Bookmark-okkal, b?r el?g bugosan.
1 #ifndef PREFLOW_PUSH_HH
2 #define PREFLOW_PUSH_HH
7 //#include "pf_hiba.hh"
8 //#include <marci_list_graph.hh>
9 #include <marci_graph_traits.hh>
10 #include "reverse_bfs.hh"
16 template <typename graph_type, typename T>
20 typedef graph_traits<graph_type>::node_iterator node_iterator;
21 typedef graph_traits<graph_type>::edge_iterator edge_iterator;
22 typedef graph_traits<graph_type>::each_node_iterator each_node_iterator;
23 typedef graph_traits<graph_type>::each_edge_iterator each_edge_iterator;
24 typedef graph_traits<graph_type>::out_edge_iterator out_edge_iterator;
25 typedef graph_traits<graph_type>::in_edge_iterator in_edge_iterator;
26 typedef graph_traits<graph_type>::sym_edge_iterator sym_edge_iterator;
28 //---------------------------------------------
29 //Parameters of the algorithm
30 //---------------------------------------------
31 //Fully examine an active node until excess becomes 0
32 enum node_examination_t {examine_full, examine_to_relabel};
33 //No more implemented yet:, examine_only_one_edge};
34 node_examination_t node_examination;
35 //Which implementation to be used
36 enum implementation_t {impl_fifo, impl_highest_label};
37 //No more implemented yet:};
38 implementation_t implementation;
39 //---------------------------------------------
40 //Parameters of the algorithm
41 //---------------------------------------------
48 edge_property_vector<graph_type, T> &capacity;
50 edge_property_vector<graph_type, T> preflow;
53 //auxiliary variables for computation
55 node_property_vector<graph_type, int> level;
56 node_property_vector<graph_type, T> excess;
58 //Number of nodes on each level
59 vector<int> num_of_nodes_on_level;
61 //For the FIFO implementation
62 list<node_iterator> fifo_nodes;
63 //For 'highest label' implementation
65 //int second_highest_active;
66 vector< list<node_iterator> > active_nodes;
70 //Constructing the object using the graph, source, sink and capacity vector
75 edge_property_vector<graph_type, T>& _capacity)
76 : G(_G), s(_s), t(_t),
79 //Counting the number of nodes
80 number_of_nodes(number_of(G.first_node())),
83 // Default constructor: active_nodes()
85 //Simplest parameter settings
86 node_examination = examine_full;//examine_to_relabel;//
87 //Which implementation to be usedexamine_full
88 implementation = impl_highest_label;//impl_fifo;
91 num_of_nodes_on_level.resize(2*number_of_nodes-1);
92 num_of_nodes_on_level.clear();
94 switch(implementation){
95 case impl_highest_label :{
96 active_nodes.resize(2*number_of_nodes-1);
106 //Returns the value of a maximal flow
109 edge_property_vector<graph_type, T> getmaxflow(){
115 //For testing purposes only
116 //Lists the node_properties
117 void write_property_vector(node_property_vector<graph_type, T> a,
118 char* prop_name="property"){
119 for(each_node_iterator i=G.first_node(); i.valid(); ++i) {
120 cout<<"Node id.: "<<G.id(i)<<", "<<prop_name<<" value: "<<a.get(i)<<endl;
125 //Modifies the excess of the node and makes sufficient changes
126 void modify_excess(const node_iterator& a ,T v){
127 T old_value=excess.get(a);
128 excess.put(a,old_value+v);
131 //This private procedure is supposed to modify the preflow on edge j
132 //by value v (which can be positive or negative as well)
133 //and maintain the excess on the head and tail
134 //Here we do not check whether this is possible or not
135 void modify_preflow(edge_iterator j, const T& v){
141 old_value=preflow.get(j);
142 preflow.put(j,old_value+v);
146 modify_excess(G.head(j),v);
149 modify_excess(G.tail(j),-v);
153 //Gives the active node to work with
154 //(depending on the implementation to be used)
155 node_iterator get_active_node(){
156 //cout<<highest_active<<endl;
158 switch(implementation) {
159 case impl_highest_label : {
161 //First need to find the highest label for which there"s an active node
162 while( highest_active>=0 && active_nodes[highest_active].empty() ){
166 if( highest_active>=0) {
167 node_iterator a=active_nodes[highest_active].front();
168 active_nodes[highest_active].pop_front();
172 return node_iterator();
180 if( ! fifo_nodes.empty() ) {
181 node_iterator a=fifo_nodes.front();
182 fifo_nodes.pop_front();
186 return node_iterator();
192 return node_iterator();
195 //Puts node 'a' among the active nodes
196 void make_active(const node_iterator& a){
197 //s and t never become active
199 switch(implementation){
200 case impl_highest_label :
201 active_nodes[level.get(a)].push_back(a);
204 fifo_nodes.push_back(a);
210 //Update highest_active label
211 if (highest_active<level.get(a)){
212 highest_active=level.get(a);
217 //Changes the level of node a and make sufficent changes
218 void change_level_to(node_iterator a, int new_value){
219 int seged = level.get(a);
220 level.put(a,new_value);
221 --num_of_nodes_on_level[seged];
222 ++num_of_nodes_on_level[new_value];
225 //Collection of things useful (or necessary) to do before running
228 //---------------------------------------
229 //Initialize parameters
230 //---------------------------------------
232 //Setting starting preflow, level and excess values to zero
233 //This can be important, if the algorithm is run more then once
234 for(each_node_iterator i=G.first_node(); i.valid(); ++i) {
237 for(out_edge_iterator j=G.first_out_edge(i); j.valid(); ++j)
240 num_of_nodes_on_level[0]=number_of_nodes;
242 //---------------------------------------
243 //Initialize parameters
244 //---------------------------------------
247 //------------------------------------
248 //This is the only part that uses BFS
249 //------------------------------------
250 //Setting starting level values using reverse bfs
251 reverse_bfs<graph_type> rev_bfs(G,t);
253 //write_property_vector(rev_bfs.dist,"rev_bfs");
254 for(each_node_iterator i=G.first_node(); i.valid(); ++i) {
255 change_level_to(i,rev_bfs.dist(i));
256 //level.put(i,rev_bfs.dist.get(i));
258 //------------------------------------
259 //This is the only part that uses BFS
260 //------------------------------------
263 //Starting level of s
264 change_level_to(s,number_of_nodes);
265 //level.put(s,number_of_nodes);
268 //we push as much preflow from s as possible to start with
269 for(out_edge_iterator j=G.first_out_edge(s); j.valid(); ++j){
270 modify_preflow(j,capacity.get(j) );
271 make_active(G.head(j));
272 int lev=level.get(G.head(j));
273 if(highest_active<lev){
277 //cout<<highest_active<<endl;
281 //If the preflow is less than the capacity on the given edge
282 //then it is an edge in the residual graph
283 bool is_admissible_forward_edge(out_edge_iterator j, int& new_level){
284 if (capacity.get(j)>preflow.get(j)){
285 if(level.get(G.tail(j))==level.get(G.head(j))+1){
289 if (level.get(G.head(j)) < new_level)
290 new_level=level.get(G.head(j));
296 //If the preflow is greater than 0 on the given edge
297 //then the edge reversd is an edge in the residual graph
298 bool is_admissible_backward_edge(in_edge_iterator j, int& new_level){
299 if (0<preflow.get(j)){
300 if(level.get(G.tail(j))==level.get(G.head(j))-1){
304 if (level.get(G.tail(j)) < new_level)
305 new_level=level.get(G.tail(j));
313 }; //class preflow_push
315 template<typename graph_type, typename T>
316 T preflow_push<graph_type, T>::run() {
322 while (a=get_active_node(), a.valid()){
323 //cout<<G.id(a)<<endl;
324 //write_property_vector(excess,"excess");
325 //write_property_vector(level,"level");
327 //Initial value for the new level for the active node we are dealing with
328 int new_level=2*number_of_nodes;
330 bool go_to_next_node=false;
332 while (!go_to_next_node){
334 //Out edges from node a
336 out_edge_iterator j=G.first_out_edge(a);
337 while (j.valid() && e){
339 if (is_admissible_forward_edge(j,new_level)){
340 v=min(e,capacity.get(j) - preflow.get(j));
342 //New node might become active
343 if (excess.get(G.head(j))==0){
344 make_active(G.head(j));
353 in_edge_iterator j=G.first_in_edge(a);
354 while (j.valid() && e){
355 if (is_admissible_backward_edge(j,new_level)){
356 v=min(e,preflow.get(j));
358 //New node might become active
359 if (excess.get(G.tail(j))==0){
360 make_active(G.tail(j));
362 modify_preflow(j,-v);
368 //cout<<G.id(a)<<" "<<new_level<<endl;
372 go_to_next_node=true;
374 else{//If there is still excess in node a
376 //Level remains empty
377 if (num_of_nodes_on_level[level.get(a)]==1){
378 change_level_to(a,number_of_nodes);
379 //go_to_next_node=True;
382 change_level_to(a,new_level+1);
389 switch(node_examination){
390 case examine_to_relabel:
393 go_to_next_node = true;
404 maxflow_value = excess.get(t);
405 return maxflow_value;
411 #endif //PREFLOW_PUSH_HH