lemon/concept/undir_graph.h
author hegyi
Mon, 09 Jan 2006 11:55:47 +0000
changeset 1886 8b225c2935e7
parent 1669 66ae78d29f1e
permissions -rw-r--r--
Creation of algorithm dialog is even simpler by the usage of the newly created addMapSelector function.
     1 /* -*- C++ -*-
     2  *
     3  * lemon/concept/undir_graph_component.h - Part of LEMON, a generic
     4  * C++ optimization library
     5  *
     6  * Copyright (C) 2006 Egervary Jeno Kombinatorikus Optimalizalasi
     7  * Kutatocsoport (Egervary Research Group on Combinatorial Optimization,
     8  * EGRES).
     9  *
    10  * Permission to use, modify and distribute this software is granted
    11  * provided that this copyright notice appears in all copies. For
    12  * precise terms see the accompanying LICENSE file.
    13  *
    14  * This software is provided "AS IS" with no warranty of any kind,
    15  * express or implied, and with no claim as to its suitability for any
    16  * purpose.
    17  *
    18  */
    19 
    20 ///\ingroup graph_concepts
    21 ///\file
    22 ///\brief Undirected graphs and components of.
    23 
    24 
    25 #ifndef LEMON_CONCEPT_UNDIR_GRAPH_H
    26 #define LEMON_CONCEPT_UNDIR_GRAPH_H
    27 
    28 #include <lemon/concept/graph_component.h>
    29 #include <lemon/concept/graph.h>
    30 #include <lemon/utility.h>
    31 
    32 namespace lemon {
    33   namespace concept {
    34 
    35 //     /// Skeleton class which describes an edge with direction in \ref
    36 //     /// UndirGraph "undirected graph".
    37     template <typename UndirGraph>
    38     class UndirGraphEdge : public UndirGraph::UndirEdge {
    39       typedef typename UndirGraph::UndirEdge UndirEdge;
    40       typedef typename UndirGraph::Node Node;
    41     public:
    42 
    43       /// \e
    44       UndirGraphEdge() {}
    45 
    46       /// \e
    47       UndirGraphEdge(const UndirGraphEdge& e) : UndirGraph::UndirEdge(e) {}
    48 
    49       /// \e
    50       UndirGraphEdge(Invalid) {}
    51 
    52       /// \brief Directed edge from undirected edge and a source node.
    53       ///
    54       /// Constructs a directed edge from undirected edge and a source node.
    55       ///
    56       /// \note You have to specify the graph for this constructor.
    57       UndirGraphEdge(const UndirGraph &g,
    58 		     UndirEdge undir_edge, Node n) {
    59 	ignore_unused_variable_warning(undir_edge);
    60 	ignore_unused_variable_warning(g);
    61 	ignore_unused_variable_warning(n);
    62       }
    63 
    64       /// \e
    65       UndirGraphEdge& operator=(UndirGraphEdge) { return *this; }
    66 
    67       /// \e
    68       bool operator==(UndirGraphEdge) const { return true; }
    69       /// \e
    70       bool operator!=(UndirGraphEdge) const { return false; }
    71 
    72       /// \e
    73       bool operator<(UndirGraphEdge) const { return false; }
    74 
    75       template <typename Edge>
    76       struct Constraints {
    77 	void constraints() {
    78 	  const_constraints();
    79 	}
    80 	void const_constraints() const {
    81 	  /// \bug This should be is_base_and_derived ...
    82 	  UndirEdge ue = e;
    83 	  ue = e;
    84 
    85 	  Edge e_with_source(graph,ue,n);
    86 	  ignore_unused_variable_warning(e_with_source);
    87 	}
    88 	Edge e;
    89 	UndirEdge ue;
    90 	UndirGraph graph;
    91 	Node n;
    92       };
    93     };
    94     
    95 
    96     struct BaseIterableUndirGraphConcept {
    97 
    98       template <typename Graph>
    99       struct Constraints {
   100 
   101 	typedef typename Graph::UndirEdge UndirEdge;
   102 	typedef typename Graph::Edge Edge;
   103 	typedef typename Graph::Node Node;
   104 
   105 	void constraints() {
   106 	  checkConcept<BaseIterableGraphComponent, Graph>();
   107 	  checkConcept<GraphItem<>, UndirEdge>();
   108 	  //checkConcept<UndirGraphEdge<Graph>, Edge>();
   109 
   110 	  graph.first(ue);
   111 	  graph.next(ue);
   112 
   113 	  const_constraints();
   114 	}
   115 	void const_constraints() {
   116 	  Node n;
   117 	  n = graph.target(ue);
   118 	  n = graph.source(ue);
   119 	  n = graph.oppositeNode(n0, ue);
   120 
   121 	  bool b;
   122 	  b = graph.direction(e);
   123 	  Edge e = graph.direct(UndirEdge(), true);
   124 	  e = graph.direct(UndirEdge(), n);
   125  
   126 	  ignore_unused_variable_warning(b);
   127 	}
   128 
   129 	Graph graph;
   130 	Edge e;
   131 	Node n0;
   132 	UndirEdge ue;
   133       };
   134 
   135     };
   136 
   137 
   138     struct IterableUndirGraphConcept {
   139 
   140       template <typename Graph>
   141       struct Constraints {
   142 	void constraints() {
   143 	  /// \todo we don't need the iterable component to be base iterable
   144 	  /// Don't we really???
   145 	  //checkConcept< BaseIterableUndirGraphConcept, Graph > ();
   146 
   147 	  checkConcept<IterableGraphComponent, Graph> ();
   148 
   149 	  typedef typename Graph::UndirEdge UndirEdge;
   150 	  typedef typename Graph::UndirEdgeIt UndirEdgeIt;
   151 	  typedef typename Graph::IncEdgeIt IncEdgeIt;
   152 
   153 	  checkConcept<GraphIterator<Graph, UndirEdge>, UndirEdgeIt>();
   154 	  checkConcept<GraphIncIterator<Graph, UndirEdge>, IncEdgeIt>();
   155 	}
   156       };
   157 
   158     };
   159 
   160     struct MappableUndirGraphConcept {
   161 
   162       template <typename Graph>
   163       struct Constraints {
   164 
   165 	struct Dummy {
   166 	  int value;
   167 	  Dummy() : value(0) {}
   168 	  Dummy(int _v) : value(_v) {}
   169 	};
   170 
   171 	void constraints() {
   172 	  checkConcept<MappableGraphComponent, Graph>();
   173 
   174 	  typedef typename Graph::template UndirEdgeMap<int> IntMap;
   175 	  checkConcept<GraphMap<Graph, typename Graph::UndirEdge, int>,
   176 	    IntMap >();
   177 
   178 	  typedef typename Graph::template UndirEdgeMap<bool> BoolMap;
   179 	  checkConcept<GraphMap<Graph, typename Graph::UndirEdge, bool>,
   180 	    BoolMap >();
   181 
   182 	  typedef typename Graph::template UndirEdgeMap<Dummy> DummyMap;
   183 	  checkConcept<GraphMap<Graph, typename Graph::UndirEdge, Dummy>,
   184 	    DummyMap >();
   185 	}
   186       };
   187 
   188     };
   189 
   190     struct ExtendableUndirGraphConcept {
   191 
   192       template <typename Graph>
   193       struct Constraints {
   194 	void constraints() {
   195 	  node_a = graph.addNode();
   196 	  uedge = graph.addEdge(node_a, node_b);
   197 	}
   198 	typename Graph::Node node_a, node_b;
   199 	typename Graph::UndirEdge uedge;
   200 	Graph graph;
   201       };
   202 
   203     };
   204 
   205     struct ErasableUndirGraphConcept {
   206 
   207       template <typename Graph>
   208       struct Constraints {
   209 	void constraints() {
   210 	  graph.erase(n);
   211 	  graph.erase(e);
   212 	}
   213 	Graph graph;
   214 	typename Graph::Node n;
   215 	typename Graph::UndirEdge e;
   216       };
   217 
   218     };
   219 
   220     /// \addtogroup graph_concepts
   221     /// @{
   222 
   223 
   224     /// Class describing the concept of Undirected Graphs.
   225 
   226     /// This class describes the common interface of all Undirected
   227     /// Graphs.
   228     ///
   229     /// As all concept describing classes it provides only interface
   230     /// without any sensible implementation. So any algorithm for
   231     /// undirected graph should compile with this class, but it will not
   232     /// run properly, of couse.
   233     ///
   234     /// In LEMON undirected graphs also fulfill the concept of directed
   235     /// graphs (\ref lemon::concept::StaticGraph "Graph Concept"). For
   236     /// explanation of this and more see also the page \ref undir_graphs,
   237     /// a tutorial about undirected graphs.
   238     ///
   239     /// You can assume that all undirected graph can be handled
   240     /// as a static directed graph. This way it is fully conform
   241     /// to the StaticGraph concept.
   242 
   243     class UndirGraph {
   244     public:
   245       ///\e
   246 
   247       ///\todo undocumented
   248       ///
   249       typedef True UndirTag;
   250 
   251       /// \brief The base type of node iterators, 
   252       /// or in other words, the trivial node iterator.
   253       ///
   254       /// This is the base type of each node iterator,
   255       /// thus each kind of node iterator converts to this.
   256       /// More precisely each kind of node iterator should be inherited 
   257       /// from the trivial node iterator.
   258       class Node {
   259       public:
   260         /// Default constructor
   261 
   262         /// @warning The default constructor sets the iterator
   263         /// to an undefined value.
   264         Node() { }
   265         /// Copy constructor.
   266 
   267         /// Copy constructor.
   268         ///
   269         Node(const Node&) { }
   270 
   271         /// Invalid constructor \& conversion.
   272 
   273         /// This constructor initializes the iterator to be invalid.
   274         /// \sa Invalid for more details.
   275         Node(Invalid) { }
   276         /// Equality operator
   277 
   278         /// Two iterators are equal if and only if they point to the
   279         /// same object or both are invalid.
   280         bool operator==(Node) const { return true; }
   281 
   282         /// Inequality operator
   283         
   284         /// \sa operator==(Node n)
   285         ///
   286         bool operator!=(Node) const { return true; }
   287 
   288 	/// Artificial ordering operator.
   289 	
   290 	/// To allow the use of graph descriptors as key type in std::map or
   291 	/// similar associative container we require this.
   292 	///
   293 	/// \note This operator only have to define some strict ordering of
   294 	/// the items; this order has nothing to do with the iteration
   295 	/// ordering of the items.
   296 	///
   297 	/// \bug This is a technical requirement. Do we really need this?
   298 	bool operator<(Node) const { return false; }
   299 
   300       };
   301     
   302       /// This iterator goes through each node.
   303 
   304       /// This iterator goes through each node.
   305       /// Its usage is quite simple, for example you can count the number
   306       /// of nodes in graph \c g of type \c Graph like this:
   307       /// \code
   308       /// int count=0;
   309       /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
   310       /// \endcode
   311       class NodeIt : public Node {
   312       public:
   313         /// Default constructor
   314 
   315         /// @warning The default constructor sets the iterator
   316         /// to an undefined value.
   317         NodeIt() { }
   318         /// Copy constructor.
   319         
   320         /// Copy constructor.
   321         ///
   322         NodeIt(const NodeIt& n) : Node(n) { }
   323         /// Invalid constructor \& conversion.
   324 
   325         /// Initialize the iterator to be invalid.
   326         /// \sa Invalid for more details.
   327         NodeIt(Invalid) { }
   328         /// Sets the iterator to the first node.
   329 
   330         /// Sets the iterator to the first node of \c g.
   331         ///
   332         NodeIt(const UndirGraph&) { }
   333         /// Node -> NodeIt conversion.
   334 
   335         /// Sets the iterator to the node of \c the graph pointed by 
   336 	/// the trivial iterator.
   337         /// This feature necessitates that each time we 
   338         /// iterate the edge-set, the iteration order is the same.
   339         NodeIt(const UndirGraph&, const Node&) { }
   340         /// Next node.
   341 
   342         /// Assign the iterator to the next node.
   343         ///
   344         NodeIt& operator++() { return *this; }
   345       };
   346     
   347     
   348       /// The base type of the undirected edge iterators.
   349 
   350       /// The base type of the undirected edge iterators.
   351       ///
   352       class UndirEdge {
   353       public:
   354         /// Default constructor
   355 
   356         /// @warning The default constructor sets the iterator
   357         /// to an undefined value.
   358         UndirEdge() { }
   359         /// Copy constructor.
   360 
   361         /// Copy constructor.
   362         ///
   363         UndirEdge(const UndirEdge&) { }
   364         /// Initialize the iterator to be invalid.
   365 
   366         /// Initialize the iterator to be invalid.
   367         ///
   368         UndirEdge(Invalid) { }
   369         /// Equality operator
   370 
   371         /// Two iterators are equal if and only if they point to the
   372         /// same object or both are invalid.
   373         bool operator==(UndirEdge) const { return true; }
   374         /// Inequality operator
   375 
   376         /// \sa operator==(UndirEdge n)
   377         ///
   378         bool operator!=(UndirEdge) const { return true; }
   379 
   380 	/// Artificial ordering operator.
   381 	
   382 	/// To allow the use of graph descriptors as key type in std::map or
   383 	/// similar associative container we require this.
   384 	///
   385 	/// \note This operator only have to define some strict ordering of
   386 	/// the items; this order has nothing to do with the iteration
   387 	/// ordering of the items.
   388 	///
   389 	/// \bug This is a technical requirement. Do we really need this?
   390 	bool operator<(UndirEdge) const { return false; }
   391       };
   392 
   393       /// This iterator goes through each undirected edge.
   394 
   395       /// This iterator goes through each undirected edge of a graph.
   396       /// Its usage is quite simple, for example you can count the number
   397       /// of undirected edges in a graph \c g of type \c Graph as follows:
   398       /// \code
   399       /// int count=0;
   400       /// for(Graph::UndirEdgeIt e(g); e!=INVALID; ++e) ++count;
   401       /// \endcode
   402       class UndirEdgeIt : public UndirEdge {
   403       public:
   404         /// Default constructor
   405 
   406         /// @warning The default constructor sets the iterator
   407         /// to an undefined value.
   408         UndirEdgeIt() { }
   409         /// Copy constructor.
   410 
   411         /// Copy constructor.
   412         ///
   413         UndirEdgeIt(const UndirEdgeIt& e) : UndirEdge(e) { }
   414         /// Initialize the iterator to be invalid.
   415 
   416         /// Initialize the iterator to be invalid.
   417         ///
   418         UndirEdgeIt(Invalid) { }
   419         /// This constructor sets the iterator to the first undirected edge.
   420     
   421         /// This constructor sets the iterator to the first undirected edge.
   422         UndirEdgeIt(const UndirGraph&) { }
   423         /// UndirEdge -> UndirEdgeIt conversion
   424 
   425         /// Sets the iterator to the value of the trivial iterator.
   426         /// This feature necessitates that each time we
   427         /// iterate the undirected edge-set, the iteration order is the 
   428 	/// same.
   429         UndirEdgeIt(const UndirGraph&, const UndirEdge&) { } 
   430         /// Next undirected edge
   431         
   432         /// Assign the iterator to the next undirected edge.
   433         UndirEdgeIt& operator++() { return *this; }
   434       };
   435 
   436       /// \brief This iterator goes trough the incident undirected 
   437       /// edges of a node.
   438       ///
   439       /// This iterator goes trough the incident undirected edges
   440       /// of a certain node
   441       /// of a graph.
   442       /// Its usage is quite simple, for example you can compute the
   443       /// degree (i.e. count the number
   444       /// of incident edges of a node \c n
   445       /// in graph \c g of type \c Graph as follows.
   446       /// \code
   447       /// int count=0;
   448       /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   449       /// \endcode
   450       class IncEdgeIt : public UndirEdge {
   451       public:
   452         /// Default constructor
   453 
   454         /// @warning The default constructor sets the iterator
   455         /// to an undefined value.
   456         IncEdgeIt() { }
   457         /// Copy constructor.
   458 
   459         /// Copy constructor.
   460         ///
   461         IncEdgeIt(const IncEdgeIt& e) : UndirEdge(e) { }
   462         /// Initialize the iterator to be invalid.
   463 
   464         /// Initialize the iterator to be invalid.
   465         ///
   466         IncEdgeIt(Invalid) { }
   467         /// This constructor sets the iterator to first incident edge.
   468     
   469         /// This constructor set the iterator to the first incident edge of
   470         /// the node.
   471         IncEdgeIt(const UndirGraph&, const Node&) { }
   472         /// UndirEdge -> IncEdgeIt conversion
   473 
   474         /// Sets the iterator to the value of the trivial iterator \c e.
   475         /// This feature necessitates that each time we 
   476         /// iterate the edge-set, the iteration order is the same.
   477         IncEdgeIt(const UndirGraph&, const UndirEdge&) { }
   478         /// Next incident edge
   479 
   480         /// Assign the iterator to the next incident edge
   481 	/// of the corresponding node.
   482         IncEdgeIt& operator++() { return *this; }
   483       };
   484 
   485       /// The directed edge type.
   486 
   487       /// The directed edge type. It can be converted to the
   488       /// undirected edge.
   489       class Edge : public UndirEdge {
   490       public:
   491         /// Default constructor
   492 
   493         /// @warning The default constructor sets the iterator
   494         /// to an undefined value.
   495         Edge() { }
   496         /// Copy constructor.
   497 
   498         /// Copy constructor.
   499         ///
   500         Edge(const Edge& e) : UndirEdge(e) { }
   501         /// Initialize the iterator to be invalid.
   502 
   503         /// Initialize the iterator to be invalid.
   504         ///
   505         Edge(Invalid) { }
   506         /// Equality operator
   507 
   508         /// Two iterators are equal if and only if they point to the
   509         /// same object or both are invalid.
   510         bool operator==(Edge) const { return true; }
   511         /// Inequality operator
   512 
   513         /// \sa operator==(Edge n)
   514         ///
   515         bool operator!=(Edge) const { return true; }
   516 
   517 	/// Artificial ordering operator.
   518 	
   519 	/// To allow the use of graph descriptors as key type in std::map or
   520 	/// similar associative container we require this.
   521 	///
   522 	/// \note This operator only have to define some strict ordering of
   523 	/// the items; this order has nothing to do with the iteration
   524 	/// ordering of the items.
   525 	///
   526 	/// \bug This is a technical requirement. Do we really need this?
   527 	bool operator<(Edge) const { return false; }
   528 	
   529       }; 
   530       /// This iterator goes through each directed edge.
   531 
   532       /// This iterator goes through each edge of a graph.
   533       /// Its usage is quite simple, for example you can count the number
   534       /// of edges in a graph \c g of type \c Graph as follows:
   535       /// \code
   536       /// int count=0;
   537       /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
   538       /// \endcode
   539       class EdgeIt : public Edge {
   540       public:
   541         /// Default constructor
   542 
   543         /// @warning The default constructor sets the iterator
   544         /// to an undefined value.
   545         EdgeIt() { }
   546         /// Copy constructor.
   547 
   548         /// Copy constructor.
   549         ///
   550         EdgeIt(const EdgeIt& e) : Edge(e) { }
   551         /// Initialize the iterator to be invalid.
   552 
   553         /// Initialize the iterator to be invalid.
   554         ///
   555         EdgeIt(Invalid) { }
   556         /// This constructor sets the iterator to the first edge.
   557     
   558         /// This constructor sets the iterator to the first edge of \c g.
   559         ///@param g the graph
   560         EdgeIt(const UndirGraph &g) { ignore_unused_variable_warning(g); }
   561         /// Edge -> EdgeIt conversion
   562 
   563         /// Sets the iterator to the value of the trivial iterator \c e.
   564         /// This feature necessitates that each time we 
   565         /// iterate the edge-set, the iteration order is the same.
   566         EdgeIt(const UndirGraph&, const Edge&) { } 
   567         ///Next edge
   568         
   569         /// Assign the iterator to the next edge.
   570         EdgeIt& operator++() { return *this; }
   571       };
   572    
   573       /// This iterator goes trough the outgoing directed edges of a node.
   574 
   575       /// This iterator goes trough the \e outgoing edges of a certain node
   576       /// of a graph.
   577       /// Its usage is quite simple, for example you can count the number
   578       /// of outgoing edges of a node \c n
   579       /// in graph \c g of type \c Graph as follows.
   580       /// \code
   581       /// int count=0;
   582       /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   583       /// \endcode
   584     
   585       class OutEdgeIt : public Edge {
   586       public:
   587         /// Default constructor
   588 
   589         /// @warning The default constructor sets the iterator
   590         /// to an undefined value.
   591         OutEdgeIt() { }
   592         /// Copy constructor.
   593 
   594         /// Copy constructor.
   595         ///
   596         OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
   597         /// Initialize the iterator to be invalid.
   598 
   599         /// Initialize the iterator to be invalid.
   600         ///
   601         OutEdgeIt(Invalid) { }
   602         /// This constructor sets the iterator to the first outgoing edge.
   603     
   604         /// This constructor sets the iterator to the first outgoing edge of
   605         /// the node.
   606         ///@param n the node
   607         ///@param g the graph
   608         OutEdgeIt(const UndirGraph& n, const Node& g) {
   609 	  ignore_unused_variable_warning(n);
   610 	  ignore_unused_variable_warning(g);
   611 	}
   612         /// Edge -> OutEdgeIt conversion
   613 
   614         /// Sets the iterator to the value of the trivial iterator.
   615 	/// This feature necessitates that each time we 
   616         /// iterate the edge-set, the iteration order is the same.
   617         OutEdgeIt(const UndirGraph&, const Edge&) { }
   618         ///Next outgoing edge
   619         
   620         /// Assign the iterator to the next 
   621         /// outgoing edge of the corresponding node.
   622         OutEdgeIt& operator++() { return *this; }
   623       };
   624 
   625       /// This iterator goes trough the incoming directed edges of a node.
   626 
   627       /// This iterator goes trough the \e incoming edges of a certain node
   628       /// of a graph.
   629       /// Its usage is quite simple, for example you can count the number
   630       /// of outgoing edges of a node \c n
   631       /// in graph \c g of type \c Graph as follows.
   632       /// \code
   633       /// int count=0;
   634       /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   635       /// \endcode
   636 
   637       class InEdgeIt : public Edge {
   638       public:
   639         /// Default constructor
   640 
   641         /// @warning The default constructor sets the iterator
   642         /// to an undefined value.
   643         InEdgeIt() { }
   644         /// Copy constructor.
   645 
   646         /// Copy constructor.
   647         ///
   648         InEdgeIt(const InEdgeIt& e) : Edge(e) { }
   649         /// Initialize the iterator to be invalid.
   650 
   651         /// Initialize the iterator to be invalid.
   652         ///
   653         InEdgeIt(Invalid) { }
   654         /// This constructor sets the iterator to first incoming edge.
   655     
   656         /// This constructor set the iterator to the first incoming edge of
   657         /// the node.
   658         ///@param n the node
   659         ///@param g the graph
   660         InEdgeIt(const UndirGraph& g, const Node& n) { 
   661 	  ignore_unused_variable_warning(n);
   662 	  ignore_unused_variable_warning(g);
   663 	}
   664         /// Edge -> InEdgeIt conversion
   665 
   666         /// Sets the iterator to the value of the trivial iterator \c e.
   667         /// This feature necessitates that each time we 
   668         /// iterate the edge-set, the iteration order is the same.
   669         InEdgeIt(const UndirGraph&, const Edge&) { }
   670         /// Next incoming edge
   671 
   672         /// Assign the iterator to the next inedge of the corresponding node.
   673         ///
   674         InEdgeIt& operator++() { return *this; }
   675       };
   676 
   677       /// \brief Read write map of the nodes to type \c T.
   678       /// 
   679       /// ReadWrite map of the nodes to type \c T.
   680       /// \sa Reference
   681       /// \warning Making maps that can handle bool type (NodeMap<bool>)
   682       /// needs some extra attention!
   683       /// \todo Wrong documentation
   684       template<class T> 
   685       class NodeMap : public ReadWriteMap< Node, T >
   686       {
   687       public:
   688 
   689         ///\e
   690         NodeMap(const UndirGraph&) { }
   691         ///\e
   692         NodeMap(const UndirGraph&, T) { }
   693 
   694         ///Copy constructor
   695         NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   696         ///Assignment operator
   697         NodeMap& operator=(const NodeMap&) { return *this; }
   698         // \todo fix this concept
   699       };
   700 
   701       /// \brief Read write map of the directed edges to type \c T.
   702       ///
   703       /// Reference map of the directed edges to type \c T.
   704       /// \sa Reference
   705       /// \warning Making maps that can handle bool type (EdgeMap<bool>)
   706       /// needs some extra attention!
   707       /// \todo Wrong documentation
   708       template<class T> 
   709       class EdgeMap : public ReadWriteMap<Edge,T>
   710       {
   711       public:
   712 
   713         ///\e
   714         EdgeMap(const UndirGraph&) { }
   715         ///\e
   716         EdgeMap(const UndirGraph&, T) { }
   717         ///Copy constructor
   718         EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
   719         ///Assignment operator
   720         EdgeMap& operator=(const EdgeMap&) { return *this; }
   721         // \todo fix this concept    
   722       };
   723 
   724       /// Read write map of the undirected edges to type \c T.
   725 
   726       /// Reference map of the edges to type \c T.
   727       /// \sa Reference
   728       /// \warning Making maps that can handle bool type (UndirEdgeMap<bool>)
   729       /// needs some extra attention!
   730       /// \todo Wrong documentation
   731       template<class T> 
   732       class UndirEdgeMap : public ReadWriteMap<UndirEdge,T>
   733       {
   734       public:
   735 
   736         ///\e
   737         UndirEdgeMap(const UndirGraph&) { }
   738         ///\e
   739         UndirEdgeMap(const UndirGraph&, T) { }
   740         ///Copy constructor
   741         UndirEdgeMap(const UndirEdgeMap& em) : ReadWriteMap<UndirEdge,T>(em) {}
   742         ///Assignment operator
   743         UndirEdgeMap &operator=(const UndirEdgeMap&) { return *this; }
   744         // \todo fix this concept    
   745       };
   746 
   747       /// \brief Direct the given undirected edge.
   748       ///
   749       /// Direct the given undirected edge. The returned edge source
   750       /// will be the given edge.
   751       Edge direct(const UndirEdge&, const Node&) const {
   752 	return INVALID;
   753       }
   754 
   755       /// \brief Direct the given undirected edge.
   756       ///
   757       /// Direct the given undirected edge. The returned edge source
   758       /// will be the source of the undirected edge if the given bool
   759       /// is true.
   760       Edge direct(const UndirEdge&, bool) const {
   761 	return INVALID;
   762       }
   763 
   764       /// \brief Returns true if the edge has default orientation.
   765       ///
   766       /// Returns whether the given directed edge is same orientation as
   767       /// the corresponding undirected edge.
   768       bool direction(Edge) const { return true; }
   769 
   770       /// \brief Returns the opposite directed edge.
   771       ///
   772       /// Returns the opposite directed edge.
   773       Edge oppositeEdge(Edge) const { return INVALID; }
   774 
   775       /// \brief Opposite node on an edge
   776       ///
   777       /// \return the opposite of the given Node on the given Edge
   778       Node oppositeNode(Node, UndirEdge) const { return INVALID; }
   779 
   780       /// \brief First node of the undirected edge.
   781       ///
   782       /// \return the first node of the given UndirEdge.
   783       ///
   784       /// Naturally undirectected edges don't have direction and thus
   785       /// don't have source and target node. But we use these two methods
   786       /// to query the two endnodes of the edge. The direction of the edge
   787       /// which arises this way is called the inherent direction of the
   788       /// undirected edge, and is used to define the "default" direction
   789       /// of the directed versions of the edges.
   790       /// \sa direction
   791       Node source(UndirEdge) const { return INVALID; }
   792 
   793       /// \brief Second node of the undirected edge.
   794       Node target(UndirEdge) const { return INVALID; }
   795 
   796       /// \brief Source node of the directed edge.
   797       Node source(Edge) const { return INVALID; }
   798 
   799       /// \brief Target node of the directed edge.
   800       Node target(Edge) const { return INVALID; }
   801 
   802 //       /// \brief First node of the graph
   803 //       ///
   804 //       /// \note This method is part of so called \ref
   805 //       /// developpers_interface "Developpers' interface", so it shouldn't
   806 //       /// be used in an end-user program.
   807       void first(Node&) const {}
   808 //       /// \brief Next node of the graph
   809 //       ///
   810 //       /// \note This method is part of so called \ref
   811 //       /// developpers_interface "Developpers' interface", so it shouldn't
   812 //       /// be used in an end-user program.
   813       void next(Node&) const {}
   814 
   815 //       /// \brief First undirected edge of the graph
   816 //       ///
   817 //       /// \note This method is part of so called \ref
   818 //       /// developpers_interface "Developpers' interface", so it shouldn't
   819 //       /// be used in an end-user program.
   820       void first(UndirEdge&) const {}
   821 //       /// \brief Next undirected edge of the graph
   822 //       ///
   823 //       /// \note This method is part of so called \ref
   824 //       /// developpers_interface "Developpers' interface", so it shouldn't
   825 //       /// be used in an end-user program.
   826       void next(UndirEdge&) const {}
   827 
   828 //       /// \brief First directed edge of the graph
   829 //       ///
   830 //       /// \note This method is part of so called \ref
   831 //       /// developpers_interface "Developpers' interface", so it shouldn't
   832 //       /// be used in an end-user program.
   833       void first(Edge&) const {}
   834 //       /// \brief Next directed edge of the graph
   835 //       ///
   836 //       /// \note This method is part of so called \ref
   837 //       /// developpers_interface "Developpers' interface", so it shouldn't
   838 //       /// be used in an end-user program.
   839       void next(Edge&) const {}
   840 
   841 //       /// \brief First outgoing edge from a given node
   842 //       ///
   843 //       /// \note This method is part of so called \ref
   844 //       /// developpers_interface "Developpers' interface", so it shouldn't
   845 //       /// be used in an end-user program.
   846       void firstOut(Edge&, Node) const {}
   847 //       /// \brief Next outgoing edge to a node
   848 //       ///
   849 //       /// \note This method is part of so called \ref
   850 //       /// developpers_interface "Developpers' interface", so it shouldn't
   851 //       /// be used in an end-user program.
   852       void nextOut(Edge&) const {}
   853 
   854 //       /// \brief First incoming edge to a given node
   855 //       ///
   856 //       /// \note This method is part of so called \ref
   857 //       /// developpers_interface "Developpers' interface", so it shouldn't
   858 //       /// be used in an end-user program.
   859       void firstIn(Edge&, Node) const {}
   860 //       /// \brief Next incoming edge to a node
   861 //       ///
   862 //       /// \note This method is part of so called \ref
   863 //       /// developpers_interface "Developpers' interface", so it shouldn't
   864 //       /// be used in an end-user program.
   865       void nextIn(Edge&) const {}
   866 
   867 
   868       /// \brief Base node of the iterator
   869       ///
   870       /// Returns the base node (the source in this case) of the iterator
   871       Node baseNode(OutEdgeIt e) const {
   872 	return source(e);
   873       }
   874       /// \brief Running node of the iterator
   875       ///
   876       /// Returns the running node (the target in this case) of the
   877       /// iterator
   878       Node runningNode(OutEdgeIt e) const {
   879 	return target(e);
   880       }
   881 
   882       /// \brief Base node of the iterator
   883       ///
   884       /// Returns the base node (the target in this case) of the iterator
   885       Node baseNode(InEdgeIt e) const {
   886 	return target(e);
   887       }
   888       /// \brief Running node of the iterator
   889       ///
   890       /// Returns the running node (the source in this case) of the
   891       /// iterator
   892       Node runningNode(InEdgeIt e) const {
   893 	return source(e);
   894       }
   895 
   896       /// \brief Base node of the iterator
   897       ///
   898       /// Returns the base node of the iterator
   899       Node baseNode(IncEdgeIt) const {
   900 	return INVALID;
   901       }
   902       
   903       /// \brief Running node of the iterator
   904       ///
   905       /// Returns the running node of the iterator
   906       Node runningNode(IncEdgeIt) const {
   907 	return INVALID;
   908       }
   909 
   910       template <typename Graph>
   911       struct Constraints {
   912 	void constraints() {
   913 	  checkConcept<BaseIterableUndirGraphConcept, Graph>();
   914 	  checkConcept<IterableUndirGraphConcept, Graph>();
   915 	  checkConcept<MappableUndirGraphConcept, Graph>();
   916 	}
   917       };
   918 
   919     };
   920 
   921     /// \brief An empty non-static undirected graph class.
   922     ///    
   923     /// This class provides everything that \ref UndirGraph does.
   924     /// Additionally it enables building graphs from scratch.
   925     class ExtendableUndirGraph : public UndirGraph {
   926     public:
   927       
   928       /// \brief Add a new node to the graph.
   929       ///
   930       /// Add a new node to the graph.
   931       /// \return the new node.
   932       Node addNode();
   933 
   934       /// \brief Add a new undirected edge to the graph.
   935       ///
   936       /// Add a new undirected edge to the graph.
   937       /// \return the new edge.
   938       UndirEdge addEdge(const Node& from, const Node& to);
   939 
   940       /// \brief Resets the graph.
   941       ///
   942       /// This function deletes all undirected edges and nodes of the graph.
   943       /// It also frees the memory allocated to store them.
   944       void clear() { }
   945 
   946       template <typename Graph>
   947       struct Constraints {
   948 	void constraints() {
   949 	  checkConcept<BaseIterableUndirGraphConcept, Graph>();
   950 	  checkConcept<IterableUndirGraphConcept, Graph>();
   951 	  checkConcept<MappableUndirGraphConcept, Graph>();
   952 
   953 	  checkConcept<UndirGraph, Graph>();
   954 	  checkConcept<ExtendableUndirGraphConcept, Graph>();
   955 	  checkConcept<ClearableGraphComponent, Graph>();
   956 	}
   957       };
   958 
   959     };
   960 
   961     /// \brief An empty erasable undirected graph class.
   962     ///
   963     /// This class is an extension of \ref ExtendableUndirGraph. It makes it
   964     /// possible to erase undirected edges or nodes.
   965     class ErasableUndirGraph : public ExtendableUndirGraph {
   966     public:
   967 
   968       /// \brief Deletes a node.
   969       ///
   970       /// Deletes a node.
   971       ///
   972       void erase(Node) { }
   973       /// \brief Deletes an undirected edge.
   974       ///
   975       /// Deletes an undirected edge.
   976       ///
   977       void erase(UndirEdge) { }
   978 
   979       template <typename Graph>
   980       struct Constraints {
   981 	void constraints() {
   982 	  checkConcept<ExtendableUndirGraph, Graph>();
   983 	  checkConcept<ErasableUndirGraphConcept, Graph>();
   984 	}
   985       };
   986 
   987     };
   988 
   989     /// @}
   990 
   991   }
   992 
   993 }
   994 
   995 #endif