lemon/max_matching.h
author alpar
Tue, 21 Feb 2006 12:37:00 +0000
changeset 1977 8ef02f0c4245
parent 1909 2d806130e700
child 1993 2115143eceea
permissions -rwxr-xr-x
RefPtr: a reference counted pointer class
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_MAX_MATCHING_H
    20 #define LEMON_MAX_MATCHING_H
    21 
    22 #include <queue>
    23 #include <lemon/invalid.h>
    24 #include <lemon/unionfind.h>
    25 #include <lemon/graph_utils.h>
    26 
    27 ///\ingroup galgs
    28 ///\file
    29 ///\brief Maximum matching algorithm.
    30 
    31 namespace lemon {
    32 
    33   /// \addtogroup galgs
    34   /// @{
    35 
    36   ///Edmonds' alternating forest maximum matching algorithm.
    37 
    38   ///This class provides Edmonds' alternating forest matching
    39   ///algorithm. The starting matching (if any) can be passed to the
    40   ///algorithm using read-in functions \ref readNMapNode, \ref
    41   ///readNMapEdge or \ref readEMapBool depending on the container. The
    42   ///resulting maximum matching can be attained by write-out functions
    43   ///\ref writeNMapNode, \ref writeNMapEdge or \ref writeEMapBool
    44   ///depending on the preferred container. 
    45   ///
    46   ///The dual side of a matching is a map of the nodes to
    47   ///MaxMatching::pos_enum, having values D, A and C showing the
    48   ///Gallai-Edmonds decomposition of the graph. The nodes in D induce
    49   ///a graph with factor-critical components, the nodes in A form the
    50   ///barrier, and the nodes in C induce a graph having a perfect
    51   ///matching. This decomposition can be attained by calling \ref
    52   ///writePos after running the algorithm. 
    53   ///
    54   ///\param Graph The undirected graph type the algorithm runs on.
    55   ///
    56   ///\author Jacint Szabo  
    57   template <typename Graph>
    58   class MaxMatching {
    59 
    60   protected:
    61 
    62     typedef typename Graph::Node Node;
    63     typedef typename Graph::Edge Edge;
    64     typedef typename Graph::UEdge UEdge;
    65     typedef typename Graph::UEdgeIt UEdgeIt;
    66     typedef typename Graph::NodeIt NodeIt;
    67     typedef typename Graph::IncEdgeIt IncEdgeIt;
    68 
    69     typedef UnionFindEnum<Node, Graph::template NodeMap> UFE;
    70 
    71   public:
    72     
    73     ///Indicates the Gallai-Edmonds decomposition of the graph.
    74 
    75     ///Indicates the Gallai-Edmonds decomposition of the graph, which
    76     ///shows an upper bound on the size of a maximum matching. The
    77     ///nodes with pos_enum \c D induce a graph with factor-critical
    78     ///components, the nodes in \c A form the canonical barrier, and the
    79     ///nodes in \c C induce a graph having a perfect matching. 
    80     enum pos_enum {
    81       D=0,
    82       A=1,
    83       C=2
    84     }; 
    85 
    86   protected:
    87 
    88     static const int HEUR_density=2;
    89     const Graph& g;
    90     typename Graph::template NodeMap<Node> _mate;
    91     typename Graph::template NodeMap<pos_enum> position;
    92      
    93   public:
    94     
    95     MaxMatching(const Graph& _g) : g(_g), _mate(_g,INVALID), position(_g) {}
    96 
    97     ///Runs Edmonds' algorithm.
    98 
    99     ///Runs Edmonds' algorithm for sparse graphs (number of edges <
   100     ///2*number of nodes), and a heuristical Edmonds' algorithm with a
   101     ///heuristic of postponing shrinks for dense graphs. 
   102     void run() {
   103       if ( countUEdges(g) < HEUR_density*countNodes(g) ) {
   104 	greedyMatching();
   105 	runEdmonds(0);
   106       } else runEdmonds(1);
   107     }
   108 
   109 
   110     ///Runs Edmonds' algorithm.
   111     
   112     ///If heur=0 it runs Edmonds' algorithm. If heur=1 it runs
   113     ///Edmonds' algorithm with a heuristic of postponing shrinks,
   114     ///giving a faster algorithm for dense graphs.  
   115     void runEdmonds( int heur = 1 ) {
   116       
   117       for(NodeIt v(g); v!=INVALID; ++v)
   118 	position.set(v,C);      
   119       
   120       typename Graph::template NodeMap<Node> ear(g,INVALID); 
   121       //undefined for the base nodes of the blossoms (i.e. for the
   122       //representative elements of UFE blossom) and for the nodes in C 
   123       
   124       typename UFE::MapType blossom_base(g);
   125       UFE blossom(blossom_base);
   126       typename UFE::MapType tree_base(g);
   127       UFE tree(tree_base);
   128       //If these UFE's would be members of the class then also
   129       //blossom_base and tree_base should be a member.
   130       
   131       for(NodeIt v(g); v!=INVALID; ++v) {
   132 	if ( position[v]==C && _mate[v]==INVALID ) {
   133 	  blossom.insert(v);
   134 	  tree.insert(v); 
   135 	  position.set(v,D);
   136 	  if ( heur == 1 ) lateShrink( v, ear, blossom, tree );
   137 	  else normShrink( v, ear, blossom, tree );
   138 	}
   139       }
   140     }
   141 
   142 
   143     ///Finds a greedy matching starting from the actual matching.
   144     
   145     ///Starting form the actual matching stored, it finds a maximal
   146     ///greedy matching.
   147     void greedyMatching() {
   148       for(NodeIt v(g); v!=INVALID; ++v)
   149 	if ( _mate[v]==INVALID ) {
   150 	  for( IncEdgeIt e(g,v); e!=INVALID ; ++e ) {
   151 	    Node y=g.runningNode(e);
   152 	    if ( _mate[y]==INVALID && y!=v ) {
   153 	      _mate.set(v,y);
   154 	      _mate.set(y,v);
   155 	      break;
   156 	    }
   157 	  }
   158 	} 
   159     }
   160 
   161     ///Returns the size of the actual matching stored.
   162 
   163     ///Returns the size of the actual matching stored. After \ref
   164     ///run() it returns the size of a maximum matching in the graph.
   165     int size() const {
   166       int s=0;
   167       for(NodeIt v(g); v!=INVALID; ++v) {
   168 	if ( _mate[v]!=INVALID ) {
   169 	  ++s;
   170 	}
   171       }
   172       return s/2;
   173     }
   174 
   175 
   176     ///Resets the actual matching to the empty matching.
   177 
   178     ///Resets the actual matching to the empty matching.  
   179     ///
   180     void resetMatching() {
   181       for(NodeIt v(g); v!=INVALID; ++v)
   182 	_mate.set(v,INVALID);      
   183     }
   184 
   185     ///Returns the mate of a node in the actual matching.
   186 
   187     ///Returns the mate of a \c node in the actual matching. 
   188     ///Returns INVALID if the \c node is not covered by the actual matching. 
   189     Node mate(Node& node) const {
   190       return _mate[node];
   191     } 
   192 
   193     ///Reads a matching from a \c Node valued \c Node map.
   194 
   195     ///Reads a matching from a \c Node valued \c Node map. This map
   196     ///must be \e symmetric, i.e. if \c map[u]==v then \c map[v]==u
   197     ///must hold, and \c uv will be an edge of the matching.
   198     template<typename NMapN>
   199     void readNMapNode(NMapN& map) {
   200       for(NodeIt v(g); v!=INVALID; ++v) {
   201 	_mate.set(v,map[v]);   
   202       } 
   203     } 
   204     
   205     ///Writes the stored matching to a \c Node valued \c Node map.
   206 
   207     ///Writes the stored matching to a \c Node valued \c Node map. The
   208     ///resulting map will be \e symmetric, i.e. if \c map[u]==v then \c
   209     ///map[v]==u will hold, and now \c uv is an edge of the matching.
   210     template<typename NMapN>
   211     void writeNMapNode (NMapN& map) const {
   212       for(NodeIt v(g); v!=INVALID; ++v) {
   213 	map.set(v,_mate[v]);   
   214       } 
   215     } 
   216 
   217     ///Reads a matching from an \c UEdge valued \c Node map.
   218 
   219     ///Reads a matching from an \c UEdge valued \c Node map. \c
   220     ///map[v] must be an \c UEdge incident to \c v. This map must
   221     ///have the property that if \c g.oppositeNode(u,map[u])==v then
   222     ///\c \c g.oppositeNode(v,map[v])==u holds, and now some edge
   223     ///joining \c u to \c v will be an edge of the matching.
   224     template<typename NMapE>
   225     void readNMapEdge(NMapE& map) {
   226      for(NodeIt v(g); v!=INVALID; ++v) {
   227        UEdge e=map[v];
   228 	if ( e!=INVALID )
   229 	  _mate.set(v,g.oppositeNode(v,e));
   230       } 
   231     } 
   232     
   233     ///Writes the matching stored to an \c UEdge valued \c Node map.
   234 
   235     ///Writes the stored matching to an \c UEdge valued \c Node
   236     ///map. \c map[v] will be an \c UEdge incident to \c v. This
   237     ///map will have the property that if \c g.oppositeNode(u,map[u])
   238     ///== v then \c map[u]==map[v] holds, and now this edge is an edge
   239     ///of the matching.
   240     template<typename NMapE>
   241     void writeNMapEdge (NMapE& map)  const {
   242       typename Graph::template NodeMap<bool> todo(g,true); 
   243       for(NodeIt v(g); v!=INVALID; ++v) {
   244 	if ( todo[v] && _mate[v]!=INVALID ) {
   245 	  Node u=_mate[v];
   246 	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
   247 	    if ( g.runningNode(e) == u ) {
   248 	      map.set(u,e);
   249 	      map.set(v,e);
   250 	      todo.set(u,false);
   251 	      todo.set(v,false);
   252 	      break;
   253 	    }
   254 	  }
   255 	}
   256       } 
   257     }
   258 
   259 
   260     ///Reads a matching from a \c bool valued \c Edge map.
   261     
   262     ///Reads a matching from a \c bool valued \c Edge map. This map
   263     ///must have the property that there are no two incident edges \c
   264     ///e, \c f with \c map[e]==map[f]==true. The edges \c e with \c
   265     ///map[e]==true form the matching.
   266     template<typename EMapB>
   267     void readEMapBool(EMapB& map) {
   268       for(UEdgeIt e(g); e!=INVALID; ++e) {
   269 	if ( map[e] ) {
   270 	  Node u=g.source(e);	  
   271 	  Node v=g.target(e);
   272 	  _mate.set(u,v);
   273 	  _mate.set(v,u);
   274 	} 
   275       } 
   276     }
   277 
   278 
   279     ///Writes the matching stored to a \c bool valued \c Edge map.
   280 
   281     ///Writes the matching stored to a \c bool valued \c Edge
   282     ///map. This map will have the property that there are no two
   283     ///incident edges \c e, \c f with \c map[e]==map[f]==true. The
   284     ///edges \c e with \c map[e]==true form the matching.
   285     template<typename EMapB>
   286     void writeEMapBool (EMapB& map) const {
   287       for(UEdgeIt e(g); e!=INVALID; ++e) map.set(e,false);
   288 
   289       typename Graph::template NodeMap<bool> todo(g,true); 
   290       for(NodeIt v(g); v!=INVALID; ++v) {
   291 	if ( todo[v] && _mate[v]!=INVALID ) {
   292 	  Node u=_mate[v];
   293 	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
   294 	    if ( g.runningNode(e) == u ) {
   295 	      map.set(e,true);
   296 	      todo.set(u,false);
   297 	      todo.set(v,false);
   298 	      break;
   299 	    }
   300 	  }
   301 	}
   302       } 
   303     }
   304 
   305 
   306     ///Writes the canonical decomposition of the graph after running
   307     ///the algorithm.
   308 
   309     ///After calling any run methods of the class, it writes the
   310     ///Gallai-Edmonds canonical decomposition of the graph. \c map
   311     ///must be a node map of \ref pos_enum 's.
   312     template<typename NMapEnum>
   313     void writePos (NMapEnum& map) const {
   314       for(NodeIt v(g); v!=INVALID; ++v)  map.set(v,position[v]);
   315     }
   316 
   317   private: 
   318 
   319  
   320     void lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
   321 		    UFE& blossom, UFE& tree);
   322 
   323     void normShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
   324 		    UFE& blossom, UFE& tree);
   325 
   326     bool noShrinkStep(Node x, typename Graph::template NodeMap<Node>& ear,  
   327 		      UFE& blossom, UFE& tree, std::queue<Node>& Q);
   328 
   329     void shrinkStep(Node& top, Node& middle, Node& bottom,
   330 		    typename Graph::template NodeMap<Node>& ear,  
   331 		    UFE& blossom, UFE& tree, std::queue<Node>& Q);
   332 
   333     void augment(Node x, typename Graph::template NodeMap<Node>& ear,  
   334 		 UFE& blossom, UFE& tree);
   335 
   336   };
   337 
   338 
   339   // **********************************************************************
   340   //  IMPLEMENTATIONS
   341   // **********************************************************************
   342 
   343 
   344   template <typename Graph>
   345   void MaxMatching<Graph>::lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
   346 				      UFE& blossom, UFE& tree) {
   347 
   348     std::queue<Node> Q;   //queue of the totally unscanned nodes
   349     Q.push(v);  
   350     std::queue<Node> R;   
   351     //queue of the nodes which must be scanned for a possible shrink
   352       
   353     while ( !Q.empty() ) {
   354       Node x=Q.front();
   355       Q.pop();
   356       if ( noShrinkStep( x, ear, blossom, tree, Q ) ) return;
   357       else R.push(x);
   358     }
   359       
   360     while ( !R.empty() ) {
   361       Node x=R.front();
   362       R.pop();
   363 	
   364       for( IncEdgeIt e(g,x); e!=INVALID ; ++e ) {
   365 	Node y=g.runningNode(e);
   366 
   367 	if ( position[y] == D && blossom.find(x) != blossom.find(y) ) { 
   368 	  //x and y must be in the same tree
   369 	
   370 	  typename Graph::template NodeMap<bool> path(g,false);
   371 
   372 	  Node b=blossom.find(x);
   373 	  path.set(b,true);
   374 	  b=_mate[b];
   375 	  while ( b!=INVALID ) { 
   376 	    b=blossom.find(ear[b]);
   377 	    path.set(b,true);
   378 	    b=_mate[b];
   379 	  } //going till the root
   380 	
   381 	  Node top=y;
   382 	  Node middle=blossom.find(top);
   383 	  Node bottom=x;
   384 	  while ( !path[middle] )
   385 	    shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   386 		  
   387 	  Node base=middle;
   388 	  top=x;
   389 	  middle=blossom.find(top);
   390 	  bottom=y;
   391 	  Node blossom_base=blossom.find(base);
   392 	  while ( middle!=blossom_base )
   393 	    shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   394 		  
   395 	  blossom.makeRep(base);
   396 	} // if shrink is needed
   397 
   398 	while ( !Q.empty() ) {
   399 	  Node x=Q.front();
   400 	  Q.pop();
   401 	  if ( noShrinkStep(x, ear, blossom, tree, Q) ) return;
   402 	  else R.push(x);
   403 	}
   404       } //for e
   405     } // while ( !R.empty() )
   406   }
   407 
   408 
   409   template <typename Graph>
   410   void MaxMatching<Graph>::normShrink(Node v,
   411 				      typename Graph::template
   412 				      NodeMap<Node>& ear,  
   413 				      UFE& blossom, UFE& tree) {
   414     std::queue<Node> Q;   //queue of the unscanned nodes
   415     Q.push(v);  
   416     while ( !Q.empty() ) {
   417 
   418       Node x=Q.front();
   419       Q.pop();
   420 	
   421       for( IncEdgeIt e(g,x); e!=INVALID; ++e ) {
   422 	Node y=g.runningNode(e);
   423 	      
   424 	switch ( position[y] ) {
   425 	case D:          //x and y must be in the same tree
   426 
   427 	  if ( blossom.find(x) != blossom.find(y) ) { //shrink
   428 	    typename Graph::template NodeMap<bool> path(g,false);
   429 	      
   430 	    Node b=blossom.find(x);
   431 	    path.set(b,true);
   432 	    b=_mate[b];
   433 	    while ( b!=INVALID ) { 
   434 	      b=blossom.find(ear[b]);
   435 	      path.set(b,true);
   436 	      b=_mate[b];
   437 	    } //going till the root
   438 	
   439 	    Node top=y;
   440 	    Node middle=blossom.find(top);
   441 	    Node bottom=x;
   442 	    while ( !path[middle] )
   443 	      shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   444 		
   445 	    Node base=middle;
   446 	    top=x;
   447 	    middle=blossom.find(top);
   448 	    bottom=y;
   449 	    Node blossom_base=blossom.find(base);
   450 	    while ( middle!=blossom_base )
   451 	      shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   452 		
   453 	    blossom.makeRep(base);
   454 	  }
   455 	  break;
   456 	case C:
   457 	  if ( _mate[y]!=INVALID ) {   //grow
   458 
   459 	    ear.set(y,x);
   460 	    Node w=_mate[y];
   461 	    blossom.insert(w);
   462 	    position.set(y,A); 
   463 	    position.set(w,D); 
   464 	    tree.insert(y);
   465 	    tree.insert(w);
   466 	    tree.join(y,blossom.find(x));  
   467 	    tree.join(w,y);  
   468 	    Q.push(w);
   469 	  } else {                 //augment  
   470 	    augment(x, ear, blossom, tree);
   471 	    _mate.set(x,y);
   472 	    _mate.set(y,x);
   473 	    return;
   474 	  } //if 
   475 	  break;
   476 	default: break;
   477 	}
   478       }
   479     }
   480   }
   481 
   482   template <typename Graph>
   483   bool MaxMatching<Graph>::noShrinkStep(Node x,
   484 					typename Graph::template 
   485 					NodeMap<Node>& ear,  
   486 					UFE& blossom, UFE& tree,
   487 					std::queue<Node>& Q) {
   488     for( IncEdgeIt e(g,x); e!= INVALID; ++e ) {
   489       Node y=g.runningNode(e);
   490 	
   491       if ( position[y]==C ) {
   492 	if ( _mate[y]!=INVALID ) {       //grow
   493 	  ear.set(y,x);
   494 	  Node w=_mate[y];
   495 	  blossom.insert(w);
   496 	  position.set(y,A);
   497 	  position.set(w,D);
   498 	  tree.insert(y);
   499 	  tree.insert(w);
   500 	  tree.join(y,blossom.find(x));  
   501 	  tree.join(w,y);  
   502 	  Q.push(w);
   503 	} else {                      //augment 
   504 	  augment(x, ear, blossom, tree);
   505 	  _mate.set(x,y);
   506 	  _mate.set(y,x);
   507 	  return true;
   508 	}
   509       }
   510     }
   511     return false;
   512   }
   513 
   514   template <typename Graph>
   515   void MaxMatching<Graph>::shrinkStep(Node& top, Node& middle, Node& bottom,
   516 				      typename Graph::template
   517 				      NodeMap<Node>& ear,  
   518 				      UFE& blossom, UFE& tree,
   519 				      std::queue<Node>& Q) {
   520     ear.set(top,bottom);
   521     Node t=top;
   522     while ( t!=middle ) {
   523       Node u=_mate[t];
   524       t=ear[u];
   525       ear.set(t,u);
   526     } 
   527     bottom=_mate[middle];
   528     position.set(bottom,D);
   529     Q.push(bottom);
   530     top=ear[bottom];		
   531     Node oldmiddle=middle;
   532     middle=blossom.find(top);
   533     tree.erase(bottom);
   534     tree.erase(oldmiddle);
   535     blossom.insert(bottom);
   536     blossom.join(bottom, oldmiddle);
   537     blossom.join(top, oldmiddle);
   538   }
   539 
   540   template <typename Graph>
   541   void MaxMatching<Graph>::augment(Node x,
   542 				   typename Graph::template NodeMap<Node>& ear,  
   543 				   UFE& blossom, UFE& tree) { 
   544     Node v=_mate[x];
   545     while ( v!=INVALID ) {
   546 	
   547       Node u=ear[v];
   548       _mate.set(v,u);
   549       Node tmp=v;
   550       v=_mate[u];
   551       _mate.set(u,tmp);
   552     }
   553     typename UFE::ItemIt it;
   554     for (tree.first(it,blossom.find(x)); tree.valid(it); tree.next(it)) {   
   555       if ( position[it] == D ) {
   556 	typename UFE::ItemIt b_it;
   557 	for (blossom.first(b_it,it); blossom.valid(b_it); blossom.next(b_it)) {  
   558 	  position.set( b_it ,C);
   559 	}
   560 	blossom.eraseClass(it);
   561       } else position.set( it ,C);
   562     }
   563     tree.eraseClass(x);
   564 
   565   }
   566 
   567   /// @}
   568   
   569 } //END OF NAMESPACE LEMON
   570 
   571 #endif //LEMON_MAX_MATCHING_H