lemon/lp_base.h
author deba
Tue, 23 Jan 2007 13:13:39 +0000
changeset 2351 8e3a00d4678e
parent 2328 b4931ae52069
child 2363 2aabce558574
permissions -rw-r--r--
Correction of the wrong base class
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_LP_BASE_H
    20 #define LEMON_LP_BASE_H
    21 
    22 #include<iostream>
    23 
    24 
    25 #include<vector>
    26 #include<map>
    27 #include<limits>
    28 #include<cmath>
    29 
    30 #include<lemon/bits/utility.h>
    31 #include<lemon/error.h>
    32 #include<lemon/bits/invalid.h>
    33 
    34 ///\file
    35 ///\brief The interface of the LP solver interface.
    36 ///\ingroup gen_opt_group
    37 namespace lemon {
    38 
    39 
    40   ///Internal data structure to convert floating id's to fix one's
    41     
    42   ///\todo This might be implemented to be also usable in other places.
    43   class _FixId 
    44   {
    45   protected:
    46     int _first_index;
    47     int first_free;
    48   public:
    49     std::vector<int> index;
    50     std::vector<int> cross;
    51     _FixId() : _first_index(-1), first_free(-1) {};
    52     ///Convert a floating id to a fix one
    53 
    54     ///\param n is a floating id
    55     ///\return the corresponding fix id
    56     int fixId(int n) const {return cross[n];}
    57     ///Convert a fix id to a floating one
    58 
    59     ///\param n is a fix id
    60     ///\return the corresponding floating id
    61     int floatingId(int n) const { return index[n];}
    62     ///Add a new floating id.
    63 
    64     ///\param n is a floating id
    65     ///\return the fix id of the new value
    66     ///\todo Multiple additions should also be handled.
    67     int insert(int n)
    68     {
    69       if(cross.empty()) _first_index=n;
    70       if(n>=int(cross.size())) {
    71 	cross.resize(n+1);
    72 	if(first_free==-1) {
    73 	  cross[n]=index.size();
    74 	  index.push_back(n);
    75 	}
    76 	else {
    77 	  cross[n]=first_free;
    78 	  int next=index[first_free];
    79 	  index[first_free]=n;
    80 	  first_free=next;
    81 	}
    82 	return cross[n];
    83       }
    84       else {
    85 	///\todo Create an own exception type.
    86 	throw LogicError(); //floatingId-s must form a continuous range;
    87       }
    88     }
    89     ///Remove a fix id.
    90 
    91     ///\param n is a fix id
    92     ///
    93     void erase(int n) 
    94     {
    95       int fl=index[n];
    96       index[n]=first_free;
    97       first_free=n;
    98       for(int i=fl+1;i<int(cross.size());++i) {
    99 	cross[i-1]=cross[i];
   100 	index[cross[i]]--;
   101       }
   102       cross.pop_back();
   103     }
   104     ///An upper bound on the largest fix id.
   105 
   106     ///\todo Do we need this?
   107     ///
   108     std::size_t maxFixId() { return cross.size()-1; }
   109   
   110     ///Returns the first (smallest) inserted index
   111 
   112     ///Returns the first (smallest) inserted index
   113     ///or -1 if no index has been inserted before.
   114     int firstIndex() {return _first_index;}
   115   };
   116 
   117   ///Common base class for LP solvers
   118   
   119   ///\todo Much more docs
   120   ///\ingroup gen_opt_group
   121   class LpSolverBase {
   122 
   123   protected:
   124     _FixId rows;
   125     _FixId cols;
   126 
   127   public:
   128 
   129     ///Possible outcomes of an LP solving procedure
   130     enum SolveExitStatus {
   131       ///This means that the problem has been successfully solved: either
   132       ///an optimal solution has been found or infeasibility/unboundedness
   133       ///has been proved.
   134       SOLVED = 0,
   135       ///Any other case (including the case when some user specified
   136       ///limit has been exceeded)
   137       UNSOLVED = 1
   138     };
   139       
   140       ///\e
   141     enum SolutionStatus {
   142       ///Feasible solution hasn't been found (but may exist).
   143 
   144       ///\todo NOTFOUND might be a better name.
   145       ///
   146       UNDEFINED = 0,
   147       ///The problem has no feasible solution
   148       INFEASIBLE = 1,
   149       ///Feasible solution found
   150       FEASIBLE = 2,
   151       ///Optimal solution exists and found
   152       OPTIMAL = 3,
   153       ///The cost function is unbounded
   154 
   155       ///\todo Give a feasible solution and an infinite ray (and the
   156       ///corresponding bases)
   157       INFINITE = 4
   158     };
   159 
   160     ///\e The type of the investigated LP problem
   161     enum ProblemTypes {
   162       ///Primal-dual feasible
   163       PRIMAL_DUAL_FEASIBLE = 0,
   164       ///Primal feasible dual infeasible
   165       PRIMAL_FEASIBLE_DUAL_INFEASIBLE = 1,
   166       ///Primal infeasible dual feasible
   167       PRIMAL_INFEASIBLE_DUAL_FEASIBLE = 2,
   168       ///Primal-dual infeasible
   169       PRIMAL_DUAL_INFEASIBLE = 3,
   170       ///Could not determine so far
   171       UNKNOWN = 4
   172     };
   173 
   174     ///The floating point type used by the solver
   175     typedef double Value;
   176     ///The infinity constant
   177     static const Value INF;
   178     ///The not a number constant
   179     static const Value NaN;
   180 
   181     static inline bool isNaN(const Value& v) { return v!=v; }
   182     
   183     friend class Col;
   184     friend class ColIt;
   185     friend class Row;
   186     
   187     ///Refer to a column of the LP.
   188 
   189     ///This type is used to refer to a column of the LP.
   190     ///
   191     ///Its value remains valid and correct even after the addition or erase of
   192     ///other columns.
   193     ///
   194     ///\todo Document what can one do with a Col (INVALID, comparing,
   195     ///it is similar to Node/Edge)
   196     class Col {
   197     protected:
   198       int id;
   199       friend class LpSolverBase;
   200       friend class MipSolverBase;
   201     public:
   202       typedef Value ExprValue;
   203       typedef True LpSolverCol;
   204       Col() {}
   205       Col(const Invalid&) : id(-1) {}
   206       bool operator< (Col c) const  {return id< c.id;}
   207       bool operator> (Col c) const  {return id> c.id;}
   208       bool operator==(Col c) const  {return id==c.id;}
   209       bool operator!=(Col c) const  {return id!=c.id;}
   210     };
   211 
   212     class ColIt : public Col {
   213       LpSolverBase *_lp;
   214     public:
   215       ColIt() {}
   216       ColIt(LpSolverBase &lp) : _lp(&lp)
   217       {
   218 	id = _lp->cols.cross.empty()?-1:
   219 	  _lp->cols.fixId(_lp->cols.firstIndex());
   220       }
   221       ColIt(const Invalid&) : Col(INVALID) {}
   222       ColIt &operator++() 
   223       {
   224 	int fid = _lp->cols.floatingId(id)+1;
   225 	id = unsigned(fid)<_lp->cols.cross.size() ? _lp->cols.fixId(fid) : -1;
   226 	return *this;
   227       }
   228     };
   229 
   230     static int id(const Col& col) { return col.id; }
   231  
   232       
   233     ///Refer to a row of the LP.
   234 
   235     ///This type is used to refer to a row of the LP.
   236     ///
   237     ///Its value remains valid and correct even after the addition or erase of
   238     ///other rows.
   239     ///
   240     ///\todo Document what can one do with a Row (INVALID, comparing,
   241     ///it is similar to Node/Edge)
   242     class Row {
   243     protected:
   244       int id;
   245       friend class LpSolverBase;
   246     public:
   247       typedef Value ExprValue;
   248       typedef True LpSolverRow;
   249       Row() {}
   250       Row(const Invalid&) : id(-1) {}
   251 
   252       bool operator< (Row c) const  {return id< c.id;}
   253       bool operator> (Row c) const  {return id> c.id;}
   254       bool operator==(Row c) const  {return id==c.id;}
   255       bool operator!=(Row c) const  {return id!=c.id;} 
   256     };
   257 
   258     static int id(const Row& row) { return row.id; }
   259 
   260   protected:
   261 
   262     int _lpId(const Col& col) const {
   263       return cols.floatingId(id(col));
   264     }
   265 
   266     int _lpId(const Row& row) const {
   267       return rows.floatingId(id(row));
   268     }
   269 
   270 
   271   public:
   272     
   273     ///Linear expression of variables and a constant component
   274     
   275     ///This data structure stores a linear expression of the variables
   276     ///(\ref Col "Col"s) and also has a constant component.
   277     ///
   278     ///There are several ways to access and modify the contents of this
   279     ///container.
   280     ///- Its it fully compatible with \c std::map<Col,double>, so for expamle
   281     ///if \c e is an Expr and \c v and \c w are of type \ref Col, then you can
   282     ///read and modify the coefficients like
   283     ///these.
   284     ///\code
   285     ///e[v]=5;
   286     ///e[v]+=12;
   287     ///e.erase(v);
   288     ///\endcode
   289     ///or you can also iterate through its elements.
   290     ///\code
   291     ///double s=0;
   292     ///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i)
   293     ///  s+=i->second;
   294     ///\endcode
   295     ///(This code computes the sum of all coefficients).
   296     ///- Numbers (<tt>double</tt>'s)
   297     ///and variables (\ref Col "Col"s) directly convert to an
   298     ///\ref Expr and the usual linear operations are defined, so  
   299     ///\code
   300     ///v+w
   301     ///2*v-3.12*(v-w/2)+2
   302     ///v*2.1+(3*v+(v*12+w+6)*3)/2
   303     ///\endcode
   304     ///are valid \ref Expr "Expr"essions.
   305     ///The usual assignment operations are also defined.
   306     ///\code
   307     ///e=v+w;
   308     ///e+=2*v-3.12*(v-w/2)+2;
   309     ///e*=3.4;
   310     ///e/=5;
   311     ///\endcode
   312     ///- The constant member can be set and read by \ref constComp()
   313     ///\code
   314     ///e.constComp()=12;
   315     ///double c=e.constComp();
   316     ///\endcode
   317     ///
   318     ///\note \ref clear() not only sets all coefficients to 0 but also
   319     ///clears the constant components.
   320     ///
   321     ///\sa Constr
   322     ///
   323     class Expr : public std::map<Col,Value>
   324     {
   325     public:
   326       typedef LpSolverBase::Col Key; 
   327       typedef LpSolverBase::Value Value;
   328       
   329     protected:
   330       typedef std::map<Col,Value> Base;
   331       
   332       Value const_comp;
   333     public:
   334       typedef True IsLinExpression;
   335       ///\e
   336       Expr() : Base(), const_comp(0) { }
   337       ///\e
   338       Expr(const Key &v) : const_comp(0) {
   339 	Base::insert(std::make_pair(v, 1));
   340       }
   341       ///\e
   342       Expr(const Value &v) : const_comp(v) {}
   343       ///\e
   344       void set(const Key &v,const Value &c) {
   345 	Base::insert(std::make_pair(v, c));
   346       }
   347       ///\e
   348       Value &constComp() { return const_comp; }
   349       ///\e
   350       const Value &constComp() const { return const_comp; }
   351       
   352       ///Removes the components with zero coefficient.
   353       void simplify() {
   354 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   355 	  Base::iterator j=i;
   356 	  ++j;
   357 	  if ((*i).second==0) Base::erase(i);
   358 	  i=j;
   359 	}
   360       }
   361 
   362       void simplify() const {
   363         const_cast<Expr*>(this)->simplify();
   364       }
   365 
   366       ///Removes the coefficients closer to zero than \c tolerance.
   367       void simplify(double &tolerance) {
   368 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   369 	  Base::iterator j=i;
   370 	  ++j;
   371 	  if (std::fabs((*i).second)<tolerance) Base::erase(i);
   372 	  i=j;
   373 	}
   374       }
   375 
   376       ///Sets all coefficients and the constant component to 0.
   377       void clear() {
   378 	Base::clear();
   379 	const_comp=0;
   380       }
   381 
   382       ///\e
   383       Expr &operator+=(const Expr &e) {
   384 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   385 	  (*this)[j->first]+=j->second;
   386 	const_comp+=e.const_comp;
   387 	return *this;
   388       }
   389       ///\e
   390       Expr &operator-=(const Expr &e) {
   391 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   392 	  (*this)[j->first]-=j->second;
   393 	const_comp-=e.const_comp;
   394 	return *this;
   395       }
   396       ///\e
   397       Expr &operator*=(const Value &c) {
   398 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   399 	  j->second*=c;
   400 	const_comp*=c;
   401 	return *this;
   402       }
   403       ///\e
   404       Expr &operator/=(const Value &c) {
   405 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   406 	  j->second/=c;
   407 	const_comp/=c;
   408 	return *this;
   409       }
   410 
   411       //std::ostream &
   412       void prettyPrint(std::ostream &os) {
   413 	//std::fmtflags os.flags();
   414 	//os.setf(std::ios::showpos);
   415 	Base::iterator j=Base::begin();
   416 	if (j!=Base::end())
   417 	  os<<j->second<<"*x["<<id(j->first)<<"]";
   418 	++j;
   419 	for (; j!=Base::end(); ++j){
   420 	  if (j->second>=0)
   421 	    os<<"+";
   422 	  os<<j->second<<"*x["<<id(j->first)<<"]";
   423 	}
   424 	//Nem valami korrekt, de nem talaltam meg, hogy kell
   425 	//os.unsetf(std::ios::showpos);
   426 
   427 	//return os;
   428       }
   429 
   430     };
   431     
   432     ///Linear constraint
   433 
   434     ///This data stucture represents a linear constraint in the LP.
   435     ///Basically it is a linear expression with a lower or an upper bound
   436     ///(or both). These parts of the constraint can be obtained by the member
   437     ///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
   438     ///respectively.
   439     ///There are two ways to construct a constraint.
   440     ///- You can set the linear expression and the bounds directly
   441     ///  by the functions above.
   442     ///- The operators <tt>\<=</tt>, <tt>==</tt> and  <tt>\>=</tt>
   443     ///  are defined between expressions, or even between constraints whenever
   444     ///  it makes sense. Therefore if \c e and \c f are linear expressions and
   445     ///  \c s and \c t are numbers, then the followings are valid expressions
   446     ///  and thus they can be used directly e.g. in \ref addRow() whenever
   447     ///  it makes sense.
   448     ///\code
   449     ///  e<=s
   450     ///  e<=f
   451     ///  e==f
   452     ///  s<=e<=t
   453     ///  e>=t
   454     ///\endcode
   455     ///\warning The validity of a constraint is checked only at run time, so
   456     ///e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will compile, but will throw a
   457     ///\ref LogicError exception.
   458     class Constr
   459     {
   460     public:
   461       typedef LpSolverBase::Expr Expr;
   462       typedef Expr::Key Key;
   463       typedef Expr::Value Value;
   464       
   465     protected:
   466       Expr _expr;
   467       Value _lb,_ub;
   468     public:
   469       ///\e
   470       Constr() : _expr(), _lb(NaN), _ub(NaN) {}
   471       ///\e
   472       Constr(Value lb,const Expr &e,Value ub) :
   473 	_expr(e), _lb(lb), _ub(ub) {}
   474       ///\e
   475       Constr(const Expr &e,Value ub) : 
   476 	_expr(e), _lb(NaN), _ub(ub) {}
   477       ///\e
   478       Constr(Value lb,const Expr &e) :
   479 	_expr(e), _lb(lb), _ub(NaN) {}
   480       ///\e
   481       Constr(const Expr &e) : 
   482 	_expr(e), _lb(NaN), _ub(NaN) {}
   483       ///\e
   484       void clear() 
   485       {
   486 	_expr.clear();
   487 	_lb=_ub=NaN;
   488       }
   489 
   490       ///Reference to the linear expression 
   491       Expr &expr() { return _expr; }
   492       ///Cont reference to the linear expression 
   493       const Expr &expr() const { return _expr; }
   494       ///Reference to the lower bound.
   495 
   496       ///\return
   497       ///- \ref INF "INF": the constraint is lower unbounded.
   498       ///- \ref NaN "NaN": lower bound has not been set.
   499       ///- finite number: the lower bound
   500       Value &lowerBound() { return _lb; }
   501       ///The const version of \ref lowerBound()
   502       const Value &lowerBound() const { return _lb; }
   503       ///Reference to the upper bound.
   504 
   505       ///\return
   506       ///- \ref INF "INF": the constraint is upper unbounded.
   507       ///- \ref NaN "NaN": upper bound has not been set.
   508       ///- finite number: the upper bound
   509       Value &upperBound() { return _ub; }
   510       ///The const version of \ref upperBound()
   511       const Value &upperBound() const { return _ub; }
   512       ///Is the constraint lower bounded?
   513       bool lowerBounded() const { 
   514 	using namespace std;
   515 	return finite(_lb);
   516       }
   517       ///Is the constraint upper bounded?
   518       bool upperBounded() const {
   519 	using namespace std;
   520 	return finite(_ub);
   521       }
   522 
   523       void prettyPrint(std::ostream &os) {
   524 	if (_lb==-LpSolverBase::INF||isNaN(_lb))
   525 	  os<<"-infty<=";
   526 	else
   527 	  os<<_lb<<"<=";
   528 	_expr.prettyPrint(os);
   529 	if (_ub==LpSolverBase::INF)
   530 	  os<<"<=infty";
   531 	else
   532 	  os<<"<="<<_ub;
   533 	//return os;
   534       }
   535 
   536     };
   537     
   538     ///Linear expression of rows
   539     
   540     ///This data structure represents a column of the matrix,
   541     ///thas is it strores a linear expression of the dual variables
   542     ///(\ref Row "Row"s).
   543     ///
   544     ///There are several ways to access and modify the contents of this
   545     ///container.
   546     ///- Its it fully compatible with \c std::map<Row,double>, so for expamle
   547     ///if \c e is an DualExpr and \c v
   548     ///and \c w are of type \ref Row, then you can
   549     ///read and modify the coefficients like
   550     ///these.
   551     ///\code
   552     ///e[v]=5;
   553     ///e[v]+=12;
   554     ///e.erase(v);
   555     ///\endcode
   556     ///or you can also iterate through its elements.
   557     ///\code
   558     ///double s=0;
   559     ///for(LpSolverBase::DualExpr::iterator i=e.begin();i!=e.end();++i)
   560     ///  s+=i->second;
   561     ///\endcode
   562     ///(This code computes the sum of all coefficients).
   563     ///- Numbers (<tt>double</tt>'s)
   564     ///and variables (\ref Row "Row"s) directly convert to an
   565     ///\ref DualExpr and the usual linear operations are defined, so
   566     ///\code
   567     ///v+w
   568     ///2*v-3.12*(v-w/2)
   569     ///v*2.1+(3*v+(v*12+w)*3)/2
   570     ///\endcode
   571     ///are valid \ref DualExpr "DualExpr"essions.
   572     ///The usual assignment operations are also defined.
   573     ///\code
   574     ///e=v+w;
   575     ///e+=2*v-3.12*(v-w/2);
   576     ///e*=3.4;
   577     ///e/=5;
   578     ///\endcode
   579     ///
   580     ///\sa Expr
   581     ///
   582     class DualExpr : public std::map<Row,Value>
   583     {
   584     public:
   585       typedef LpSolverBase::Row Key; 
   586       typedef LpSolverBase::Value Value;
   587       
   588     protected:
   589       typedef std::map<Row,Value> Base;
   590       
   591     public:
   592       typedef True IsLinExpression;
   593       ///\e
   594       DualExpr() : Base() { }
   595       ///\e
   596       DualExpr(const Key &v) {
   597 	Base::insert(std::make_pair(v, 1));
   598       }
   599       ///\e
   600       void set(const Key &v,const Value &c) {
   601 	Base::insert(std::make_pair(v, c));
   602       }
   603       
   604       ///Removes the components with zero coefficient.
   605       void simplify() {
   606 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   607 	  Base::iterator j=i;
   608 	  ++j;
   609 	  if ((*i).second==0) Base::erase(i);
   610 	  i=j;
   611 	}
   612       }
   613 
   614       void simplify() const {
   615         const_cast<DualExpr*>(this)->simplify();
   616       }
   617 
   618       ///Removes the coefficients closer to zero than \c tolerance.
   619       void simplify(double &tolerance) {
   620 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   621 	  Base::iterator j=i;
   622 	  ++j;
   623 	  if (std::fabs((*i).second)<tolerance) Base::erase(i);
   624 	  i=j;
   625 	}
   626       }
   627 
   628       ///Sets all coefficients to 0.
   629       void clear() {
   630 	Base::clear();
   631       }
   632 
   633       ///\e
   634       DualExpr &operator+=(const DualExpr &e) {
   635 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   636 	  (*this)[j->first]+=j->second;
   637 	return *this;
   638       }
   639       ///\e
   640       DualExpr &operator-=(const DualExpr &e) {
   641 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   642 	  (*this)[j->first]-=j->second;
   643 	return *this;
   644       }
   645       ///\e
   646       DualExpr &operator*=(const Value &c) {
   647 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   648 	  j->second*=c;
   649 	return *this;
   650       }
   651       ///\e
   652       DualExpr &operator/=(const Value &c) {
   653 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   654 	  j->second/=c;
   655 	return *this;
   656       }
   657     };
   658     
   659 
   660   private:
   661 
   662     template <typename _Base>
   663     class MappedIterator {
   664     public:
   665 
   666       typedef _Base Base;
   667 
   668       typedef typename Base::iterator_category iterator_category;
   669       typedef typename Base::difference_type difference_type;
   670       typedef const std::pair<int, Value> value_type;
   671       typedef value_type reference;
   672       class pointer {
   673       public:
   674         pointer(value_type& _value) : value(_value) {}
   675         value_type* operator->() { return &value; }
   676       private:
   677         value_type value;
   678       };
   679 
   680       MappedIterator(const Base& _base, const LpSolverBase& _lp) 
   681         : base(_base), lp(_lp) {}
   682 
   683       reference operator*() {
   684         return std::make_pair(lp._lpId(base->first), base->second);
   685       }
   686 
   687       pointer operator->() {
   688         return pointer(operator*());
   689       }
   690 
   691       MappedIterator& operator++() {
   692         ++base;
   693         return *this;
   694       }
   695 
   696       MappedIterator& operator++(int) {
   697         MappedIterator tmp(*this);
   698         ++base;
   699         return tmp;
   700       }
   701 
   702       bool operator==(const MappedIterator& it) const {
   703         return base == it.base;
   704       }
   705 
   706       bool operator!=(const MappedIterator& it) const {
   707         return base != it.base;
   708       }
   709 
   710     private:
   711       Base base;
   712       const LpSolverBase& lp;
   713     };
   714 
   715   protected:
   716 
   717     /// STL compatible iterator for lp col
   718     typedef MappedIterator<Expr::const_iterator> LpRowIterator;
   719     /// STL compatible iterator for lp row
   720     typedef MappedIterator<DualExpr::const_iterator> LpColIterator;
   721 
   722     //Abstract virtual functions
   723     virtual LpSolverBase &_newLp() = 0;
   724     virtual LpSolverBase &_copyLp(){
   725       ///\todo This should be implemented here, too, when we have
   726       ///problem retrieving routines. It can be overriden.
   727 
   728       //Starting:
   729       LpSolverBase & newlp(_newLp());
   730       return newlp;
   731       //return *(LpSolverBase*)0;
   732     };
   733 
   734     virtual int _addCol() = 0;
   735     virtual int _addRow() = 0; 
   736     virtual void _eraseCol(int col) = 0;
   737     virtual void _eraseRow(int row) = 0;
   738     virtual void _getColName(int col, std::string & name) = 0;
   739     virtual void _setColName(int col, const std::string & name) = 0;
   740     virtual void _setRowCoeffs(int i, LpRowIterator b, LpRowIterator e) = 0;
   741     virtual void _setColCoeffs(int i, LpColIterator b, LpColIterator e) = 0;
   742     virtual void _setCoeff(int row, int col, Value value) = 0;
   743     virtual Value _getCoeff(int row, int col) = 0;
   744 
   745     virtual void _setColLowerBound(int i, Value value) = 0;
   746     virtual Value _getColLowerBound(int i) = 0;
   747     virtual void _setColUpperBound(int i, Value value) = 0;
   748     virtual Value _getColUpperBound(int i) = 0;
   749 //     virtual void _setRowLowerBound(int i, Value value) = 0;
   750 //     virtual void _setRowUpperBound(int i, Value value) = 0;
   751     virtual void _setRowBounds(int i, Value lower, Value upper) = 0;
   752     virtual void _getRowBounds(int i, Value &lower, Value &upper)=0;
   753 
   754     virtual void _setObjCoeff(int i, Value obj_coef) = 0;
   755     virtual Value _getObjCoeff(int i) = 0;
   756     virtual void _clearObj()=0;
   757 
   758     virtual SolveExitStatus _solve() = 0;
   759     virtual Value _getPrimal(int i) = 0;
   760     virtual Value _getDual(int i) = 0;
   761     virtual Value _getPrimalValue() = 0;
   762     virtual bool _isBasicCol(int i) = 0;
   763     virtual SolutionStatus _getPrimalStatus() = 0;
   764     virtual SolutionStatus _getDualStatus() = 0;
   765     ///\todo This could be implemented here, too, using _getPrimalStatus() and
   766     ///_getDualStatus()
   767     virtual ProblemTypes _getProblemType() = 0;
   768 
   769     virtual void _setMax() = 0;
   770     virtual void _setMin() = 0;
   771     
   772 
   773     virtual bool _isMax() = 0;
   774 
   775     //Own protected stuff
   776     
   777     //Constant component of the objective function
   778     Value obj_const_comp;
   779         
   780   public:
   781 
   782     ///\e
   783     LpSolverBase() : obj_const_comp(0) {}
   784 
   785     ///\e
   786     virtual ~LpSolverBase() {}
   787 
   788     ///Creates a new LP problem
   789     LpSolverBase &newLp() {return _newLp();}
   790     ///Makes a copy of the LP problem
   791     LpSolverBase &copyLp() {return _copyLp();}
   792     
   793     ///\name Build up and modify the LP
   794 
   795     ///@{
   796 
   797     ///Add a new empty column (i.e a new variable) to the LP
   798     Col addCol() { Col c; c.id=cols.insert(_addCol()); return c;}
   799 
   800     ///\brief Adds several new columns
   801     ///(i.e a variables) at once
   802     ///
   803     ///This magic function takes a container as its argument
   804     ///and fills its elements
   805     ///with new columns (i.e. variables)
   806     ///\param t can be
   807     ///- a standard STL compatible iterable container with
   808     ///\ref Col as its \c values_type
   809     ///like
   810     ///\code
   811     ///std::vector<LpSolverBase::Col>
   812     ///std::list<LpSolverBase::Col>
   813     ///\endcode
   814     ///- a standard STL compatible iterable container with
   815     ///\ref Col as its \c mapped_type
   816     ///like
   817     ///\code
   818     ///std::map<AnyType,LpSolverBase::Col>
   819     ///\endcode
   820     ///- an iterable lemon \ref concepts::WriteMap "write map" like 
   821     ///\code
   822     ///ListGraph::NodeMap<LpSolverBase::Col>
   823     ///ListGraph::EdgeMap<LpSolverBase::Col>
   824     ///\endcode
   825     ///\return The number of the created column.
   826 #ifdef DOXYGEN
   827     template<class T>
   828     int addColSet(T &t) { return 0;} 
   829 #else
   830     template<class T>
   831     typename enable_if<typename T::value_type::LpSolverCol,int>::type
   832     addColSet(T &t,dummy<0> = 0) {
   833       int s=0;
   834       for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
   835       return s;
   836     }
   837     template<class T>
   838     typename enable_if<typename T::value_type::second_type::LpSolverCol,
   839 		       int>::type
   840     addColSet(T &t,dummy<1> = 1) { 
   841       int s=0;
   842       for(typename T::iterator i=t.begin();i!=t.end();++i) {
   843 	i->second=addCol();
   844 	s++;
   845       }
   846       return s;
   847     }
   848     template<class T>
   849     typename enable_if<typename T::MapIt::Value::LpSolverCol,
   850 		       int>::type
   851     addColSet(T &t,dummy<2> = 2) { 
   852       int s=0;
   853       for(typename T::MapIt i(t); i!=INVALID; ++i)
   854 	{
   855 	  i.set(addCol());
   856 	  s++;
   857 	}
   858       return s;
   859     }
   860 #endif
   861 
   862     ///Set a column (i.e a dual constraint) of the LP
   863 
   864     ///\param c is the column to be modified
   865     ///\param e is a dual linear expression (see \ref DualExpr)
   866     ///a better one.
   867     void col(Col c,const DualExpr &e) {
   868       e.simplify();
   869       _setColCoeffs(_lpId(c), LpColIterator(e.begin(), *this), 
   870                     LpColIterator(e.end(), *this));
   871     }
   872 
   873     ///Add a new column to the LP
   874 
   875     ///\param e is a dual linear expression (see \ref DualExpr)
   876     ///\param obj is the corresponding component of the objective
   877     ///function. It is 0 by default.
   878     ///\return The created column.
   879     Col addCol(const DualExpr &e, Value obj=0) {
   880       Col c=addCol();
   881       col(c,e);
   882       objCoeff(c,obj);
   883       return c;
   884     }
   885 
   886     ///Add a new empty row (i.e a new constraint) to the LP
   887 
   888     ///This function adds a new empty row (i.e a new constraint) to the LP.
   889     ///\return The created row
   890     Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;}
   891 
   892     ///\brief Add several new rows
   893     ///(i.e a constraints) at once
   894     ///
   895     ///This magic function takes a container as its argument
   896     ///and fills its elements
   897     ///with new row (i.e. variables)
   898     ///\param t can be
   899     ///- a standard STL compatible iterable container with
   900     ///\ref Row as its \c values_type
   901     ///like
   902     ///\code
   903     ///std::vector<LpSolverBase::Row>
   904     ///std::list<LpSolverBase::Row>
   905     ///\endcode
   906     ///- a standard STL compatible iterable container with
   907     ///\ref Row as its \c mapped_type
   908     ///like
   909     ///\code
   910     ///std::map<AnyType,LpSolverBase::Row>
   911     ///\endcode
   912     ///- an iterable lemon \ref concepts::WriteMap "write map" like 
   913     ///\code
   914     ///ListGraph::NodeMap<LpSolverBase::Row>
   915     ///ListGraph::EdgeMap<LpSolverBase::Row>
   916     ///\endcode
   917     ///\return The number of rows created.
   918 #ifdef DOXYGEN
   919     template<class T>
   920     int addRowSet(T &t) { return 0;} 
   921 #else
   922     template<class T>
   923     typename enable_if<typename T::value_type::LpSolverRow,int>::type
   924     addRowSet(T &t,dummy<0> = 0) {
   925       int s=0;
   926       for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;}
   927       return s;
   928     }
   929     template<class T>
   930     typename enable_if<typename T::value_type::second_type::LpSolverRow,
   931 		       int>::type
   932     addRowSet(T &t,dummy<1> = 1) { 
   933       int s=0;
   934       for(typename T::iterator i=t.begin();i!=t.end();++i) {
   935 	i->second=addRow();
   936 	s++;
   937       }
   938       return s;
   939     }
   940     template<class T>
   941     typename enable_if<typename T::MapIt::Value::LpSolverRow,
   942 		       int>::type
   943     addRowSet(T &t,dummy<2> = 2) { 
   944       int s=0;
   945       for(typename T::MapIt i(t); i!=INVALID; ++i)
   946 	{
   947 	  i.set(addRow());
   948 	  s++;
   949 	}
   950       return s;
   951     }
   952 #endif
   953 
   954     ///Set a row (i.e a constraint) of the LP
   955 
   956     ///\param r is the row to be modified
   957     ///\param l is lower bound (-\ref INF means no bound)
   958     ///\param e is a linear expression (see \ref Expr)
   959     ///\param u is the upper bound (\ref INF means no bound)
   960     ///\bug This is a temportary function. The interface will change to
   961     ///a better one.
   962     ///\todo Option to control whether a constraint with a single variable is
   963     ///added or not.
   964     void row(Row r, Value l,const Expr &e, Value u) {
   965       e.simplify();
   966       _setRowCoeffs(_lpId(r), LpRowIterator(e.begin(), *this),
   967                     LpRowIterator(e.end(), *this));
   968 //       _setRowLowerBound(_lpId(r),l-e.constComp());
   969 //       _setRowUpperBound(_lpId(r),u-e.constComp());
   970        _setRowBounds(_lpId(r),l-e.constComp(),u-e.constComp());
   971     }
   972 
   973     ///Set a row (i.e a constraint) of the LP
   974 
   975     ///\param r is the row to be modified
   976     ///\param c is a linear expression (see \ref Constr)
   977     void row(Row r, const Constr &c) {
   978       row(r, c.lowerBounded()?c.lowerBound():-INF,
   979           c.expr(), c.upperBounded()?c.upperBound():INF);
   980     }
   981 
   982     ///Add a new row (i.e a new constraint) to the LP
   983 
   984     ///\param l is the lower bound (-\ref INF means no bound)
   985     ///\param e is a linear expression (see \ref Expr)
   986     ///\param u is the upper bound (\ref INF means no bound)
   987     ///\return The created row.
   988     ///\bug This is a temportary function. The interface will change to
   989     ///a better one.
   990     Row addRow(Value l,const Expr &e, Value u) {
   991       Row r=addRow();
   992       row(r,l,e,u);
   993       return r;
   994     }
   995 
   996     ///Add a new row (i.e a new constraint) to the LP
   997 
   998     ///\param c is a linear expression (see \ref Constr)
   999     ///\return The created row.
  1000     Row addRow(const Constr &c) {
  1001       Row r=addRow();
  1002       row(r,c);
  1003       return r;
  1004     }
  1005     ///Erase a coloumn (i.e a variable) from the LP
  1006 
  1007     ///\param c is the coloumn to be deleted
  1008     ///\todo Please check this
  1009     void eraseCol(Col c) {
  1010       _eraseCol(_lpId(c));
  1011       cols.erase(c.id);
  1012     }
  1013     ///Erase a  row (i.e a constraint) from the LP
  1014 
  1015     ///\param r is the row to be deleted
  1016     ///\todo Please check this
  1017     void eraseRow(Row r) {
  1018       _eraseRow(_lpId(r));
  1019       rows.erase(r.id);
  1020     }
  1021 
  1022     /// Get the name of a column
  1023     
  1024     ///\param c is the coresponding coloumn 
  1025     ///\return The name of the colunm
  1026     std::string colName(Col c){
  1027       std::string name;
  1028       _getColName(_lpId(c), name);
  1029       return name;
  1030     }
  1031     
  1032     /// Set the name of a column
  1033     
  1034     ///\param c is the coresponding coloumn 
  1035     ///\param name The name to be given
  1036     void colName(Col c, const std::string& name){
  1037       _setColName(_lpId(c), name);
  1038     }
  1039     
  1040     /// Set an element of the coefficient matrix of the LP
  1041 
  1042     ///\param r is the row of the element to be modified
  1043     ///\param c is the coloumn of the element to be modified
  1044     ///\param val is the new value of the coefficient
  1045 
  1046     void coeff(Row r, Col c, Value val){
  1047       _setCoeff(_lpId(r),_lpId(c), val);
  1048     }
  1049 
  1050     /// Get an element of the coefficient matrix of the LP
  1051 
  1052     ///\param r is the row of the element in question
  1053     ///\param c is the coloumn of the element in question
  1054     ///\return the corresponding coefficient
  1055 
  1056     Value coeff(Row r, Col c){
  1057       return _getCoeff(_lpId(r),_lpId(c));
  1058     }
  1059 
  1060     /// Set the lower bound of a column (i.e a variable)
  1061 
  1062     /// The lower bound of a variable (column) has to be given by an 
  1063     /// extended number of type Value, i.e. a finite number of type 
  1064     /// Value or -\ref INF.
  1065     void colLowerBound(Col c, Value value) {
  1066       _setColLowerBound(_lpId(c),value);
  1067     }
  1068 
  1069     /// Get the lower bound of a column (i.e a variable)
  1070 
  1071     /// This function returns the lower bound for column (variable) \t c
  1072     /// (this might be -\ref INF as well).  
  1073     ///\return The lower bound for coloumn \t c
  1074     Value colLowerBound(Col c) {
  1075       return _getColLowerBound(_lpId(c));
  1076     }
  1077     
  1078     ///\brief Set the lower bound of  several columns
  1079     ///(i.e a variables) at once
  1080     ///
  1081     ///This magic function takes a container as its argument
  1082     ///and applies the function on all of its elements.
  1083     /// The lower bound of a variable (column) has to be given by an 
  1084     /// extended number of type Value, i.e. a finite number of type 
  1085     /// Value or -\ref INF.
  1086 #ifdef DOXYGEN
  1087     template<class T>
  1088     void colLowerBound(T &t, Value value) { return 0;} 
  1089 #else
  1090     template<class T>
  1091     typename enable_if<typename T::value_type::LpSolverCol,void>::type
  1092     colLowerBound(T &t, Value value,dummy<0> = 0) {
  1093       for(typename T::iterator i=t.begin();i!=t.end();++i) {
  1094 	colLowerBound(*i, value);
  1095       }
  1096     }
  1097     template<class T>
  1098     typename enable_if<typename T::value_type::second_type::LpSolverCol,
  1099 		       void>::type
  1100     colLowerBound(T &t, Value value,dummy<1> = 1) { 
  1101       for(typename T::iterator i=t.begin();i!=t.end();++i) {
  1102 	colLowerBound(i->second, value);
  1103       }
  1104     }
  1105     template<class T>
  1106     typename enable_if<typename T::MapIt::Value::LpSolverCol,
  1107 		       void>::type
  1108     colLowerBound(T &t, Value value,dummy<2> = 2) { 
  1109       for(typename T::MapIt i(t); i!=INVALID; ++i){
  1110 	colLowerBound(*i, value);
  1111       }
  1112     }
  1113 #endif
  1114     
  1115     /// Set the upper bound of a column (i.e a variable)
  1116 
  1117     /// The upper bound of a variable (column) has to be given by an 
  1118     /// extended number of type Value, i.e. a finite number of type 
  1119     /// Value or \ref INF.
  1120     void colUpperBound(Col c, Value value) {
  1121       _setColUpperBound(_lpId(c),value);
  1122     };
  1123 
  1124     /// Get the upper bound of a column (i.e a variable)
  1125 
  1126     /// This function returns the upper bound for column (variable) \t c
  1127     /// (this might be \ref INF as well).  
  1128     ///\return The upper bound for coloumn \t c
  1129     Value colUpperBound(Col c) {
  1130       return _getColUpperBound(_lpId(c));
  1131     }
  1132 
  1133     ///\brief Set the upper bound of  several columns
  1134     ///(i.e a variables) at once
  1135     ///
  1136     ///This magic function takes a container as its argument
  1137     ///and applies the function on all of its elements.
  1138     /// The upper bound of a variable (column) has to be given by an 
  1139     /// extended number of type Value, i.e. a finite number of type 
  1140     /// Value or \ref INF.
  1141 #ifdef DOXYGEN
  1142     template<class T>
  1143     void colUpperBound(T &t, Value value) { return 0;} 
  1144 #else
  1145     template<class T>
  1146     typename enable_if<typename T::value_type::LpSolverCol,void>::type
  1147     colUpperBound(T &t, Value value,dummy<0> = 0) {
  1148       for(typename T::iterator i=t.begin();i!=t.end();++i) {
  1149 	colUpperBound(*i, value);
  1150       }
  1151     }
  1152     template<class T>
  1153     typename enable_if<typename T::value_type::second_type::LpSolverCol,
  1154 		       void>::type
  1155     colUpperBound(T &t, Value value,dummy<1> = 1) { 
  1156       for(typename T::iterator i=t.begin();i!=t.end();++i) {
  1157 	colUpperBound(i->second, value);
  1158       }
  1159     }
  1160     template<class T>
  1161     typename enable_if<typename T::MapIt::Value::LpSolverCol,
  1162 		       void>::type
  1163     colUpperBound(T &t, Value value,dummy<2> = 2) { 
  1164       for(typename T::MapIt i(t); i!=INVALID; ++i){
  1165 	colUpperBound(*i, value);
  1166       }
  1167     }
  1168 #endif
  1169 
  1170     /// Set the lower and the upper bounds of a column (i.e a variable)
  1171 
  1172     /// The lower and the upper bounds of
  1173     /// a variable (column) have to be given by an 
  1174     /// extended number of type Value, i.e. a finite number of type 
  1175     /// Value, -\ref INF or \ref INF.
  1176     void colBounds(Col c, Value lower, Value upper) {
  1177       _setColLowerBound(_lpId(c),lower);
  1178       _setColUpperBound(_lpId(c),upper);
  1179     }
  1180     
  1181     ///\brief Set the lower and the upper bound of several columns
  1182     ///(i.e a variables) at once
  1183     ///
  1184     ///This magic function takes a container as its argument
  1185     ///and applies the function on all of its elements.
  1186     /// The lower and the upper bounds of
  1187     /// a variable (column) have to be given by an 
  1188     /// extended number of type Value, i.e. a finite number of type 
  1189     /// Value, -\ref INF or \ref INF.
  1190 #ifdef DOXYGEN
  1191     template<class T>
  1192     void colBounds(T &t, Value lower, Value upper) { return 0;} 
  1193 #else
  1194     template<class T>
  1195     typename enable_if<typename T::value_type::LpSolverCol,void>::type
  1196     colBounds(T &t, Value lower, Value upper,dummy<0> = 0) {
  1197       for(typename T::iterator i=t.begin();i!=t.end();++i) {
  1198 	colBounds(*i, lower, upper);
  1199       }
  1200     }
  1201     template<class T>
  1202     typename enable_if<typename T::value_type::second_type::LpSolverCol,
  1203 		       void>::type
  1204     colBounds(T &t, Value lower, Value upper,dummy<1> = 1) { 
  1205       for(typename T::iterator i=t.begin();i!=t.end();++i) {
  1206 	colBounds(i->second, lower, upper);
  1207       }
  1208     }
  1209     template<class T>
  1210     typename enable_if<typename T::MapIt::Value::LpSolverCol,
  1211 		       void>::type
  1212     colBounds(T &t, Value lower, Value upper,dummy<2> = 2) { 
  1213       for(typename T::MapIt i(t); i!=INVALID; ++i){
  1214 	colBounds(*i, lower, upper);
  1215       }
  1216     }
  1217 #endif
  1218     
  1219 //     /// Set the lower bound of a row (i.e a constraint)
  1220 
  1221 //     /// The lower bound of a linear expression (row) has to be given by an 
  1222 //     /// extended number of type Value, i.e. a finite number of type 
  1223 //     /// Value or -\ref INF.
  1224 //     void rowLowerBound(Row r, Value value) {
  1225 //       _setRowLowerBound(_lpId(r),value);
  1226 //     };
  1227 //     /// Set the upper bound of a row (i.e a constraint)
  1228 
  1229 //     /// The upper bound of a linear expression (row) has to be given by an 
  1230 //     /// extended number of type Value, i.e. a finite number of type 
  1231 //     /// Value or \ref INF.
  1232 //     void rowUpperBound(Row r, Value value) {
  1233 //       _setRowUpperBound(_lpId(r),value);
  1234 //     };
  1235 
  1236     /// Set the lower and the upper bounds of a row (i.e a constraint)
  1237 
  1238     /// The lower and the upper bound of
  1239     /// a constraint (row) have to be given by an 
  1240     /// extended number of type Value, i.e. a finite number of type 
  1241     /// Value, -\ref INF or \ref INF. There is no separate function for the 
  1242     /// lower and the upper bound because that would have been hard to implement 
  1243     /// for CPLEX.
  1244     void rowBounds(Row c, Value lower, Value upper) {
  1245       _setRowBounds(_lpId(c),lower, upper);
  1246     }
  1247     
  1248     /// Get the lower and the upper bounds of a row (i.e a constraint)
  1249 
  1250     /// The lower and the upper bound of
  1251     /// a constraint (row) are  
  1252     /// extended numbers of type Value, i.e.  finite numbers of type 
  1253     /// Value, -\ref INF or \ref INF. 
  1254     /// \todo There is no separate function for the 
  1255     /// lower and the upper bound because we had problems with the 
  1256     /// implementation of the setting functions for CPLEX:  
  1257     /// check out whether this can be done for these functions.
  1258     void getRowBounds(Row c, Value &lower, Value &upper) {
  1259       _getRowBounds(_lpId(c),lower, upper);
  1260     }
  1261 
  1262     ///Set an element of the objective function
  1263     void objCoeff(Col c, Value v) {_setObjCoeff(_lpId(c),v); };
  1264 
  1265     ///Get an element of the objective function
  1266     Value objCoeff(Col c) {return _getObjCoeff(_lpId(c)); };
  1267 
  1268     ///Set the objective function
  1269 
  1270     ///\param e is a linear expression of type \ref Expr.
  1271     ///\bug Is should be called obj()
  1272     void setObj(Expr e) {
  1273       _clearObj();
  1274       for (Expr::iterator i=e.begin(); i!=e.end(); ++i)
  1275 	objCoeff((*i).first,(*i).second);
  1276       obj_const_comp=e.constComp();
  1277     }
  1278 
  1279     ///Maximize
  1280     void max() { _setMax(); }
  1281     ///Minimize
  1282     void min() { _setMin(); }
  1283 
  1284     ///Query function: is this a maximization problem?
  1285     bool is_max() {return _isMax(); }
  1286 
  1287     ///Query function: is this a minimization problem?
  1288     bool is_min() {return !is_max(); }
  1289     
  1290     ///@}
  1291 
  1292 
  1293     ///\name Solve the LP
  1294 
  1295     ///@{
  1296 
  1297     ///\e Solve the LP problem at hand
  1298     ///
  1299     ///\return The result of the optimization procedure. Possible 
  1300     ///values and their meanings can be found in the documentation of 
  1301     ///\ref SolveExitStatus.
  1302     ///
  1303     ///\todo Which method is used to solve the problem
  1304     SolveExitStatus solve() { return _solve(); }
  1305     
  1306     ///@}
  1307     
  1308     ///\name Obtain the solution
  1309 
  1310     ///@{
  1311 
  1312     /// The status of the primal problem (the original LP problem)
  1313     SolutionStatus primalStatus() {
  1314       return _getPrimalStatus();
  1315     }
  1316 
  1317     /// The status of the dual (of the original LP) problem 
  1318     SolutionStatus dualStatus() {
  1319       return _getDualStatus();
  1320     }
  1321 
  1322     ///The type of the original LP problem
  1323     ProblemTypes problemType() {
  1324       return _getProblemType();
  1325     }
  1326 
  1327     ///\e
  1328     Value primal(Col c) { return _getPrimal(_lpId(c)); }
  1329 
  1330     ///\e
  1331     Value dual(Row r) { return _getDual(_lpId(r)); }
  1332 
  1333     ///\e
  1334     bool isBasicCol(Col c) { return _isBasicCol(_lpId(c)); }
  1335 
  1336     ///\e
  1337 
  1338     ///\return
  1339     ///- \ref INF or -\ref INF means either infeasibility or unboundedness
  1340     /// of the primal problem, depending on whether we minimize or maximize.
  1341     ///- \ref NaN if no primal solution is found.
  1342     ///- The (finite) objective value if an optimal solution is found.
  1343     Value primalValue() { return _getPrimalValue()+obj_const_comp;}
  1344     ///@}
  1345     
  1346   };  
  1347 
  1348 
  1349   ///Common base class for MIP solvers
  1350   ///\todo Much more docs
  1351   ///\ingroup gen_opt_group
  1352   class MipSolverBase : virtual public LpSolverBase{
  1353   public:
  1354 
  1355     ///Possible variable (coloumn) types (e.g. real, integer, binary etc.)
  1356     enum ColTypes {
  1357       ///Continuous variable
  1358       REAL = 0,
  1359       ///Integer variable
  1360 
  1361       ///Unfortunately, cplex 7.5 somewhere writes something like
  1362       ///#define INTEGER 'I'
  1363       INT = 1
  1364       ///\todo No support for other types yet.
  1365     };
  1366 
  1367     ///Sets the type of the given coloumn to the given type
  1368     ///
  1369     ///Sets the type of the given coloumn to the given type.
  1370     void colType(Col c, ColTypes col_type) {
  1371       _colType(_lpId(c),col_type);
  1372     }
  1373 
  1374     ///Gives back the type of the column.
  1375     ///
  1376     ///Gives back the type of the column.
  1377     ColTypes colType(Col c){
  1378       return _colType(_lpId(c));
  1379     }
  1380 
  1381     ///Sets the type of the given Col to integer or remove that property.
  1382     ///
  1383     ///Sets the type of the given Col to integer or remove that property.
  1384     void integer(Col c, bool enable) {
  1385       if (enable)
  1386 	colType(c,INT);
  1387       else
  1388 	colType(c,REAL);
  1389     }
  1390 
  1391     ///Gives back whether the type of the column is integer or not.
  1392     ///
  1393     ///Gives back the type of the column.
  1394     ///\return true if the column has integer type and false if not.
  1395     bool integer(Col c){
  1396       return (colType(c)==INT);
  1397     }
  1398 
  1399     /// The status of the MIP problem
  1400     SolutionStatus mipStatus() {
  1401       return _getMipStatus();
  1402     }
  1403 
  1404   protected:
  1405 
  1406     virtual ColTypes _colType(int col) = 0;
  1407     virtual void _colType(int col, ColTypes col_type) = 0;
  1408     virtual SolutionStatus _getMipStatus()=0;
  1409 
  1410   };
  1411   
  1412   ///\relates LpSolverBase::Expr
  1413   ///
  1414   inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a,
  1415 				      const LpSolverBase::Expr &b) 
  1416   {
  1417     LpSolverBase::Expr tmp(a);
  1418     tmp+=b;
  1419     return tmp;
  1420   }
  1421   ///\e
  1422   
  1423   ///\relates LpSolverBase::Expr
  1424   ///
  1425   inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a,
  1426 				      const LpSolverBase::Expr &b) 
  1427   {
  1428     LpSolverBase::Expr tmp(a);
  1429     tmp-=b;
  1430     return tmp;
  1431   }
  1432   ///\e
  1433   
  1434   ///\relates LpSolverBase::Expr
  1435   ///
  1436   inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a,
  1437 				      const LpSolverBase::Value &b) 
  1438   {
  1439     LpSolverBase::Expr tmp(a);
  1440     tmp*=b;
  1441     return tmp;
  1442   }
  1443   
  1444   ///\e
  1445   
  1446   ///\relates LpSolverBase::Expr
  1447   ///
  1448   inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a,
  1449 				      const LpSolverBase::Expr &b) 
  1450   {
  1451     LpSolverBase::Expr tmp(b);
  1452     tmp*=a;
  1453     return tmp;
  1454   }
  1455   ///\e
  1456   
  1457   ///\relates LpSolverBase::Expr
  1458   ///
  1459   inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a,
  1460 				      const LpSolverBase::Value &b) 
  1461   {
  1462     LpSolverBase::Expr tmp(a);
  1463     tmp/=b;
  1464     return tmp;
  1465   }
  1466   
  1467   ///\e
  1468   
  1469   ///\relates LpSolverBase::Constr
  1470   ///
  1471   inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
  1472 					 const LpSolverBase::Expr &f) 
  1473   {
  1474     return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0);
  1475   }
  1476 
  1477   ///\e
  1478   
  1479   ///\relates LpSolverBase::Constr
  1480   ///
  1481   inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e,
  1482 					 const LpSolverBase::Expr &f) 
  1483   {
  1484     return LpSolverBase::Constr(e,f);
  1485   }
  1486 
  1487   ///\e
  1488   
  1489   ///\relates LpSolverBase::Constr
  1490   ///
  1491   inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
  1492 					 const LpSolverBase::Value &f) 
  1493   {
  1494     return LpSolverBase::Constr(e,f);
  1495   }
  1496 
  1497   ///\e
  1498   
  1499   ///\relates LpSolverBase::Constr
  1500   ///
  1501   inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
  1502 					 const LpSolverBase::Expr &f) 
  1503   {
  1504     return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0);
  1505   }
  1506 
  1507 
  1508   ///\e
  1509   
  1510   ///\relates LpSolverBase::Constr
  1511   ///
  1512   inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e,
  1513 					 const LpSolverBase::Expr &f) 
  1514   {
  1515     return LpSolverBase::Constr(f,e);
  1516   }
  1517 
  1518 
  1519   ///\e
  1520   
  1521   ///\relates LpSolverBase::Constr
  1522   ///
  1523   inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
  1524 					 const LpSolverBase::Value &f) 
  1525   {
  1526     return LpSolverBase::Constr(f,e);
  1527   }
  1528 
  1529   ///\e
  1530 
  1531   ///\relates LpSolverBase::Constr
  1532   ///
  1533   inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
  1534 					 const LpSolverBase::Value &f) 
  1535   {
  1536     return LpSolverBase::Constr(f,e,f);
  1537   }
  1538 
  1539   ///\e
  1540   
  1541   ///\relates LpSolverBase::Constr
  1542   ///
  1543   inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
  1544 					 const LpSolverBase::Expr &f) 
  1545   {
  1546     return LpSolverBase::Constr(0,e-f,0);
  1547   }
  1548 
  1549   ///\e
  1550   
  1551   ///\relates LpSolverBase::Constr
  1552   ///
  1553   inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n,
  1554 					 const LpSolverBase::Constr&c) 
  1555   {
  1556     LpSolverBase::Constr tmp(c);
  1557     ///\todo Create an own exception type.
  1558     if(!LpSolverBase::isNaN(tmp.lowerBound())) throw LogicError();
  1559     else tmp.lowerBound()=n;
  1560     return tmp;
  1561   }
  1562   ///\e
  1563   
  1564   ///\relates LpSolverBase::Constr
  1565   ///
  1566   inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c,
  1567 					 const LpSolverBase::Value &n)
  1568   {
  1569     LpSolverBase::Constr tmp(c);
  1570     ///\todo Create an own exception type.
  1571     if(!LpSolverBase::isNaN(tmp.upperBound())) throw LogicError();
  1572     else tmp.upperBound()=n;
  1573     return tmp;
  1574   }
  1575 
  1576   ///\e
  1577   
  1578   ///\relates LpSolverBase::Constr
  1579   ///
  1580   inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n,
  1581 					 const LpSolverBase::Constr&c) 
  1582   {
  1583     LpSolverBase::Constr tmp(c);
  1584     ///\todo Create an own exception type.
  1585     if(!LpSolverBase::isNaN(tmp.upperBound())) throw LogicError();
  1586     else tmp.upperBound()=n;
  1587     return tmp;
  1588   }
  1589   ///\e
  1590   
  1591   ///\relates LpSolverBase::Constr
  1592   ///
  1593   inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c,
  1594 					 const LpSolverBase::Value &n)
  1595   {
  1596     LpSolverBase::Constr tmp(c);
  1597     ///\todo Create an own exception type.
  1598     if(!LpSolverBase::isNaN(tmp.lowerBound())) throw LogicError();
  1599     else tmp.lowerBound()=n;
  1600     return tmp;
  1601   }
  1602 
  1603   ///\e
  1604   
  1605   ///\relates LpSolverBase::DualExpr
  1606   ///
  1607   inline LpSolverBase::DualExpr operator+(const LpSolverBase::DualExpr &a,
  1608                                           const LpSolverBase::DualExpr &b) 
  1609   {
  1610     LpSolverBase::DualExpr tmp(a);
  1611     tmp+=b;
  1612     return tmp;
  1613   }
  1614   ///\e
  1615   
  1616   ///\relates LpSolverBase::DualExpr
  1617   ///
  1618   inline LpSolverBase::DualExpr operator-(const LpSolverBase::DualExpr &a,
  1619                                           const LpSolverBase::DualExpr &b) 
  1620   {
  1621     LpSolverBase::DualExpr tmp(a);
  1622     tmp-=b;
  1623     return tmp;
  1624   }
  1625   ///\e
  1626   
  1627   ///\relates LpSolverBase::DualExpr
  1628   ///
  1629   inline LpSolverBase::DualExpr operator*(const LpSolverBase::DualExpr &a,
  1630                                           const LpSolverBase::Value &b) 
  1631   {
  1632     LpSolverBase::DualExpr tmp(a);
  1633     tmp*=b;
  1634     return tmp;
  1635   }
  1636   
  1637   ///\e
  1638   
  1639   ///\relates LpSolverBase::DualExpr
  1640   ///
  1641   inline LpSolverBase::DualExpr operator*(const LpSolverBase::Value &a,
  1642                                           const LpSolverBase::DualExpr &b) 
  1643   {
  1644     LpSolverBase::DualExpr tmp(b);
  1645     tmp*=a;
  1646     return tmp;
  1647   }
  1648   ///\e
  1649   
  1650   ///\relates LpSolverBase::DualExpr
  1651   ///
  1652   inline LpSolverBase::DualExpr operator/(const LpSolverBase::DualExpr &a,
  1653                                           const LpSolverBase::Value &b) 
  1654   {
  1655     LpSolverBase::DualExpr tmp(a);
  1656     tmp/=b;
  1657     return tmp;
  1658   }
  1659   
  1660 
  1661 } //namespace lemon
  1662 
  1663 #endif //LEMON_LP_BASE_H