3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_KRUSKAL_H
20 #define LEMON_KRUSKAL_H
24 #include <lemon/unionfind.h>
25 #include <lemon/utility.h>
28 @defgroup spantree Minimum Cost Spanning Tree Algorithms
30 \brief This group containes the algorithms for finding a minimum cost spanning
33 This group containes the algorithms for finding a minimum cost spanning
39 ///\brief Kruskal's algorithm to compute a minimum cost tree
41 ///Kruskal's algorithm to compute a minimum cost tree.
43 ///\todo The file still needs some clean-up.
47 /// \addtogroup spantree
50 /// Kruskal's algorithm to find a minimum cost tree of a graph.
52 /// This function runs Kruskal's algorithm to find a minimum cost tree.
53 /// Due to hard C++ hacking, it accepts various input and output types.
55 /// \param g The graph the algorithm runs on.
56 /// It can be either \ref concept::StaticGraph "directed" or
57 /// \ref concept::UGraph "undirected".
58 /// If the graph is directed, the algorithm consider it to be
59 /// undirected by disregarding the direction of the edges.
61 /// \param in This object is used to describe the edge costs. It can be one
62 /// of the following choices.
63 /// - An STL compatible 'Forward Container'
64 /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
65 /// where \c X is the type of the costs. The pairs indicates the edges along
66 /// with the assigned cost. <em>They must be in a
67 /// cost-ascending order.</em>
68 /// - Any readable Edge map. The values of the map indicate the edge costs.
70 /// \retval out Here we also have a choise.
71 /// - Is can be a writable \c bool edge map.
72 /// After running the algorithm
73 /// this will contain the found minimum cost spanning tree: the value of an
74 /// edge will be set to \c true if it belongs to the tree, otherwise it will
75 /// be set to \c false. The value of each edge will be set exactly once.
76 /// - It can also be an iteraror of an STL Container with
77 /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
78 /// The algorithm copies the elements of the found tree into this sequence.
79 /// For example, if we know that the spanning tree of the graph \c g has
80 /// say 53 edges, then
81 /// we can put its edges into a STL vector \c tree with a code like this.
83 /// std::vector<Edge> tree(53);
84 /// kruskal(g,cost,tree.begin());
86 /// Or if we don't know in advance the size of the tree, we can write this.
88 /// std::vector<Edge> tree;
89 /// kruskal(g,cost,std::back_inserter(tree));
92 /// \return The cost of the found tree.
94 /// \warning If kruskal is run on an
95 /// \ref lemon::concept::UGraph "undirected graph", be sure that the
96 /// map storing the tree is also undirected
97 /// (e.g. ListUGraph::UEdgeMap<bool>, otherwise the values of the
98 /// half of the edges will not be set.
100 /// \todo Discuss the case of undirected graphs: In this case the algorithm
101 /// also require <tt>Edge</tt>s instead of <tt>UEdge</tt>s, as some
102 /// people would expect. So, one should be careful not to add both of the
103 /// <tt>Edge</tt>s belonging to a certain <tt>UEdge</tt>.
104 /// (\ref kruskal() and \ref KruskalMapInput are kind enough to do so.)
107 template <class GR, class IN, class OUT>
108 typename IN::value_type::second_type
109 kruskal(GR const& g, IN const& in,
112 template <class GR, class IN, class OUT>
113 typename IN::value_type::second_type
114 kruskal(GR const& g, IN const& in,
116 // typename IN::value_type::first_type = typename GR::Edge()
117 // ,typename OUT::Key = OUT::Key()
118 // //,typename OUT::Key = typename GR::Edge()
119 const typename IN::value_type::first_type * =
120 (const typename IN::value_type::first_type *)(0),
121 const typename OUT::Key * = (const typename OUT::Key *)(0)
125 typedef typename IN::value_type::second_type EdgeCost;
126 typedef typename GR::template NodeMap<int> NodeIntMap;
127 typedef typename GR::Node Node;
129 NodeIntMap comp(g, -1);
130 UnionFind<Node,NodeIntMap> uf(comp);
132 EdgeCost tot_cost = 0;
133 for (typename IN::const_iterator p = in.begin();
135 if ( uf.join(g.target((*p).first),
136 g.source((*p).first)) ) {
137 out.set((*p).first, true);
138 tot_cost += (*p).second;
141 out.set((*p).first, false);
151 /* A work-around for running Kruskal with const-reference bool maps... */
153 /// Helper class for calling kruskal with "constant" output map.
155 /// Helper class for calling kruskal with output maps constructed
158 /// A typical examle is the following call:
159 /// <tt>kruskal(g, some_input, makeSequenceOutput(iterator))</tt>.
160 /// Here, the third argument is a temporary object (which wraps around an
161 /// iterator with a writable bool map interface), and thus by rules of C++
162 /// is a \c const object. To enable call like this exist this class and
163 /// the prototype of the \ref kruskal() function with <tt>const& OUT</tt>
166 class NonConstMapWr {
169 typedef typename Map::Key Key;
170 typedef typename Map::Value Value;
172 NonConstMapWr(const Map &_m) : m(_m) {}
175 void set(Key const& k, Value const &v) const { m.set(k,v); }
178 template <class GR, class IN, class OUT>
180 typename IN::value_type::second_type
181 kruskal(GR const& g, IN const& edges, OUT const& out_map,
182 // typename IN::value_type::first_type = typename GR::Edge(),
183 // typename OUT::Key = GR::Edge()
184 const typename IN::value_type::first_type * =
185 (const typename IN::value_type::first_type *)(0),
186 const typename OUT::Key * = (const typename OUT::Key *)(0)
189 NonConstMapWr<OUT> map_wr(out_map);
190 return kruskal(g, edges, map_wr);
193 /* ** ** Input-objects ** ** */
195 /// Kruskal's input source.
197 /// Kruskal's input source.
199 /// In most cases you possibly want to use the \ref kruskal() instead.
201 /// \sa makeKruskalMapInput()
203 ///\param GR The type of the graph the algorithm runs on.
204 ///\param Map An edge map containing the cost of the edges.
206 ///The cost type can be any type satisfying
207 ///the STL 'LessThan comparable'
208 ///concept if it also has an operator+() implemented. (It is necessary for
209 ///computing the total cost of the tree).
211 template<class GR, class Map>
212 class KruskalMapInput
213 : public std::vector< std::pair<typename GR::Edge,
214 typename Map::Value> > {
217 typedef std::vector< std::pair<typename GR::Edge,
218 typename Map::Value> > Parent;
219 typedef typename Parent::value_type value_type;
224 bool operator()(const value_type& a,
225 const value_type& b) {
226 return a.second < b.second;
231 typename enable_if<typename _GR::UTag,void>::type
232 fillWithEdges(const _GR& g, const Map& m,dummy<0> = 0)
234 for(typename GR::UEdgeIt e(g);e!=INVALID;++e)
235 push_back(value_type(g.direct(e, true), m[e]));
239 typename disable_if<typename _GR::UTag,void>::type
240 fillWithEdges(const _GR& g, const Map& m,dummy<1> = 1)
242 for(typename GR::EdgeIt e(g);e!=INVALID;++e)
243 push_back(value_type(e, m[e]));
250 std::sort(this->begin(), this->end(), comparePair());
253 KruskalMapInput(GR const& g, Map const& m) {
259 /// Creates a KruskalMapInput object for \ref kruskal()
261 /// It makes easier to use
262 /// \ref KruskalMapInput by making it unnecessary
263 /// to explicitly give the type of the parameters.
265 /// In most cases you possibly
266 /// want to use \ref kruskal() instead.
268 ///\param g The type of the graph the algorithm runs on.
269 ///\param m An edge map containing the cost of the edges.
271 ///The cost type can be any type satisfying the
272 ///STL 'LessThan Comparable'
273 ///concept if it also has an operator+() implemented. (It is necessary for
274 ///computing the total cost of the tree).
276 ///\return An appropriate input source for \ref kruskal().
278 template<class GR, class Map>
280 KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &g,const Map &m)
282 return KruskalMapInput<GR,Map>(g,m);
287 /* ** ** Output-objects: simple writable bool maps ** ** */
291 /// A writable bool-map that makes a sequence of "true" keys
293 /// A writable bool-map that creates a sequence out of keys that receives
294 /// the value "true".
296 /// \sa makeKruskalSequenceOutput()
298 /// Very often, when looking for a min cost spanning tree, we want as
299 /// output a container containing the edges of the found tree. For this
300 /// purpose exist this class that wraps around an STL iterator with a
301 /// writable bool map interface. When a key gets value "true" this key
302 /// is added to sequence pointed by the iterator.
306 /// std::vector<Graph::Edge> v;
307 /// kruskal(g, input, makeKruskalSequenceOutput(back_inserter(v)));
310 /// For the most common case, when the input is given by a simple edge
311 /// map and the output is a sequence of the tree edges, a special
312 /// wrapper function exists: \ref kruskalEdgeMap_IteratorOut().
314 /// \warning Not a regular property map, as it doesn't know its Key
316 template<class Iterator>
317 class KruskalSequenceOutput {
321 typedef typename std::iterator_traits<Iterator>::value_type Key;
324 KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
326 template<typename Key>
327 void set(Key const& k, bool v) const { if(v) {*it=k; ++it;} }
330 template<class Iterator>
332 KruskalSequenceOutput<Iterator>
333 makeKruskalSequenceOutput(Iterator it) {
334 return KruskalSequenceOutput<Iterator>(it);
339 /* ** ** Wrapper funtions ** ** */
341 // \brief Wrapper function to kruskal().
342 // Input is from an edge map, output is a plain bool map.
344 // Wrapper function to kruskal().
345 // Input is from an edge map, output is a plain bool map.
347 // \param g The type of the graph the algorithm runs on.
348 // \param in An edge map containing the cost of the edges.
350 // The cost type can be any type satisfying the
351 // STL 'LessThan Comparable'
352 // concept if it also has an operator+() implemented. (It is necessary for
353 // computing the total cost of the tree).
355 // \retval out This must be a writable \c bool edge map.
356 // After running the algorithm
357 // this will contain the found minimum cost spanning tree: the value of an
358 // edge will be set to \c true if it belongs to the tree, otherwise it will
359 // be set to \c false. The value of each edge will be set exactly once.
361 // \return The cost of the found tree.
363 template <class GR, class IN, class RET>
369 // typename IN::Key = typename GR::Edge(),
370 //typename IN::Key = typename IN::Key (),
371 // typename RET::Key = typename GR::Edge()
372 const typename IN::Key * = (const typename IN::Key *)(0),
373 const typename RET::Key * = (const typename RET::Key *)(0)
377 KruskalMapInput<GR,IN>(g,in),
381 // \brief Wrapper function to kruskal().
382 // Input is from an edge map, output is an STL Sequence.
384 // Wrapper function to kruskal().
385 // Input is from an edge map, output is an STL Sequence.
387 // \param g The type of the graph the algorithm runs on.
388 // \param in An edge map containing the cost of the edges.
390 // The cost type can be any type satisfying the
391 // STL 'LessThan Comparable'
392 // concept if it also has an operator+() implemented. (It is necessary for
393 // computing the total cost of the tree).
395 // \retval out This must be an iteraror of an STL Container with
396 // <tt>GR::Edge</tt> as its <tt>value_type</tt>.
397 // The algorithm copies the elements of the found tree into this sequence.
398 // For example, if we know that the spanning tree of the graph \c g has
399 // say 53 edges, then
400 // we can put its edges into a STL vector \c tree with a code like this.
402 // std::vector<Edge> tree(53);
403 // kruskal(g,cost,tree.begin());
405 // Or if we don't know in advance the size of the tree, we can write this.
407 // std::vector<Edge> tree;
408 // kruskal(g,cost,std::back_inserter(tree));
411 // \return The cost of the found tree.
413 // \bug its name does not follow the coding style.
415 template <class GR, class IN, class RET>
421 const typename RET::value_type * =
422 (const typename RET::value_type *)(0)
425 KruskalSequenceOutput<RET> _out(out);
426 return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
429 template <class GR, class IN, class RET>
437 KruskalSequenceOutput<RET*> _out(out);
438 return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
445 #endif //LEMON_KRUSKAL_H