lemon/bipartite_matching.h
author ladanyi
Fri, 14 Apr 2006 22:01:02 +0000
changeset 2056 8acf212a5ed4
parent 2040 c7bd55c0d820
child 2058 0b1fc1566fdb
permissions -rw-r--r--
downgrade to gettext 0.14.2
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_BIPARTITE_MATCHING
    20 #define LEMON_BIPARTITE_MATCHING
    21 
    22 #include <functional>
    23 
    24 #include <lemon/bin_heap.h>
    25 #include <lemon/maps.h>
    26 
    27 #include <iostream>
    28 
    29 ///\ingroup matching
    30 ///\file
    31 ///\brief Maximum matching algorithms in bipartite graphs.
    32 
    33 namespace lemon {
    34 
    35   /// \ingroup matching
    36   ///
    37   /// \brief Bipartite Max Cardinality Matching algorithm
    38   ///
    39   /// Bipartite Max Cardinality Matching algorithm. This class implements
    40   /// the Hopcroft-Karp algorithm which has \f$ O(e\sqrt{n}) \f$ time
    41   /// complexity.
    42   template <typename BpUGraph>
    43   class MaxBipartiteMatching {
    44   protected:
    45 
    46     typedef BpUGraph Graph;
    47 
    48     typedef typename Graph::Node Node;
    49     typedef typename Graph::ANodeIt ANodeIt;
    50     typedef typename Graph::BNodeIt BNodeIt;
    51     typedef typename Graph::UEdge UEdge;
    52     typedef typename Graph::UEdgeIt UEdgeIt;
    53     typedef typename Graph::IncEdgeIt IncEdgeIt;
    54 
    55     typedef typename BpUGraph::template ANodeMap<UEdge> ANodeMatchingMap;
    56     typedef typename BpUGraph::template BNodeMap<UEdge> BNodeMatchingMap;
    57 
    58 
    59   public:
    60 
    61     /// \brief Constructor.
    62     ///
    63     /// Constructor of the algorithm. 
    64     MaxBipartiteMatching(const BpUGraph& _graph) 
    65       : anode_matching(_graph), bnode_matching(_graph), graph(&_graph) {}
    66 
    67     /// \name Execution control
    68     /// The simplest way to execute the algorithm is to use
    69     /// one of the member functions called \c run().
    70     /// \n
    71     /// If you need more control on the execution,
    72     /// first you must call \ref init() or one alternative for it.
    73     /// Finally \ref start() will perform the matching computation or
    74     /// with step-by-step execution you can augment the solution.
    75 
    76     /// @{
    77 
    78     /// \brief Initalize the data structures.
    79     ///
    80     /// It initalizes the data structures and creates an empty matching.
    81     void init() {
    82       for (ANodeIt it(*graph); it != INVALID; ++it) {
    83         anode_matching[it] = INVALID;
    84       }
    85       for (BNodeIt it(*graph); it != INVALID; ++it) {
    86         bnode_matching[it] = INVALID;
    87       }
    88       matching_size = 0;
    89     }
    90 
    91     /// \brief Initalize the data structures.
    92     ///
    93     /// It initalizes the data structures and creates a greedy
    94     /// matching.  From this matching sometimes it is faster to get
    95     /// the matching than from the initial empty matching.
    96     void greedyInit() {
    97       matching_size = 0;
    98       for (BNodeIt it(*graph); it != INVALID; ++it) {
    99         bnode_matching[it] = INVALID;
   100       }
   101       for (ANodeIt it(*graph); it != INVALID; ++it) {
   102         anode_matching[it] = INVALID;
   103         for (IncEdgeIt jt(*graph, it); jt != INVALID; ++jt) {
   104           if (bnode_matching[graph->bNode(jt)] == INVALID) {
   105             anode_matching[it] = jt;
   106             bnode_matching[graph->bNode(jt)] = jt;
   107             ++matching_size;
   108             break;
   109           }
   110         }
   111       }
   112     }
   113 
   114     /// \brief Initalize the data structures with an initial matching.
   115     ///
   116     /// It initalizes the data structures with an initial matching.
   117     template <typename MatchingMap>
   118     void matchingInit(const MatchingMap& matching) {
   119       for (ANodeIt it(*graph); it != INVALID; ++it) {
   120         anode_matching[it] = INVALID;
   121       }
   122       for (BNodeIt it(*graph); it != INVALID; ++it) {
   123         bnode_matching[it] = INVALID;
   124       }
   125       matching_size = 0;
   126       for (UEdgeIt it(*graph); it != INVALID; ++it) {
   127         if (matching[it]) {
   128           ++matching_size;
   129           anode_matching[graph->aNode(it)] = it;
   130           bnode_matching[graph->bNode(it)] = it;
   131         }
   132       }
   133     }
   134 
   135     /// \brief Initalize the data structures with an initial matching.
   136     ///
   137     /// It initalizes the data structures with an initial matching.
   138     /// \return %True when the given map contains really a matching.
   139     template <typename MatchingMap>
   140     void checkedMatchingInit(const MatchingMap& matching) {
   141       for (ANodeIt it(*graph); it != INVALID; ++it) {
   142         anode_matching[it] = INVALID;
   143       }
   144       for (BNodeIt it(*graph); it != INVALID; ++it) {
   145         bnode_matching[it] = INVALID;
   146       }
   147       matching_size = 0;
   148       for (UEdgeIt it(*graph); it != INVALID; ++it) {
   149         if (matching[it]) {
   150           ++matching_size;
   151           if (anode_matching[graph->aNode(it)] != INVALID) {
   152             return false;
   153           }
   154           anode_matching[graph->aNode(it)] = it;
   155           if (bnode_matching[graph->aNode(it)] != INVALID) {
   156             return false;
   157           }
   158           bnode_matching[graph->bNode(it)] = it;
   159         }
   160       }
   161       return false;
   162     }
   163 
   164     /// \brief An augmenting phase of the Hopcroft-Karp algorithm
   165     ///
   166     /// It runs an augmenting phase of the Hopcroft-Karp
   167     /// algorithm. The phase finds maximum count of edge disjoint
   168     /// augmenting paths and augments on these paths. The algorithm
   169     /// consists at most of \f$ O(\sqrt{n}) \f$ phase and one phase is
   170     /// \f$ O(e) \f$ long.
   171     bool augment() {
   172 
   173       typename Graph::template ANodeMap<bool> areached(*graph, false);
   174       typename Graph::template BNodeMap<bool> breached(*graph, false);
   175 
   176       typename Graph::template BNodeMap<UEdge> bpred(*graph, INVALID);
   177 
   178       std::vector<Node> queue, bqueue;
   179       for (ANodeIt it(*graph); it != INVALID; ++it) {
   180         if (anode_matching[it] == INVALID) {
   181           queue.push_back(it);
   182           areached[it] = true;
   183         }
   184       }
   185 
   186       bool success = false;
   187 
   188       while (!success && !queue.empty()) {
   189         std::vector<Node> newqueue;
   190         for (int i = 0; i < (int)queue.size(); ++i) {
   191           Node anode = queue[i];
   192           for (IncEdgeIt jt(*graph, anode); jt != INVALID; ++jt) {
   193             Node bnode = graph->bNode(jt);
   194             if (breached[bnode]) continue;
   195             breached[bnode] = true;
   196             bpred[bnode] = jt;
   197             if (bnode_matching[bnode] == INVALID) {
   198               bqueue.push_back(bnode);
   199               success = true;
   200             } else {           
   201               Node newanode = graph->aNode(bnode_matching[bnode]);
   202               if (!areached[newanode]) {
   203                 areached[newanode] = true;
   204                 newqueue.push_back(newanode);
   205               }
   206             }
   207           }
   208         }
   209         queue.swap(newqueue);
   210       }
   211 
   212       if (success) {
   213 
   214         typename Graph::template ANodeMap<bool> aused(*graph, false);
   215         
   216         for (int i = 0; i < (int)bqueue.size(); ++i) {
   217           Node bnode = bqueue[i];
   218 
   219           bool used = false;
   220 
   221           while (bnode != INVALID) {
   222             UEdge uedge = bpred[bnode];
   223             Node anode = graph->aNode(uedge);
   224             
   225             if (aused[anode]) {
   226               used = true;
   227               break;
   228             }
   229             
   230             bnode = anode_matching[anode] != INVALID ? 
   231               graph->bNode(anode_matching[anode]) : INVALID;
   232             
   233           }
   234           
   235           if (used) continue;
   236 
   237           bnode = bqueue[i];
   238           while (bnode != INVALID) {
   239             UEdge uedge = bpred[bnode];
   240             Node anode = graph->aNode(uedge);
   241             
   242             bnode_matching[bnode] = uedge;
   243 
   244             bnode = anode_matching[anode] != INVALID ? 
   245               graph->bNode(anode_matching[anode]) : INVALID;
   246             
   247             anode_matching[anode] = uedge;
   248 
   249             aused[anode] = true;
   250           }
   251           ++matching_size;
   252 
   253         }
   254       }
   255       return success;
   256     }
   257 
   258     /// \brief An augmenting phase of the Ford-Fulkerson algorithm
   259     ///
   260     /// It runs an augmenting phase of the Ford-Fulkerson
   261     /// algorithm. The phase finds only one augmenting path and 
   262     /// augments only on this paths. The algorithm consists at most 
   263     /// of \f$ O(n) \f$ simple phase and one phase is at most 
   264     /// \f$ O(e) \f$ long.
   265     bool simpleAugment() {
   266 
   267       typename Graph::template ANodeMap<bool> areached(*graph, false);
   268       typename Graph::template BNodeMap<bool> breached(*graph, false);
   269 
   270       typename Graph::template BNodeMap<UEdge> bpred(*graph, INVALID);
   271 
   272       std::vector<Node> queue;
   273       for (ANodeIt it(*graph); it != INVALID; ++it) {
   274         if (anode_matching[it] == INVALID) {
   275           queue.push_back(it);
   276           areached[it] = true;
   277         }
   278       }
   279 
   280       while (!queue.empty()) {
   281         std::vector<Node> newqueue;
   282         for (int i = 0; i < (int)queue.size(); ++i) {
   283           Node anode = queue[i];
   284           for (IncEdgeIt jt(*graph, anode); jt != INVALID; ++jt) {
   285             Node bnode = graph->bNode(jt);
   286             if (breached[bnode]) continue;
   287             breached[bnode] = true;
   288             bpred[bnode] = jt;
   289             if (bnode_matching[bnode] == INVALID) {
   290               while (bnode != INVALID) {
   291                 UEdge uedge = bpred[bnode];
   292                 anode = graph->aNode(uedge);
   293                 
   294                 bnode_matching[bnode] = uedge;
   295                 
   296                 bnode = anode_matching[anode] != INVALID ? 
   297                   graph->bNode(anode_matching[anode]) : INVALID;
   298                 
   299                 anode_matching[anode] = uedge;
   300                 
   301               }
   302               ++matching_size;
   303               return true;
   304             } else {           
   305               Node newanode = graph->aNode(bnode_matching[bnode]);
   306               if (!areached[newanode]) {
   307                 areached[newanode] = true;
   308                 newqueue.push_back(newanode);
   309               }
   310             }
   311           }
   312         }
   313         queue.swap(newqueue);
   314       }
   315       
   316       return false;
   317     }
   318 
   319     /// \brief Starts the algorithm.
   320     ///
   321     /// Starts the algorithm. It runs augmenting phases until the optimal
   322     /// solution reached.
   323     void start() {
   324       while (augment()) {}
   325     }
   326 
   327     /// \brief Runs the algorithm.
   328     ///
   329     /// It just initalize the algorithm and then start it.
   330     void run() {
   331       init();
   332       start();
   333     }
   334 
   335     /// @}
   336 
   337     /// \name Query Functions
   338     /// The result of the %Matching algorithm can be obtained using these
   339     /// functions.\n
   340     /// Before the use of these functions,
   341     /// either run() or start() must be called.
   342     
   343     ///@{
   344 
   345     /// \brief Returns an minimum covering of the nodes.
   346     ///
   347     /// The minimum covering set problem is the dual solution of the
   348     /// maximum bipartite matching. It provides an solution for this
   349     /// problem what is proof of the optimality of the matching.
   350     /// \return The size of the cover set.
   351     template <typename CoverMap>
   352     int coverSet(CoverMap& covering) {
   353 
   354       typename Graph::template ANodeMap<bool> areached(*graph, false);
   355       typename Graph::template BNodeMap<bool> breached(*graph, false);
   356       
   357       std::vector<Node> queue;
   358       for (ANodeIt it(*graph); it != INVALID; ++it) {
   359         if (anode_matching[it] == INVALID) {
   360           queue.push_back(it);
   361         }
   362       }
   363 
   364       while (!queue.empty()) {
   365         std::vector<Node> newqueue;
   366         for (int i = 0; i < (int)queue.size(); ++i) {
   367           Node anode = queue[i];
   368           for (IncEdgeIt jt(*graph, anode); jt != INVALID; ++jt) {
   369             Node bnode = graph->bNode(jt);
   370             if (breached[bnode]) continue;
   371             breached[bnode] = true;
   372             if (bnode_matching[bnode] != INVALID) {
   373               Node newanode = graph->aNode(bnode_matching[bnode]);
   374               if (!areached[newanode]) {
   375                 areached[newanode] = true;
   376                 newqueue.push_back(newanode);
   377               }
   378             }
   379           }
   380         }
   381         queue.swap(newqueue);
   382       }
   383 
   384       int size = 0;
   385       for (ANodeIt it(*graph); it != INVALID; ++it) {
   386         covering[it] = !areached[it] && anode_matching[it] != INVALID;
   387         if (!areached[it] && anode_matching[it] != INVALID) {
   388           ++size;
   389         }
   390       }
   391       for (BNodeIt it(*graph); it != INVALID; ++it) {
   392         covering[it] = breached[it];
   393         if (breached[it]) {
   394           ++size;
   395         }
   396       }
   397       return size;
   398     }
   399 
   400     /// \brief Set true all matching uedge in the map.
   401     /// 
   402     /// Set true all matching uedge in the map. It does not change the
   403     /// value mapped to the other uedges.
   404     /// \return The number of the matching edges.
   405     template <typename MatchingMap>
   406     int quickMatching(MatchingMap& matching) {
   407       for (ANodeIt it(*graph); it != INVALID; ++it) {
   408         if (anode_matching[it] != INVALID) {
   409           matching[anode_matching[it]] = true;
   410         }
   411       }
   412       return matching_size;
   413     }
   414 
   415     /// \brief Set true all matching uedge in the map and the others to false.
   416     /// 
   417     /// Set true all matching uedge in the map and the others to false.
   418     /// \return The number of the matching edges.
   419     template <typename MatchingMap>
   420     int matching(MatchingMap& matching) {
   421       for (UEdgeIt it(*graph); it != INVALID; ++it) {
   422         matching[it] = it == anode_matching[graph->aNode(it)];
   423       }
   424       return matching_size;
   425     }
   426 
   427 
   428     /// \brief Return true if the given uedge is in the matching.
   429     /// 
   430     /// It returns true if the given uedge is in the matching.
   431     bool matchingEdge(const UEdge& edge) {
   432       return anode_matching[graph->aNode(edge)] == edge;
   433     }
   434 
   435     /// \brief Returns the matching edge from the node.
   436     /// 
   437     /// Returns the matching edge from the node. If there is not such
   438     /// edge it gives back \c INVALID.
   439     UEdge matchingEdge(const Node& node) {
   440       if (graph->aNode(node)) {
   441         return anode_matching[node];
   442       } else {
   443         return bnode_matching[node];
   444       }
   445     }
   446 
   447     /// \brief Gives back the number of the matching edges.
   448     ///
   449     /// Gives back the number of the matching edges.
   450     int matchingSize() const {
   451       return matching_size;
   452     }
   453 
   454     /// @}
   455 
   456   private:
   457 
   458     ANodeMatchingMap anode_matching;
   459     BNodeMatchingMap bnode_matching;
   460     const Graph *graph;
   461 
   462     int matching_size;
   463   
   464   };
   465 
   466   /// \brief Default traits class for weighted bipartite matching algoritms.
   467   ///
   468   /// Default traits class for weighted bipartite matching algoritms.
   469   /// \param _BpUGraph The bipartite undirected graph type.
   470   /// \param _WeightMap Type of weight map.
   471   template <typename _BpUGraph, typename _WeightMap>
   472   struct WeightedBipartiteMatchingDefaultTraits {
   473     /// \brief The type of the weight of the undirected edges.
   474     typedef typename _WeightMap::Value Value;
   475 
   476     /// The undirected bipartite graph type the algorithm runs on. 
   477     typedef _BpUGraph BpUGraph;
   478 
   479     /// The map of the edges weights
   480     typedef _WeightMap WeightMap;
   481 
   482     /// \brief The cross reference type used by heap.
   483     ///
   484     /// The cross reference type used by heap.
   485     /// Usually it is \c Graph::NodeMap<int>.
   486     typedef typename BpUGraph::template NodeMap<int> HeapCrossRef;
   487 
   488     /// \brief Instantiates a HeapCrossRef.
   489     ///
   490     /// This function instantiates a \ref HeapCrossRef. 
   491     /// \param graph is the graph, to which we would like to define the 
   492     /// HeapCrossRef.
   493     static HeapCrossRef *createHeapCrossRef(const BpUGraph &graph) {
   494       return new HeapCrossRef(graph);
   495     }
   496     
   497     /// \brief The heap type used by weighted matching algorithms.
   498     ///
   499     /// The heap type used by weighted matching algorithms. It should
   500     /// minimize the priorities and the heap's key type is the graph's
   501     /// anode graph's node.
   502     ///
   503     /// \sa BinHeap
   504     typedef BinHeap<typename BpUGraph::Node, Value, HeapCrossRef> Heap;
   505     
   506     /// \brief Instantiates a Heap.
   507     ///
   508     /// This function instantiates a \ref Heap. 
   509     /// \param crossref The cross reference of the heap.
   510     static Heap *createHeap(HeapCrossRef& crossref) {
   511       return new Heap(crossref);
   512     }
   513 
   514   };
   515 
   516 
   517   /// \ingroup matching
   518   ///
   519   /// \brief Bipartite Max Weighted Matching algorithm
   520   ///
   521   /// This class implements the bipartite Max Weighted Matching
   522   /// algorithm.  It uses the successive shortest path algorithm to
   523   /// calculate the maximum weighted matching in the bipartite
   524   /// graph. The algorithm can be used also to calculate the maximum
   525   /// cardinality maximum weighted matching. The time complexity
   526   /// of the algorithm is \f$ O(ne\log(n)) \f$ with the default binary
   527   /// heap implementation but this can be improved to 
   528   /// \f$ O(n^2\log(n)+ne) \f$ if we use fibonacci heaps.
   529   ///
   530   /// The algorithm also provides a potential function on the nodes
   531   /// which a dual solution of the matching algorithm and it can be
   532   /// used to proof the optimality of the given pimal solution.
   533 #ifdef DOXYGEN
   534   template <typename _BpUGraph, typename _WeightMap, typename _Traits>
   535 #else
   536   template <typename _BpUGraph, 
   537             typename _WeightMap = typename _BpUGraph::template UEdgeMap<int>,
   538             typename _Traits = WeightedBipartiteMatchingDefaultTraits<_BpUGraph, _WeightMap> >
   539 #endif
   540   class MaxWeightedBipartiteMatching {
   541   public:
   542 
   543     typedef _Traits Traits;
   544     typedef typename Traits::BpUGraph BpUGraph;
   545     typedef typename Traits::WeightMap WeightMap;
   546     typedef typename Traits::Value Value;
   547 
   548   protected:
   549 
   550     typedef typename Traits::HeapCrossRef HeapCrossRef;
   551     typedef typename Traits::Heap Heap; 
   552 
   553     
   554     typedef typename BpUGraph::Node Node;
   555     typedef typename BpUGraph::ANodeIt ANodeIt;
   556     typedef typename BpUGraph::BNodeIt BNodeIt;
   557     typedef typename BpUGraph::UEdge UEdge;
   558     typedef typename BpUGraph::UEdgeIt UEdgeIt;
   559     typedef typename BpUGraph::IncEdgeIt IncEdgeIt;
   560 
   561     typedef typename BpUGraph::template ANodeMap<UEdge> ANodeMatchingMap;
   562     typedef typename BpUGraph::template BNodeMap<UEdge> BNodeMatchingMap;
   563 
   564     typedef typename BpUGraph::template ANodeMap<Value> ANodePotentialMap;
   565     typedef typename BpUGraph::template BNodeMap<Value> BNodePotentialMap;
   566 
   567 
   568   public:
   569 
   570     /// \brief \ref Exception for uninitialized parameters.
   571     ///
   572     /// This error represents problems in the initialization
   573     /// of the parameters of the algorithms.
   574     class UninitializedParameter : public lemon::UninitializedParameter {
   575     public:
   576       virtual const char* exceptionName() const {
   577 	return "lemon::MaxWeightedBipartiteMatching::UninitializedParameter";
   578       }
   579     };
   580 
   581     ///\name Named template parameters
   582 
   583     ///@{
   584 
   585     template <class H, class CR>
   586     struct DefHeapTraits : public Traits {
   587       typedef CR HeapCrossRef;
   588       typedef H Heap;
   589       static HeapCrossRef *createHeapCrossRef(const BpUGraph &) {
   590 	throw UninitializedParameter();
   591       }
   592       static Heap *createHeap(HeapCrossRef &) {
   593 	throw UninitializedParameter();
   594       }
   595     };
   596 
   597     /// \brief \ref named-templ-param "Named parameter" for setting heap 
   598     /// and cross reference type
   599     ///
   600     /// \ref named-templ-param "Named parameter" for setting heap and cross 
   601     /// reference type
   602     template <class H, class CR = typename BpUGraph::template NodeMap<int> >
   603     struct DefHeap
   604       : public MaxWeightedBipartiteMatching<BpUGraph, WeightMap, 
   605                                             DefHeapTraits<H, CR> > { 
   606       typedef MaxWeightedBipartiteMatching<BpUGraph, WeightMap, 
   607                                            DefHeapTraits<H, CR> > Create;
   608     };
   609 
   610     template <class H, class CR>
   611     struct DefStandardHeapTraits : public Traits {
   612       typedef CR HeapCrossRef;
   613       typedef H Heap;
   614       static HeapCrossRef *createHeapCrossRef(const BpUGraph &graph) {
   615 	return new HeapCrossRef(graph);
   616       }
   617       static Heap *createHeap(HeapCrossRef &crossref) {
   618 	return new Heap(crossref);
   619       }
   620     };
   621 
   622     /// \brief \ref named-templ-param "Named parameter" for setting heap and 
   623     /// cross reference type with automatic allocation
   624     ///
   625     /// \ref named-templ-param "Named parameter" for setting heap and cross 
   626     /// reference type. It can allocate the heap and the cross reference 
   627     /// object if the cross reference's constructor waits for the graph as 
   628     /// parameter and the heap's constructor waits for the cross reference.
   629     template <class H, class CR = typename BpUGraph::template NodeMap<int> >
   630     struct DefStandardHeap
   631       : public MaxWeightedBipartiteMatching<BpUGraph, WeightMap, 
   632                                             DefStandardHeapTraits<H, CR> > { 
   633       typedef MaxWeightedBipartiteMatching<BpUGraph, WeightMap, 
   634                                            DefStandardHeapTraits<H, CR> > 
   635       Create;
   636     };
   637 
   638     ///@}
   639 
   640 
   641     /// \brief Constructor.
   642     ///
   643     /// Constructor of the algorithm. 
   644     MaxWeightedBipartiteMatching(const BpUGraph& _graph, 
   645                                  const WeightMap& _weight) 
   646       : graph(&_graph), weight(&_weight),
   647         anode_matching(_graph), bnode_matching(_graph),
   648         anode_potential(_graph), bnode_potential(_graph),
   649         _heap_cross_ref(0), local_heap_cross_ref(false),
   650         _heap(0), local_heap(0) {}
   651 
   652     /// \brief Destructor.
   653     ///
   654     /// Destructor of the algorithm.
   655     ~MaxWeightedBipartiteMatching() {
   656       destroyStructures();
   657     }
   658 
   659     /// \brief Sets the heap and the cross reference used by algorithm.
   660     ///
   661     /// Sets the heap and the cross reference used by algorithm.
   662     /// If you don't use this function before calling \ref run(),
   663     /// it will allocate one. The destuctor deallocates this
   664     /// automatically allocated map, of course.
   665     /// \return \c (*this)
   666     MaxWeightedBipartiteMatching& heap(Heap& heap, HeapCrossRef &crossRef) {
   667       if(local_heap_cross_ref) {
   668 	delete _heap_cross_ref;
   669 	local_heap_cross_ref = false;
   670       }
   671       _heap_cross_ref = &crossRef;
   672       if(local_heap) {
   673 	delete _heap;
   674 	local_heap = false;
   675       }
   676       _heap = &heap;
   677       return *this;
   678     }
   679 
   680     /// \name Execution control
   681     /// The simplest way to execute the algorithm is to use
   682     /// one of the member functions called \c run().
   683     /// \n
   684     /// If you need more control on the execution,
   685     /// first you must call \ref init() or one alternative for it.
   686     /// Finally \ref start() will perform the matching computation or
   687     /// with step-by-step execution you can augment the solution.
   688 
   689     /// @{
   690 
   691     /// \brief Initalize the data structures.
   692     ///
   693     /// It initalizes the data structures and creates an empty matching.
   694     void init() {
   695       initStructures();
   696       for (ANodeIt it(*graph); it != INVALID; ++it) {
   697         anode_matching[it] = INVALID;
   698         anode_potential[it] = 0;
   699       }
   700       for (BNodeIt it(*graph); it != INVALID; ++it) {
   701         bnode_matching[it] = INVALID;
   702         bnode_potential[it] = 0;
   703         for (IncEdgeIt jt(*graph, it); jt != INVALID; ++jt) {
   704           if (-(*weight)[jt] <= bnode_potential[it]) {
   705             bnode_potential[it] = -(*weight)[jt];
   706           }
   707         }
   708       }
   709       matching_value = 0;
   710       matching_size = 0;
   711     }
   712 
   713 
   714     /// \brief An augmenting phase of the weighted matching algorithm
   715     ///
   716     /// It runs an augmenting phase of the weighted matching 
   717     /// algorithm. The phase finds the best augmenting path and 
   718     /// augments only on this paths. 
   719     ///
   720     /// The algorithm consists at most 
   721     /// of \f$ O(n) \f$ phase and one phase is \f$ O(n\log(n)+e) \f$ 
   722     /// long with Fibonacci heap or \f$ O((n+e)\log(n)) \f$ long 
   723     /// with binary heap.
   724     /// \param decrease If the given parameter true the matching value
   725     /// can be decreased in the augmenting phase. If we would like
   726     /// to calculate the maximum cardinality maximum weighted matching
   727     /// then we should let the algorithm to decrease the matching
   728     /// value in order to increase the number of the matching edges.
   729     bool augment(bool decrease = false) {
   730 
   731       typename BpUGraph::template BNodeMap<Value> bdist(*graph);
   732       typename BpUGraph::template BNodeMap<UEdge> bpred(*graph, INVALID);
   733 
   734       Node bestNode = INVALID;
   735       Value bestValue = 0;
   736 
   737       _heap->clear();
   738       for (ANodeIt it(*graph); it != INVALID; ++it) {
   739         (*_heap_cross_ref)[it] = Heap::PRE_HEAP;
   740       }
   741 
   742       for (ANodeIt it(*graph); it != INVALID; ++it) {
   743         if (anode_matching[it] == INVALID) {
   744           _heap->push(it, 0);
   745         }
   746       }
   747 
   748       Value bdistMax = 0;
   749       while (!_heap->empty()) {
   750         Node anode = _heap->top();
   751         Value avalue = _heap->prio();
   752         _heap->pop();
   753         for (IncEdgeIt jt(*graph, anode); jt != INVALID; ++jt) {
   754           if (jt == anode_matching[anode]) continue;
   755           Node bnode = graph->bNode(jt);
   756           Value bvalue = avalue + anode_potential[anode] - 
   757             bnode_potential[bnode] - (*weight)[jt];
   758           if (bpred[bnode] == INVALID || bvalue < bdist[bnode]) {
   759             bdist[bnode] = bvalue;
   760             bpred[bnode] = jt;
   761           }
   762           if (bvalue > bdistMax) {
   763             bdistMax = bvalue;
   764           }
   765           if (bnode_matching[bnode] != INVALID) {
   766             Node newanode = graph->aNode(bnode_matching[bnode]);
   767             switch (_heap->state(newanode)) {
   768             case Heap::PRE_HEAP:
   769               _heap->push(newanode, bvalue);
   770               break;
   771             case Heap::IN_HEAP:
   772               if (bvalue < (*_heap)[newanode]) {
   773                 _heap->decrease(newanode, bvalue);
   774               }
   775               break;
   776             case Heap::POST_HEAP:
   777               break;
   778             }
   779           } else {
   780             if (bestNode == INVALID || 
   781                 - bvalue - bnode_potential[bnode] > bestValue) {
   782               bestValue = - bvalue - bnode_potential[bnode];
   783               bestNode = bnode;
   784             }
   785           }
   786         }
   787       }
   788 
   789       if (bestNode == INVALID || (!decrease && bestValue < 0)) {
   790         return false;
   791       }
   792 
   793       matching_value += bestValue;
   794       ++matching_size;
   795 
   796       for (BNodeIt it(*graph); it != INVALID; ++it) {
   797         if (bpred[it] != INVALID) {
   798           bnode_potential[it] += bdist[it];
   799         } else {
   800           bnode_potential[it] += bdistMax;
   801         }
   802       }
   803       for (ANodeIt it(*graph); it != INVALID; ++it) {
   804         if (anode_matching[it] != INVALID) {
   805           Node bnode = graph->bNode(anode_matching[it]);
   806           if (bpred[bnode] != INVALID) {
   807             anode_potential[it] += bdist[bnode];
   808           } else {
   809             anode_potential[it] += bdistMax;
   810           }
   811         }
   812       }
   813 
   814       while (bestNode != INVALID) {
   815         UEdge uedge = bpred[bestNode];
   816         Node anode = graph->aNode(uedge);
   817         
   818         bnode_matching[bestNode] = uedge;
   819         if (anode_matching[anode] != INVALID) {
   820           bestNode = graph->bNode(anode_matching[anode]);
   821         } else {
   822           bestNode = INVALID;
   823         }
   824         anode_matching[anode] = uedge;
   825       }
   826 
   827 
   828       return true;
   829     }
   830 
   831     /// \brief Starts the algorithm.
   832     ///
   833     /// Starts the algorithm. It runs augmenting phases until the
   834     /// optimal solution reached.
   835     ///
   836     /// \param maxCardinality If the given value is true it will
   837     /// calculate the maximum cardinality maximum matching instead of
   838     /// the maximum matching.
   839     void start(bool maxCardinality = false) {
   840       while (augment(maxCardinality)) {}
   841     }
   842 
   843     /// \brief Runs the algorithm.
   844     ///
   845     /// It just initalize the algorithm and then start it.
   846     ///
   847     /// \param maxCardinality If the given value is true it will
   848     /// calculate the maximum cardinality maximum matching instead of
   849     /// the maximum matching.
   850     void run(bool maxCardinality = false) {
   851       init();
   852       start(maxCardinality);
   853     }
   854 
   855     /// @}
   856 
   857     /// \name Query Functions
   858     /// The result of the %Matching algorithm can be obtained using these
   859     /// functions.\n
   860     /// Before the use of these functions,
   861     /// either run() or start() must be called.
   862     
   863     ///@{
   864 
   865     /// \brief Gives back the potential in the NodeMap
   866     ///
   867     /// Gives back the potential in the NodeMap. The potential
   868     /// is feasible if \f$ \pi(a) - \pi(b) - w(ab) = 0 \f$ for
   869     /// each matching edges and \f$ \pi(a) - \pi(b) - w(ab) \ge 0 \f$
   870     /// for each edges.
   871     template <typename PotentialMap>
   872     void potential(PotentialMap& potential) {
   873       for (ANodeIt it(*graph); it != INVALID; ++it) {
   874         potential[it] = anode_potential[it];
   875       }
   876       for (BNodeIt it(*graph); it != INVALID; ++it) {
   877         potential[it] = bnode_potential[it];
   878       }
   879     }
   880 
   881     /// \brief Set true all matching uedge in the map.
   882     /// 
   883     /// Set true all matching uedge in the map. It does not change the
   884     /// value mapped to the other uedges.
   885     /// \return The number of the matching edges.
   886     template <typename MatchingMap>
   887     int quickMatching(MatchingMap& matching) {
   888       for (ANodeIt it(*graph); it != INVALID; ++it) {
   889         if (anode_matching[it] != INVALID) {
   890           matching[anode_matching[it]] = true;
   891         }
   892       }
   893       return matching_size;
   894     }
   895 
   896     /// \brief Set true all matching uedge in the map and the others to false.
   897     /// 
   898     /// Set true all matching uedge in the map and the others to false.
   899     /// \return The number of the matching edges.
   900     template <typename MatchingMap>
   901     int matching(MatchingMap& matching) {
   902       for (UEdgeIt it(*graph); it != INVALID; ++it) {
   903         matching[it] = it == anode_matching[graph->aNode(it)];
   904       }
   905       return matching_size;
   906     }
   907 
   908 
   909     /// \brief Return true if the given uedge is in the matching.
   910     /// 
   911     /// It returns true if the given uedge is in the matching.
   912     bool matchingEdge(const UEdge& edge) {
   913       return anode_matching[graph->aNode(edge)] == edge;
   914     }
   915 
   916     /// \brief Returns the matching edge from the node.
   917     /// 
   918     /// Returns the matching edge from the node. If there is not such
   919     /// edge it gives back \c INVALID.
   920     UEdge matchingEdge(const Node& node) {
   921       if (graph->aNode(node)) {
   922         return anode_matching[node];
   923       } else {
   924         return bnode_matching[node];
   925       }
   926     }
   927 
   928     /// \brief Gives back the sum of weights of the matching edges.
   929     ///
   930     /// Gives back the sum of weights of the matching edges.
   931     Value matchingValue() const {
   932       return matching_value;
   933     }
   934 
   935     /// \brief Gives back the number of the matching edges.
   936     ///
   937     /// Gives back the number of the matching edges.
   938     int matchingSize() const {
   939       return matching_size;
   940     }
   941 
   942     /// @}
   943 
   944   private:
   945 
   946     void initStructures() {
   947       if (!_heap_cross_ref) {
   948 	local_heap_cross_ref = true;
   949 	_heap_cross_ref = Traits::createHeapCrossRef(*graph);
   950       }
   951       if (!_heap) {
   952 	local_heap = true;
   953 	_heap = Traits::createHeap(*_heap_cross_ref);
   954       }
   955     }
   956 
   957     void destroyStructures() {
   958       if (local_heap_cross_ref) delete _heap_cross_ref;
   959       if (local_heap) delete _heap;
   960     }
   961 
   962 
   963   private:
   964     
   965     const BpUGraph *graph;
   966     const WeightMap* weight;
   967 
   968     ANodeMatchingMap anode_matching;
   969     BNodeMatchingMap bnode_matching;
   970 
   971     ANodePotentialMap anode_potential;
   972     BNodePotentialMap bnode_potential;
   973 
   974     Value matching_value;
   975     int matching_size;
   976 
   977     HeapCrossRef *_heap_cross_ref;
   978     bool local_heap_cross_ref;
   979 
   980     Heap *_heap;
   981     bool local_heap;
   982   
   983   };
   984 
   985   /// \brief Default traits class for minimum cost bipartite matching
   986   /// algoritms.
   987   ///
   988   /// Default traits class for minimum cost bipartite matching
   989   /// algoritms.  
   990   ///
   991   /// \param _BpUGraph The bipartite undirected graph
   992   /// type.  
   993   ///
   994   /// \param _CostMap Type of cost map.
   995   template <typename _BpUGraph, typename _CostMap>
   996   struct MinCostMaxBipartiteMatchingDefaultTraits {
   997     /// \brief The type of the cost of the undirected edges.
   998     typedef typename _CostMap::Value Value;
   999 
  1000     /// The undirected bipartite graph type the algorithm runs on. 
  1001     typedef _BpUGraph BpUGraph;
  1002 
  1003     /// The map of the edges costs
  1004     typedef _CostMap CostMap;
  1005 
  1006     /// \brief The cross reference type used by heap.
  1007     ///
  1008     /// The cross reference type used by heap.
  1009     /// Usually it is \c Graph::NodeMap<int>.
  1010     typedef typename BpUGraph::template NodeMap<int> HeapCrossRef;
  1011 
  1012     /// \brief Instantiates a HeapCrossRef.
  1013     ///
  1014     /// This function instantiates a \ref HeapCrossRef. 
  1015     /// \param graph is the graph, to which we would like to define the 
  1016     /// HeapCrossRef.
  1017     static HeapCrossRef *createHeapCrossRef(const BpUGraph &graph) {
  1018       return new HeapCrossRef(graph);
  1019     }
  1020     
  1021     /// \brief The heap type used by costed matching algorithms.
  1022     ///
  1023     /// The heap type used by costed matching algorithms. It should
  1024     /// minimize the priorities and the heap's key type is the graph's
  1025     /// anode graph's node.
  1026     ///
  1027     /// \sa BinHeap
  1028     typedef BinHeap<typename BpUGraph::Node, Value, HeapCrossRef> Heap;
  1029     
  1030     /// \brief Instantiates a Heap.
  1031     ///
  1032     /// This function instantiates a \ref Heap. 
  1033     /// \param crossref The cross reference of the heap.
  1034     static Heap *createHeap(HeapCrossRef& crossref) {
  1035       return new Heap(crossref);
  1036     }
  1037 
  1038   };
  1039 
  1040 
  1041   /// \ingroup matching
  1042   ///
  1043   /// \brief Bipartite Min Cost Matching algorithm
  1044   ///
  1045   /// This class implements the bipartite Min Cost Matching algorithm.
  1046   /// It uses the successive shortest path algorithm to calculate the
  1047   /// minimum cost maximum matching in the bipartite graph. The time
  1048   /// complexity of the algorithm is \f$ O(ne\log(n)) \f$ with the
  1049   /// default binary heap implementation but this can be improved to
  1050   /// \f$ O(n^2\log(n)+ne) \f$ if we use fibonacci heaps.
  1051   ///
  1052   /// The algorithm also provides a potential function on the nodes
  1053   /// which a dual solution of the matching algorithm and it can be
  1054   /// used to proof the optimality of the given pimal solution.
  1055 #ifdef DOXYGEN
  1056   template <typename _BpUGraph, typename _CostMap, typename _Traits>
  1057 #else
  1058   template <typename _BpUGraph, 
  1059             typename _CostMap = typename _BpUGraph::template UEdgeMap<int>,
  1060             typename _Traits = MinCostMaxBipartiteMatchingDefaultTraits<_BpUGraph, _CostMap> >
  1061 #endif
  1062   class MinCostMaxBipartiteMatching {
  1063   public:
  1064 
  1065     typedef _Traits Traits;
  1066     typedef typename Traits::BpUGraph BpUGraph;
  1067     typedef typename Traits::CostMap CostMap;
  1068     typedef typename Traits::Value Value;
  1069 
  1070   protected:
  1071 
  1072     typedef typename Traits::HeapCrossRef HeapCrossRef;
  1073     typedef typename Traits::Heap Heap; 
  1074 
  1075     
  1076     typedef typename BpUGraph::Node Node;
  1077     typedef typename BpUGraph::ANodeIt ANodeIt;
  1078     typedef typename BpUGraph::BNodeIt BNodeIt;
  1079     typedef typename BpUGraph::UEdge UEdge;
  1080     typedef typename BpUGraph::UEdgeIt UEdgeIt;
  1081     typedef typename BpUGraph::IncEdgeIt IncEdgeIt;
  1082 
  1083     typedef typename BpUGraph::template ANodeMap<UEdge> ANodeMatchingMap;
  1084     typedef typename BpUGraph::template BNodeMap<UEdge> BNodeMatchingMap;
  1085 
  1086     typedef typename BpUGraph::template ANodeMap<Value> ANodePotentialMap;
  1087     typedef typename BpUGraph::template BNodeMap<Value> BNodePotentialMap;
  1088 
  1089 
  1090   public:
  1091 
  1092     /// \brief \ref Exception for uninitialized parameters.
  1093     ///
  1094     /// This error represents problems in the initialization
  1095     /// of the parameters of the algorithms.
  1096     class UninitializedParameter : public lemon::UninitializedParameter {
  1097     public:
  1098       virtual const char* exceptionName() const {
  1099 	return "lemon::MinCostMaxBipartiteMatching::UninitializedParameter";
  1100       }
  1101     };
  1102 
  1103     ///\name Named template parameters
  1104 
  1105     ///@{
  1106 
  1107     template <class H, class CR>
  1108     struct DefHeapTraits : public Traits {
  1109       typedef CR HeapCrossRef;
  1110       typedef H Heap;
  1111       static HeapCrossRef *createHeapCrossRef(const BpUGraph &) {
  1112 	throw UninitializedParameter();
  1113       }
  1114       static Heap *createHeap(HeapCrossRef &) {
  1115 	throw UninitializedParameter();
  1116       }
  1117     };
  1118 
  1119     /// \brief \ref named-templ-param "Named parameter" for setting heap 
  1120     /// and cross reference type
  1121     ///
  1122     /// \ref named-templ-param "Named parameter" for setting heap and cross 
  1123     /// reference type
  1124     template <class H, class CR = typename BpUGraph::template NodeMap<int> >
  1125     struct DefHeap
  1126       : public MinCostMaxBipartiteMatching<BpUGraph, CostMap, 
  1127                                             DefHeapTraits<H, CR> > { 
  1128       typedef MinCostMaxBipartiteMatching<BpUGraph, CostMap, 
  1129                                            DefHeapTraits<H, CR> > Create;
  1130     };
  1131 
  1132     template <class H, class CR>
  1133     struct DefStandardHeapTraits : public Traits {
  1134       typedef CR HeapCrossRef;
  1135       typedef H Heap;
  1136       static HeapCrossRef *createHeapCrossRef(const BpUGraph &graph) {
  1137 	return new HeapCrossRef(graph);
  1138       }
  1139       static Heap *createHeap(HeapCrossRef &crossref) {
  1140 	return new Heap(crossref);
  1141       }
  1142     };
  1143 
  1144     /// \brief \ref named-templ-param "Named parameter" for setting heap and 
  1145     /// cross reference type with automatic allocation
  1146     ///
  1147     /// \ref named-templ-param "Named parameter" for setting heap and cross 
  1148     /// reference type. It can allocate the heap and the cross reference 
  1149     /// object if the cross reference's constructor waits for the graph as 
  1150     /// parameter and the heap's constructor waits for the cross reference.
  1151     template <class H, class CR = typename BpUGraph::template NodeMap<int> >
  1152     struct DefStandardHeap
  1153       : public MinCostMaxBipartiteMatching<BpUGraph, CostMap, 
  1154                                             DefStandardHeapTraits<H, CR> > { 
  1155       typedef MinCostMaxBipartiteMatching<BpUGraph, CostMap, 
  1156                                            DefStandardHeapTraits<H, CR> > 
  1157       Create;
  1158     };
  1159 
  1160     ///@}
  1161 
  1162 
  1163     /// \brief Constructor.
  1164     ///
  1165     /// Constructor of the algorithm. 
  1166     MinCostMaxBipartiteMatching(const BpUGraph& _graph, 
  1167                                  const CostMap& _cost) 
  1168       : graph(&_graph), cost(&_cost),
  1169         anode_matching(_graph), bnode_matching(_graph),
  1170         anode_potential(_graph), bnode_potential(_graph),
  1171         _heap_cross_ref(0), local_heap_cross_ref(false),
  1172         _heap(0), local_heap(0) {}
  1173 
  1174     /// \brief Destructor.
  1175     ///
  1176     /// Destructor of the algorithm.
  1177     ~MinCostMaxBipartiteMatching() {
  1178       destroyStructures();
  1179     }
  1180 
  1181     /// \brief Sets the heap and the cross reference used by algorithm.
  1182     ///
  1183     /// Sets the heap and the cross reference used by algorithm.
  1184     /// If you don't use this function before calling \ref run(),
  1185     /// it will allocate one. The destuctor deallocates this
  1186     /// automatically allocated map, of course.
  1187     /// \return \c (*this)
  1188     MinCostMaxBipartiteMatching& heap(Heap& heap, HeapCrossRef &crossRef) {
  1189       if(local_heap_cross_ref) {
  1190 	delete _heap_cross_ref;
  1191 	local_heap_cross_ref = false;
  1192       }
  1193       _heap_cross_ref = &crossRef;
  1194       if(local_heap) {
  1195 	delete _heap;
  1196 	local_heap = false;
  1197       }
  1198       _heap = &heap;
  1199       return *this;
  1200     }
  1201 
  1202     /// \name Execution control
  1203     /// The simplest way to execute the algorithm is to use
  1204     /// one of the member functions called \c run().
  1205     /// \n
  1206     /// If you need more control on the execution,
  1207     /// first you must call \ref init() or one alternative for it.
  1208     /// Finally \ref start() will perform the matching computation or
  1209     /// with step-by-step execution you can augment the solution.
  1210 
  1211     /// @{
  1212 
  1213     /// \brief Initalize the data structures.
  1214     ///
  1215     /// It initalizes the data structures and creates an empty matching.
  1216     void init() {
  1217       initStructures();
  1218       for (ANodeIt it(*graph); it != INVALID; ++it) {
  1219         anode_matching[it] = INVALID;
  1220         anode_potential[it] = 0;
  1221       }
  1222       for (BNodeIt it(*graph); it != INVALID; ++it) {
  1223         bnode_matching[it] = INVALID;
  1224         bnode_potential[it] = 0;
  1225       }
  1226       matching_cost = 0;
  1227       matching_size = 0;
  1228     }
  1229 
  1230 
  1231     /// \brief An augmenting phase of the costed matching algorithm
  1232     ///
  1233     /// It runs an augmenting phase of the matching algorithm. The
  1234     /// phase finds the best augmenting path and augments only on this
  1235     /// paths.
  1236     ///
  1237     /// The algorithm consists at most 
  1238     /// of \f$ O(n) \f$ phase and one phase is \f$ O(n\log(n)+e) \f$ 
  1239     /// long with Fibonacci heap or \f$ O((n+e)\log(n)) \f$ long 
  1240     /// with binary heap.
  1241     bool augment() {
  1242 
  1243       typename BpUGraph::template BNodeMap<Value> bdist(*graph);
  1244       typename BpUGraph::template BNodeMap<UEdge> bpred(*graph, INVALID);
  1245 
  1246       Node bestNode = INVALID;
  1247       Value bestValue = 0;
  1248 
  1249       _heap->clear();
  1250       for (ANodeIt it(*graph); it != INVALID; ++it) {
  1251         (*_heap_cross_ref)[it] = Heap::PRE_HEAP;
  1252       }
  1253 
  1254       for (ANodeIt it(*graph); it != INVALID; ++it) {
  1255         if (anode_matching[it] == INVALID) {
  1256           _heap->push(it, 0);
  1257         }
  1258       }
  1259 
  1260       while (!_heap->empty()) {
  1261         Node anode = _heap->top();
  1262         Value avalue = _heap->prio();
  1263         _heap->pop();
  1264         for (IncEdgeIt jt(*graph, anode); jt != INVALID; ++jt) {
  1265           if (jt == anode_matching[anode]) continue;
  1266           Node bnode = graph->bNode(jt);
  1267           Value bvalue = avalue + (*cost)[jt] + 
  1268             anode_potential[anode] - bnode_potential[bnode];
  1269           if (bpred[bnode] == INVALID || bvalue < bdist[bnode]) {
  1270             bdist[bnode] = bvalue;
  1271             bpred[bnode] = jt;
  1272           }
  1273           if (bnode_matching[bnode] != INVALID) {
  1274             Node newanode = graph->aNode(bnode_matching[bnode]);
  1275             switch (_heap->state(newanode)) {
  1276             case Heap::PRE_HEAP:
  1277               _heap->push(newanode, bvalue);
  1278               break;
  1279             case Heap::IN_HEAP:
  1280               if (bvalue < (*_heap)[newanode]) {
  1281                 _heap->decrease(newanode, bvalue);
  1282               }
  1283               break;
  1284             case Heap::POST_HEAP:
  1285               break;
  1286             }
  1287           } else {
  1288             if (bestNode == INVALID || 
  1289                 bvalue + bnode_potential[bnode] < bestValue) {
  1290               bestValue = bvalue + bnode_potential[bnode];
  1291               bestNode = bnode;
  1292             }
  1293           }
  1294         }
  1295       }
  1296 
  1297       if (bestNode == INVALID) {
  1298         return false;
  1299       }
  1300 
  1301       matching_cost += bestValue;
  1302       ++matching_size;
  1303 
  1304       for (BNodeIt it(*graph); it != INVALID; ++it) {
  1305         if (bpred[it] != INVALID) {
  1306           bnode_potential[it] += bdist[it];
  1307         }
  1308       }
  1309       for (ANodeIt it(*graph); it != INVALID; ++it) {
  1310         if (anode_matching[it] != INVALID) {
  1311           Node bnode = graph->bNode(anode_matching[it]);
  1312           if (bpred[bnode] != INVALID) {
  1313             anode_potential[it] += bdist[bnode];
  1314           }
  1315         }
  1316       }
  1317 
  1318       while (bestNode != INVALID) {
  1319         UEdge uedge = bpred[bestNode];
  1320         Node anode = graph->aNode(uedge);
  1321         
  1322         bnode_matching[bestNode] = uedge;
  1323         if (anode_matching[anode] != INVALID) {
  1324           bestNode = graph->bNode(anode_matching[anode]);
  1325         } else {
  1326           bestNode = INVALID;
  1327         }
  1328         anode_matching[anode] = uedge;
  1329       }
  1330 
  1331 
  1332       return true;
  1333     }
  1334 
  1335     /// \brief Starts the algorithm.
  1336     ///
  1337     /// Starts the algorithm. It runs augmenting phases until the
  1338     /// optimal solution reached.
  1339     void start() {
  1340       while (augment()) {}
  1341     }
  1342 
  1343     /// \brief Runs the algorithm.
  1344     ///
  1345     /// It just initalize the algorithm and then start it.
  1346     void run() {
  1347       init();
  1348       start();
  1349     }
  1350 
  1351     /// @}
  1352 
  1353     /// \name Query Functions
  1354     /// The result of the %Matching algorithm can be obtained using these
  1355     /// functions.\n
  1356     /// Before the use of these functions,
  1357     /// either run() or start() must be called.
  1358     
  1359     ///@{
  1360 
  1361     /// \brief Gives back the potential in the NodeMap
  1362     ///
  1363     /// Gives back the potential in the NodeMap. The potential
  1364     /// is feasible if \f$ \pi(a) - \pi(b) + w(ab) = 0 \f$ for
  1365     /// each matching edges and \f$ \pi(a) - \pi(b) + w(ab) \ge 0 \f$
  1366     /// for each edges.
  1367     template <typename PotentialMap>
  1368     void potential(PotentialMap& potential) {
  1369       for (ANodeIt it(*graph); it != INVALID; ++it) {
  1370         potential[it] = anode_potential[it];
  1371       }
  1372       for (BNodeIt it(*graph); it != INVALID; ++it) {
  1373         potential[it] = bnode_potential[it];
  1374       }
  1375     }
  1376 
  1377     /// \brief Set true all matching uedge in the map.
  1378     /// 
  1379     /// Set true all matching uedge in the map. It does not change the
  1380     /// value mapped to the other uedges.
  1381     /// \return The number of the matching edges.
  1382     template <typename MatchingMap>
  1383     int quickMatching(MatchingMap& matching) {
  1384       for (ANodeIt it(*graph); it != INVALID; ++it) {
  1385         if (anode_matching[it] != INVALID) {
  1386           matching[anode_matching[it]] = true;
  1387         }
  1388       }
  1389       return matching_size;
  1390     }
  1391 
  1392     /// \brief Set true all matching uedge in the map and the others to false.
  1393     /// 
  1394     /// Set true all matching uedge in the map and the others to false.
  1395     /// \return The number of the matching edges.
  1396     template <typename MatchingMap>
  1397     int matching(MatchingMap& matching) {
  1398       for (UEdgeIt it(*graph); it != INVALID; ++it) {
  1399         matching[it] = it == anode_matching[graph->aNode(it)];
  1400       }
  1401       return matching_size;
  1402     }
  1403 
  1404 
  1405     /// \brief Return true if the given uedge is in the matching.
  1406     /// 
  1407     /// It returns true if the given uedge is in the matching.
  1408     bool matchingEdge(const UEdge& edge) {
  1409       return anode_matching[graph->aNode(edge)] == edge;
  1410     }
  1411 
  1412     /// \brief Returns the matching edge from the node.
  1413     /// 
  1414     /// Returns the matching edge from the node. If there is not such
  1415     /// edge it gives back \c INVALID.
  1416     UEdge matchingEdge(const Node& node) {
  1417       if (graph->aNode(node)) {
  1418         return anode_matching[node];
  1419       } else {
  1420         return bnode_matching[node];
  1421       }
  1422     }
  1423 
  1424     /// \brief Gives back the sum of costs of the matching edges.
  1425     ///
  1426     /// Gives back the sum of costs of the matching edges.
  1427     Value matchingCost() const {
  1428       return matching_cost;
  1429     }
  1430 
  1431     /// \brief Gives back the number of the matching edges.
  1432     ///
  1433     /// Gives back the number of the matching edges.
  1434     int matchingSize() const {
  1435       return matching_size;
  1436     }
  1437 
  1438     /// @}
  1439 
  1440   private:
  1441 
  1442     void initStructures() {
  1443       if (!_heap_cross_ref) {
  1444 	local_heap_cross_ref = true;
  1445 	_heap_cross_ref = Traits::createHeapCrossRef(*graph);
  1446       }
  1447       if (!_heap) {
  1448 	local_heap = true;
  1449 	_heap = Traits::createHeap(*_heap_cross_ref);
  1450       }
  1451     }
  1452 
  1453     void destroyStructures() {
  1454       if (local_heap_cross_ref) delete _heap_cross_ref;
  1455       if (local_heap) delete _heap;
  1456     }
  1457 
  1458 
  1459   private:
  1460     
  1461     const BpUGraph *graph;
  1462     const CostMap* cost;
  1463 
  1464     ANodeMatchingMap anode_matching;
  1465     BNodeMatchingMap bnode_matching;
  1466 
  1467     ANodePotentialMap anode_potential;
  1468     BNodePotentialMap bnode_potential;
  1469 
  1470     Value matching_cost;
  1471     int matching_size;
  1472 
  1473     HeapCrossRef *_heap_cross_ref;
  1474     bool local_heap_cross_ref;
  1475 
  1476     Heap *_heap;
  1477     bool local_heap;
  1478   
  1479   };
  1480 
  1481 }
  1482 
  1483 #endif