src/hugo/kruskal.h
author deba
Sun, 12 Sep 2004 19:32:21 +0000
changeset 830 89dfa3bece81
parent 812 182d3a4d7ddb
child 881 a9f19f38970b
permissions -rw-r--r--
KeySet and ValueSet are inserted into the map structures.
They makes possible the iterating on the keys or values only.
     1 // -*- c++ -*- //
     2 #ifndef HUGO_KRUSKAL_H
     3 #define HUGO_KRUSKAL_H
     4 
     5 #include <algorithm>
     6 #include <hugo/unionfind.h>
     7 
     8 /**
     9 @defgroup spantree Minimum Cost Spanning Tree Algorithms
    10 @ingroup galgs
    11 \brief This group containes the algorithms for finding a minimum cost spanning
    12 tree in a graph
    13 
    14 This group containes the algorithms for finding a minimum cost spanning
    15 tree in a graph
    16 */
    17 
    18 ///\ingroup spantree
    19 ///\file
    20 ///\brief Kruskal's algorithm to compute a minimum cost tree
    21 ///
    22 ///Kruskal's algorithm to compute a minimum cost tree.
    23 
    24 ///\weakgroup spantree
    25 namespace hugo {
    26 
    27   /// \addtogroup spantree
    28   /// @{
    29 
    30   /// Kruskal's algorithm to find a minimum cost tree of a graph.
    31 
    32   /// This function runs Kruskal's algorithm to find a minimum cost tree.
    33   /// \param G The graph the algorithm runs on. The algorithm considers the
    34   /// graph to be undirected, the direction of the edges are not used.
    35   ///
    36   /// \param in This object is used to describe the edge costs. It must
    37   /// be an STL compatible 'Forward Container'
    38   /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
    39   /// where X is the type of the costs. It must contain every edge in
    40   /// cost-ascending order.
    41   ///\par
    42   /// For the sake of simplicity, there is a helper class KruskalMapInput,
    43   /// which converts a
    44   /// simple edge map to an input of this form. Alternatively, you can use
    45   /// the function \ref kruskalEdgeMap to compute the minimum cost tree if
    46   /// the edge costs are given by an edge map.
    47   ///
    48   /// \retval out This must be a writable \c bool edge map.
    49   /// After running the algorithm
    50   /// this will contain the found minimum cost spanning tree: the value of an
    51   /// edge will be set to \c true if it belongs to the tree, otherwise it will
    52   /// be set to \c false. The value of each edge will be set exactly once.
    53   ///
    54   /// \return The cost of the found tree.
    55 
    56   template <class GR, class IN, class OUT>
    57   typename IN::value_type::second_type
    58   kruskal(GR const& G, IN const& in, 
    59 		 OUT& out)
    60   {
    61     typedef typename IN::value_type::second_type EdgeCost;
    62     typedef typename GR::template NodeMap<int> NodeIntMap;
    63     typedef typename GR::Node Node;
    64 
    65     NodeIntMap comp(G, -1);
    66     UnionFind<Node,NodeIntMap> uf(comp); 
    67       
    68     EdgeCost tot_cost = 0;
    69     for (typename IN::const_iterator p = in.begin(); 
    70 	 p!=in.end(); ++p ) {
    71       if ( uf.join(G.head((*p).first),
    72 		   G.tail((*p).first)) ) {
    73 	out.set((*p).first, true);
    74 	tot_cost += (*p).second;
    75       }
    76       else {
    77 	out.set((*p).first, false);
    78       }
    79     }
    80     return tot_cost;
    81   }
    82 
    83   /* A work-around for running Kruskal with const-reference bool maps... */
    84 
    85   ///\bug What is this? Or why doesn't it work?
    86   ///
    87   template<class Map>
    88   class NonConstMapWr {
    89     const Map &m;
    90   public:
    91     typedef typename Map::ValueType ValueType;
    92 
    93     NonConstMapWr(const Map &_m) : m(_m) {}
    94 
    95     template<class KeyType>
    96     void set(KeyType const& k, ValueType const &v) const { m.set(k,v); }
    97   };
    98 
    99   template <class GR, class IN, class OUT>
   100   inline
   101   typename IN::ValueType
   102   kruskal(GR const& G, IN const& edges, 
   103 	  OUT const& out_map)
   104   {
   105     NonConstMapWr<OUT> map_wr(out_map);
   106     return kruskal(G, edges, map_wr);
   107   }  
   108 
   109   /* ** ** Input-objects ** ** */
   110 
   111   /// Kruskal input source.
   112 
   113   /// Kruskal input source.
   114   ///
   115   /// In most cases you possibly want to use the \ref kruskalEdgeMap() instead.
   116   ///
   117   /// \sa makeKruskalMapInput()
   118   ///
   119   ///\param GR The type of the graph the algorithm runs on.
   120   ///\param Map An edge map containing the cost of the edges.
   121   ///\par
   122   ///The cost type can be any type satisfying
   123   ///the STL 'LessThan comparable'
   124   ///concept if it also has an operator+() implemented. (It is necessary for
   125   ///computing the total cost of the tree).
   126   ///
   127   template<class GR, class Map>
   128   class KruskalMapInput
   129     : public std::vector< std::pair<typename GR::Edge,
   130 				    typename Map::ValueType> > {
   131     
   132   public:
   133     typedef std::vector< std::pair<typename GR::Edge,
   134 				   typename Map::ValueType> > Parent;
   135     typedef typename Parent::value_type value_type;
   136 
   137   private:
   138     class comparePair {
   139     public:
   140       bool operator()(const value_type& a,
   141 		      const value_type& b) {
   142 	return a.second < b.second;
   143       }
   144     };
   145 
   146   public:
   147 
   148     void sort() {
   149       std::sort(this->begin(), this->end(), comparePair());
   150     }
   151 
   152     KruskalMapInput(GR const& G, Map const& m) {
   153       typedef typename GR::EdgeIt EdgeIt;
   154       
   155       this->clear();
   156       for(EdgeIt e(G);e!=INVALID;++e) push_back(make_pair(e, m[e]));
   157       sort();
   158     }
   159   };
   160 
   161   /// Creates a KruskalMapInput object for \ref kruskal()
   162 
   163   /// It makes is easier to use 
   164   /// \ref KruskalMapInput by making it unnecessary 
   165   /// to explicitly give the type of the parameters.
   166   ///
   167   /// In most cases you possibly
   168   /// want to use the function kruskalEdgeMap() instead.
   169   ///
   170   ///\param G The type of the graph the algorithm runs on.
   171   ///\param m An edge map containing the cost of the edges.
   172   ///\par
   173   ///The cost type can be any type satisfying the
   174   ///STL 'LessThan Comparable'
   175   ///concept if it also has an operator+() implemented. (It is necessary for
   176   ///computing the total cost of the tree).
   177   ///
   178   ///\return An appropriate input source for \ref kruskal().
   179   ///
   180   template<class GR, class Map>
   181   inline
   182   KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &G,const Map &m)
   183   {
   184     return KruskalMapInput<GR,Map>(G,m);
   185   }
   186   
   187   
   188   /* ** ** Output-objects: simple writable bool maps** ** */
   189   
   190   /// A writable bool-map that makes a sequence of "true" keys
   191 
   192   /// A writable bool-map that creates a sequence out of keys that receives
   193   /// the value "true".
   194   /// \warning Not a regular property map, as it doesn't know its KeyType
   195   /// \bug Missing documentation.
   196   /// \todo This class may be of wider usage, therefore it could move to
   197   /// <tt>maps.h</tt>
   198   template<class Iterator>
   199   class SequenceOutput {
   200     mutable Iterator it;
   201 
   202   public:
   203     typedef bool ValueType;
   204 
   205     SequenceOutput(Iterator const &_it) : it(_it) {}
   206 
   207     template<typename KeyType>
   208     void set(KeyType const& k, bool v) const { if(v) {*it=k; ++it;} }
   209   };
   210 
   211   template<class Iterator>
   212   inline
   213   SequenceOutput<Iterator>
   214   makeSequenceOutput(Iterator it) {
   215     return SequenceOutput<Iterator>(it);
   216   }
   217 
   218   /* ** ** Wrapper funtions ** ** */
   219 
   220 
   221   /// \brief Wrapper function to kruskal().
   222   /// Input is from an edge map, output is a plain bool map.
   223   ///
   224   /// Wrapper function to kruskal().
   225   /// Input is from an edge map, output is a plain bool map.
   226   ///
   227   ///\param G The type of the graph the algorithm runs on.
   228   ///\param in An edge map containing the cost of the edges.
   229   ///\par
   230   ///The cost type can be any type satisfying the
   231   ///STL 'LessThan Comparable'
   232   ///concept if it also has an operator+() implemented. (It is necessary for
   233   ///computing the total cost of the tree).
   234   ///
   235   /// \retval out This must be a writable \c bool edge map.
   236   /// After running the algorithm
   237   /// this will contain the found minimum cost spanning tree: the value of an
   238   /// edge will be set to \c true if it belongs to the tree, otherwise it will
   239   /// be set to \c false. The value of each edge will be set exactly once.
   240   ///
   241   /// \return The cost of the found tree.
   242 
   243 
   244   template <class GR, class IN, class RET>
   245   inline
   246   typename IN::ValueType
   247   kruskalEdgeMap(GR const& G,
   248 		 IN const& in,
   249 		 RET &out) {
   250     return kruskal(G,
   251 		   KruskalMapInput<GR,IN>(G,in),
   252 		   out);
   253   }
   254 
   255   /// \brief Wrapper function to kruskal().
   256   /// Input is from an edge map, output is an STL Sequence.
   257   ///
   258   /// Wrapper function to kruskal().
   259   /// Input is from an edge map, output is an STL Sequence.
   260   ///
   261   ///\param G The type of the graph the algorithm runs on.
   262   ///\param in An edge map containing the cost of the edges.
   263   ///\par
   264   ///The cost type can be any type satisfying the
   265   ///STL 'LessThan Comparable'
   266   ///concept if it also has an operator+() implemented. (It is necessary for
   267   ///computing the total cost of the tree).
   268   ///
   269   /// \retval out This must be an iteraror of an STL Container with
   270   /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
   271   /// The algorithm copies the elements of the found tree into this sequence.
   272   /// For example, if we know that the spanning tree of the graph \c G has
   273   /// say 53 edges then
   274   /// we can put its edges into a STL vector \c tree with a code like this.
   275   /// \code
   276   /// std::vector<Edge> tree(53);
   277   /// kruskalEdgeMap_IteratorOut(G,cost,tree.begin());
   278   /// \endcode
   279   /// Or if we don't know in advance the size of the tree, we can write this.
   280   /// \code
   281   /// std::vector<Edge> tree;
   282   /// kruskalEdgeMap_IteratorOut(G,cost,std::back_inserter(tree));
   283   /// \endcode
   284   ///
   285   /// \return The cost of the found tree.
   286   ///
   287   /// \bug its name does not follow the coding style.
   288   template <class GR, class IN, class RET>
   289   inline
   290   typename IN::ValueType
   291   kruskalEdgeMap_IteratorOut(const GR& G,
   292 			     const IN& in,
   293 			     RET out)
   294   {
   295     SequenceOutput<RET> _out(out);
   296     return kruskal(G,
   297 		   KruskalMapInput<GR,IN>(G, in),
   298 		   _out);
   299   }
   300 
   301   /// @}
   302 
   303 } //namespace hugo
   304 
   305 #endif //HUGO_KRUSKAL_H