preflow maxflow ...
7 #include <LEDA/graph.h>
8 #include <LEDA/mcb_matching.h>
10 #include <LEDA/graph_gen.h>
12 #include <leda_graph_wrapper.h>
13 #include <list_graph.h>
14 //#include <smart_graph.h>
16 #include <time_measure.h>
17 #include <for_each_macros.h>
18 //#include <bfs_iterator.h>
19 #include <graph_wrapper.h>
21 #include <edmonds_karp.h>
25 * Inicializalja a veletlenszamgeneratort.
26 * Figyelem, ez nem jo igazi random szamokhoz,
27 * erre ne bizzad a titkaidat!
31 unsigned int seed = getpid();
39 * Egy veletlen int-et ad vissza 0 es m-1 kozott.
43 return int( double(m) * rand() / (RAND_MAX + 1.0) );
51 //lg.make_undirected();
52 typedef LedaGraphWrapper<leda::graph> Graph;
56 //typedef UndirListGraph Graph;
59 typedef Graph::Node Node;
60 typedef Graph::NodeIt NodeIt;
61 typedef Graph::Edge Edge;
62 typedef Graph::EdgeIt EdgeIt;
63 typedef Graph::OutEdgeIt OutEdgeIt;
65 std::vector<Graph::Node> s_nodes;
66 std::vector<Graph::Node> t_nodes;
69 std::cout << "number of nodes in the first color class=";
72 std::cout << "number of nodes in the second color class=";
75 std::cout << "number of edges=";
78 std::cout << "A bipartite graph is a random group graph if the color classes \nA and B are partitiones to A_0, A_1, ..., A_{k-1} and B_0, B_1, ..., B_{k-1} \nas equally as possible \nand the edges from A_i goes to A_{i-1 mod k} and A_{i+1 mod k}.\n";
79 std::cout << "number of groups in LEDA random group graph=";
82 leda_list<leda_node> lS;
83 leda_list<leda_node> lT;
84 random_bigraph(lg, a, b, m, lS, lT, k);
86 // for (int i=0; i<a; ++i) s_nodes.push_back(g.addNode());
87 // for (int i=0; i<b; ++i) t_nodes.push_back(g.addNode());
90 // for(int i=0; i<m; ++i) {
91 // g.addEdge(s_nodes[random(a)], t_nodes[random(b)]);
94 Graph::NodeMap<int> ref_map(g, -1);
96 IterableBoolMap< Graph::NodeMap<int> > bipartite_map(ref_map);
97 // for (int i=0; i<a; ++i) bipartite_map.insert(s_nodes[i], false);
98 // for (int i=0; i<b; ++i) bipartite_map.insert(t_nodes[i], true);
100 forall(ln, lS) bipartite_map.insert(ln, false);
101 forall(ln, lT) bipartite_map.insert(ln, true);
103 typedef BipartiteGraphWrapper<Graph> BGW;
104 BGW bgw(g, bipartite_map);
106 // BGW::NodeMap<int> dbyj(bgw);
107 // BGW::EdgeMap<int> dbyxcj(bgw);
109 typedef stGraphWrapper<BGW> stGW;
111 ConstMap<stGW::Edge, int> const1map(1);
112 stGW::EdgeMap<int> flow(stgw);
115 FOR_EACH_LOC(stGW::EdgeIt, e, stgw) flow.set(e, 0);
117 // stGW::EdgeMap<int> pre_flow(stgw);
118 Preflow<stGW, int, ConstMap<stGW::Edge, int>, stGW::EdgeMap<int> >
119 pre_flow_test(stgw, stgw.S_NODE, stgw.T_NODE, const1map, flow/*, true*/);
121 std::cout << "HUGO pre flow value: " << pre_flow_test.flowValue() << std::endl;
122 std::cout << "elapsed time: " << ts << std::endl;
123 // FOR_EACH_LOC(stGW::EdgeIt, e, stgw) {
124 // std::cout << e << ": " << pre_flow[e] << "\n";
129 leda_list<leda_edge> ml=MAX_CARD_BIPARTITE_MATCHING(lg);
130 // stGW::EdgeMap<int> pre_flow(stgw);
131 //Preflow<stGW, int, ConstMap<stGW::Edge, int>, stGW::EdgeMap<int> >
132 // pre_flow_test(stgw, stgw.S_NODE, stgw.T_NODE, const1map, pre_flow, true);
133 //pre_flow_test.run();
134 std::cout << "LEDA matching value: " << ml.size() << std::endl;
135 std::cout << "elapsed time: " << ts << std::endl;
136 // FOR_EACH_LOC(stGW::EdgeIt, e, stgw) {
137 // std::cout << e << ": " << pre_flow[e] << "\n";
141 FOR_EACH_LOC(stGW::EdgeIt, e, stgw) flow.set(e, 0);
143 MaxFlow<stGW, int, ConstMap<stGW::Edge, int>, stGW::EdgeMap<int> >
144 max_flow_test(stgw, stgw.S_NODE, stgw.T_NODE, const1map, flow);
145 // while (max_flow_test.augmentOnShortestPath()) { }
146 typedef ListGraph MutableGraph;
147 // while (max_flow_test.augmentOnBlockingFlow1<MutableGraph>()) {
148 while (max_flow_test.augmentOnBlockingFlow2()) {
149 std::cout << max_flow_test.flowValue() << std::endl;
151 std::cout << "HUGO blocking flow value: " << max_flow_test.flowValue() << std::endl;
152 std::cout << "elapsed time: " << ts << std::endl;
153 // FOR_EACH_LOC(stGW::EdgeIt, e, stgw) {
154 // std::cout << e << ": " << max_flow[e] << "\n";
156 // std::cout << "\n";