0 ) {
357 next.set(u,first[l]);
368 if ( first[b]==INVALID ) --b;
372 int newlevel=push(w,next, first);
375 if ( excess[w] > 0 ) {
376 level.set(w,++newlevel);
377 next.set(w,first[newlevel]);
384 status=AFTER_PREFLOW_PHASE_2;
387 /// Returns the value of the maximum flow.
389 /// Returns the value of the maximum flow by returning the excess
390 /// of the target node \c t. This value equals to the value of
391 /// the maximum flow already after running \ref phase1.
392 Num flowValue() const {
393 return excess[_target];
397 ///Returns a minimum value cut.
399 ///Sets \c M to the characteristic vector of a minimum value
400 ///cut. This method can be called both after running \ref
401 ///phase1 and \ref phase2. It is much faster after
402 ///\ref phase1. \pre M should be a bool-valued node-map. \pre
403 ///If \ref minCut() is called after \ref phase2() then M should
404 ///be initialized to false.
405 template<typename _CutMap>
406 void minCut(_CutMap& M) const {
408 case AFTER_PREFLOW_PHASE_1:
409 for(NodeIt v(*_g); v!=INVALID; ++v) {
410 if (level[v] < _node_num) {
417 case AFTER_PREFLOW_PHASE_2:
425 ///Returns the inclusionwise minimum of the minimum value cuts.
427 ///Sets \c M to the characteristic vector of the minimum value cut
428 ///which is inclusionwise minimum. It is computed by processing a
429 ///bfs from the source node \c s in the residual graph. \pre M
430 ///should be a node map of bools initialized to false. \pre \ref
431 ///phase2 should already be run.
432 template<typename _CutMap>
433 void minMinCut(_CutMap& M) const {
435 std::queue<Node> queue;
439 while (!queue.empty()) {
440 Node w=queue.front();
443 for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
444 Node v=_g->target(e);
445 if (!M[v] && (*_flow)[e] < (*_capacity)[e] ) {
451 for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
452 Node v=_g->source(e);
453 if (!M[v] && (*_flow)[e] > 0 ) {
461 ///Returns the inclusionwise maximum of the minimum value cuts.
463 ///Sets \c M to the characteristic vector of the minimum value cut
464 ///which is inclusionwise maximum. It is computed by processing a
465 ///backward bfs from the target node \c t in the residual graph.
466 ///\pre \ref phase2() or run() should already be run.
467 template<typename _CutMap>
468 void maxMinCut(_CutMap& M) const {
470 for(NodeIt v(*_g) ; v!=INVALID; ++v) M.set(v, true);
472 std::queue<Node> queue;
474 M.set(_target,false);
477 while (!queue.empty()) {
478 Node w=queue.front();
481 for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
482 Node v=_g->source(e);
483 if (M[v] && (*_flow)[e] < (*_capacity)[e] ) {
489 for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
490 Node v=_g->target(e);
491 if (M[v] && (*_flow)[e] > 0 ) {
499 ///Sets the source node to \c _s.
501 ///Sets the source node to \c _s.
503 void source(Node _s) {
505 if ( flow_prop != ZERO_FLOW ) flow_prop=NO_FLOW;
506 status=AFTER_NOTHING;
509 ///Returns the source node.
511 ///Returns the source node.
513 Node source() const {
517 ///Sets the target node to \c _t.
519 ///Sets the target node to \c _t.
521 void target(Node _t) {
523 if ( flow_prop == GEN_FLOW ) flow_prop=PRE_FLOW;
524 status=AFTER_NOTHING;
527 ///Returns the target node.
529 ///Returns the target node.
531 Node target() const {
535 /// Sets the edge map of the capacities to _cap.
537 /// Sets the edge map of the capacities to _cap.
539 void capacityMap(const CapacityMap& _cap) {
541 status=AFTER_NOTHING;
543 /// Returns a reference to capacity map.
545 /// Returns a reference to capacity map.
547 const CapacityMap &capacityMap() const {
551 /// Sets the edge map of the flows to _flow.
553 /// Sets the edge map of the flows to _flow.
555 void flowMap(FlowMap& _f) {
558 status=AFTER_NOTHING;
561 /// Returns a reference to flow map.
563 /// Returns a reference to flow map.
565 const FlowMap &flowMap() const {
571 int push(Node w, NNMap& next, VecNode& first) {
575 int newlevel=_node_num; //bound on the next level of w
577 for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
578 if ( (*_flow)[e] >= (*_capacity)[e] ) continue;
579 Node v=_g->target(e);
581 if( lev > level[v] ) { //Push is allowed now
583 if ( excess[v]<=0 && v!=_target && v!=_source ) {
584 next.set(v,first[level[v]]);
588 Num cap=(*_capacity)[e];
592 if ( remcap >= exc ) { //A nonsaturating push.
594 _flow->set(e, flo+exc);
595 excess.set(v, excess[v]+exc);
599 } else { //A saturating push.
601 excess.set(v, excess[v]+remcap);
604 } else if ( newlevel > level[v] ) newlevel = level[v];
608 for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
610 if( (*_flow)[e] <= 0 ) continue;
611 Node v=_g->source(e);
613 if( lev > level[v] ) { //Push is allowed now
615 if ( excess[v]<=0 && v!=_target && v!=_source ) {
616 next.set(v,first[level[v]]);
622 if ( flo >= exc ) { //A nonsaturating push.
624 _flow->set(e, flo-exc);
625 excess.set(v, excess[v]+exc);
628 } else { //A saturating push.
630 excess.set(v, excess[v]+flo);
634 } else if ( newlevel > level[v] ) newlevel = level[v];
637 } // if w still has excess after the out edge for cycle
646 void preflowPreproc(VecNode& first, NNMap& next,
647 VecNode& level_list, NNMap& left, NNMap& right)
649 for(NodeIt v(*_g); v!=INVALID; ++v) level.set(v,_node_num);
650 std::queue<Node> bfs_queue;
652 if ( flow_prop == GEN_FLOW || flow_prop == PRE_FLOW ) {
653 //Reverse_bfs from t in the residual graph,
654 //to find the starting level.
655 level.set(_target,0);
656 bfs_queue.push(_target);
658 while ( !bfs_queue.empty() ) {
660 Node v=bfs_queue.front();
664 for(InEdgeIt e(*_g,v) ; e!=INVALID; ++e) {
665 if ( (*_capacity)[e] <= (*_flow)[e] ) continue;
666 Node w=_g->source(e);
667 if ( level[w] == _node_num && w != _source ) {
669 Node z=level_list[l];
670 if ( z!=INVALID ) left.set(z,w);
677 for(OutEdgeIt e(*_g,v) ; e!=INVALID; ++e) {
678 if ( 0 >= (*_flow)[e] ) continue;
679 Node w=_g->target(e);
680 if ( level[w] == _node_num && w != _source ) {
682 Node z=level_list[l];
683 if ( z!=INVALID ) left.set(z,w);
695 for(EdgeIt e(*_g); e!=INVALID; ++e) _flow->set(e,0);
697 for(NodeIt v(*_g); v!=INVALID; ++v) excess.set(v,0);
699 //Reverse_bfs from t, to find the starting level.
700 level.set(_target,0);
701 bfs_queue.push(_target);
703 while ( !bfs_queue.empty() ) {
705 Node v=bfs_queue.front();
709 for(InEdgeIt e(*_g,v) ; e!=INVALID; ++e) {
710 Node w=_g->source(e);
711 if ( level[w] == _node_num && w != _source ) {
713 Node z=level_list[l];
714 if ( z!=INVALID ) left.set(z,w);
723 for(OutEdgeIt e(*_g,_source) ; e!=INVALID; ++e) {
724 Num c=(*_capacity)[e];
725 if ( c <= 0 ) continue;
726 Node w=_g->target(e);
727 if ( level[w] < _node_num ) {
728 if ( excess[w] <= 0 && w!=_target ) { //putting into the stack
729 next.set(w,first[level[w]]);
733 excess.set(w, excess[w]+c);
739 for(NodeIt v(*_g); v!=INVALID; ++v) excess.set(v,0);
742 for(InEdgeIt e(*_g,_target) ; e!=INVALID; ++e) exc+=(*_flow)[e];
743 for(OutEdgeIt e(*_g,_target) ; e!=INVALID; ++e) exc-=(*_flow)[e];
744 excess.set(_target,exc);
748 for(OutEdgeIt e(*_g,_source); e!=INVALID; ++e) {
749 Num rem=(*_capacity)[e]-(*_flow)[e];
750 if ( rem <= 0 ) continue;
751 Node w=_g->target(e);
752 if ( level[w] < _node_num ) {
753 if ( excess[w] <= 0 && w!=_target ) { //putting into the stack
754 next.set(w,first[level[w]]);
757 _flow->set(e, (*_capacity)[e]);
758 excess.set(w, excess[w]+rem);
762 for(InEdgeIt e(*_g,_source); e!=INVALID; ++e) {
763 if ( (*_flow)[e] <= 0 ) continue;
764 Node w=_g->source(e);
765 if ( level[w] < _node_num ) {
766 if ( excess[w] <= 0 && w!=_target ) {
767 next.set(w,first[level[w]]);
770 excess.set(w, excess[w]+(*_flow)[e]);
778 for(OutEdgeIt e(*_g,_source) ; e!=INVALID; ++e) {
779 Num rem=(*_capacity)[e]-(*_flow)[e];
780 if ( rem <= 0 ) continue;
781 Node w=_g->target(e);
782 if ( level[w] < _node_num ) _flow->set(e, (*_capacity)[e]);
785 for(InEdgeIt e(*_g,_source) ; e!=INVALID; ++e) {
786 if ( (*_flow)[e] <= 0 ) continue;
787 Node w=_g->source(e);
788 if ( level[w] < _node_num ) _flow->set(e, 0);
791 //computing the excess
792 for(NodeIt w(*_g); w!=INVALID; ++w) {
794 for(InEdgeIt e(*_g,w); e!=INVALID; ++e) exc+=(*_flow)[e];
795 for(OutEdgeIt e(*_g,w); e!=INVALID; ++e) exc-=(*_flow)[e];
798 //putting the active nodes into the stack
800 if ( exc > 0 && lev < _node_num && Node(w) != _target ) {
801 next.set(w,first[lev]);
810 void relabel(Node w, int newlevel, VecNode& first, NNMap& next,
811 VecNode& level_list, NNMap& left,
812 NNMap& right, int& b, int& k, bool what_heur )
817 Node right_n=right[w];
821 if ( right_n!=INVALID ) {
822 if ( left_n!=INVALID ) {
823 right.set(left_n, right_n);
824 left.set(right_n, left_n);
826 level_list[lev]=right_n;
827 left.set(right_n, INVALID);
830 if ( left_n!=INVALID ) {
831 right.set(left_n, INVALID);
833 level_list[lev]=INVALID;
838 if ( level_list[lev]==INVALID ) {
841 for (int i=lev; i!=k ; ) {
842 Node v=level_list[++i];
843 while ( v!=INVALID ) {
844 level.set(v,_node_num);
847 level_list[i]=INVALID;
848 if ( !what_heur ) first[i]=INVALID;
851 level.set(w,_node_num);
858 if ( newlevel == _node_num ) level.set(w,_node_num);
860 level.set(w,++newlevel);
861 next.set(w,first[newlevel]);
863 if ( what_heur ) b=newlevel;
864 if ( k < newlevel ) ++k; //now k=newlevel
865 Node z=level_list[newlevel];
866 if ( z!=INVALID ) left.set(z,w);
869 level_list[newlevel]=w;
877 ///\brief Function type interface for Preflow algorithm.
879 ///Function type interface for Preflow algorithm.
881 template<class GR, class CM, class FM>
882 Preflow<GR,typename CM::Value,CM,FM> preflow(const GR &g,
883 typename GR::Node source,
884 typename GR::Node target,
889 return Preflow<GR,typename CM::Value,CM,FM>(g,source,target,cap,flow);
894 #endif //LEMON_PREFLOW_H