3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_SIMANN_H
20 #define LEMON_SIMANN_H
22 /// \ingroup experimental
24 /// \brief Simulated annealing framework.
26 /// \todo A test and some demo should be added
27 /// \todo Doc should be improved
28 /// \author Akos Ladanyi
33 #include <lemon/time_measure.h>
37 /// \addtogroup experimental
42 /// \brief A base class for controllers.
43 class ControllerBase {
45 friend class SimAnnBase;
46 /// \brief Pointer to the simulated annealing base class.
48 /// \brief Initializes the controller.
49 virtual void init() {}
50 /// \brief This is called by the simulated annealing class when a
51 /// neighbouring state gets accepted.
52 virtual void acceptEvent() {}
53 /// \brief This is called by the simulated annealing class when the
54 /// accepted neighbouring state's cost is less than the best found one's.
55 virtual void improveEvent() {}
56 /// \brief This is called by the simulated annealing class when a
57 /// neighbouring state gets rejected.
58 virtual void rejectEvent() {}
59 /// \brief Decides whether to continue the annealing process or not.
60 virtual bool next() = 0;
61 /// \brief Decides whether to accept the current solution or not.
62 virtual bool accept() = 0;
63 /// \brief Destructor.
64 virtual ~ControllerBase() {}
67 /// \brief Skeleton of an entity class.
70 /// \brief Makes a minor change to the entity.
71 /// \return the new cost
72 virtual double mutate() = 0;
73 /// \brief Restores the entity to its previous state i.e. reverts the
74 /// effects of the last mutate().
75 virtual void revert() = 0;
76 /// \brief Makes a copy of the entity.
77 virtual EntityBase* clone() = 0;
78 /// \brief Makes a major change to the entity.
79 virtual void randomize() = 0;
80 /// \brief Destructor.
81 virtual ~EntityBase() {}
84 /// \brief Simulated annealing abstract base class.
85 /// Can be used to derive a custom simulated annealing class if \ref SimAnn
86 /// doesn't fit your needs.
89 /// \brief Pointer to the controller.
90 ControllerBase *controller;
91 /// \brief Cost of the current solution.
93 /// \brief Cost of the best solution.
95 /// \brief Cost of the previous solution.
97 /// \brief Cost of the solution preceding the previous one.
98 double prev_prev_cost;
99 /// \brief Number of iterations.
101 /// \brief Number of iterations which did not improve the solution since
102 /// the last improvement.
105 /// \brief Step to a neighbouring state.
106 virtual double mutate() = 0;
107 /// \brief Reverts the last mutate().
108 virtual void revert() = 0;
109 /// \brief Saves the current solution as the best one.
110 virtual void saveAsBest() = 0;
111 /// \brief Does initializations before each run.
112 virtual void init() {
114 curr_cost = prev_cost = prev_prev_cost = best_cost =
115 std::numeric_limits<double>::infinity();
116 iter = last_impr = 0;
119 /// \brief Sets the controller class to use.
120 void setController(ControllerBase &_controller) {
121 controller = &_controller;
122 controller->simann = this;
124 /// \brief Returns the cost of the current solution.
125 double getCurrCost() const { return curr_cost; }
126 /// \brief Returns the cost of the previous solution.
127 double getPrevCost() const { return prev_cost; }
128 /// \brief Returns the cost of the best solution.
129 double getBestCost() const { return best_cost; }
130 /// \brief Returns the number of iterations done.
131 long getIter() const { return iter; }
132 /// \brief Returns the ordinal number of the last iteration when the
133 /// solution was improved.
134 long getLastImpr() const { return last_impr; }
135 /// \brief Performs one iteration.
138 prev_prev_cost = prev_cost;
139 prev_cost = curr_cost;
140 curr_cost = mutate();
141 if (controller->accept()) {
142 controller->acceptEvent();
144 if (curr_cost < best_cost) {
145 best_cost = curr_cost;
147 controller->improveEvent();
152 curr_cost = prev_cost;
153 prev_cost = prev_prev_cost;
154 controller->rejectEvent();
156 return controller->next();
158 /// \brief Performs a given number of iterations.
159 /// \param n the number of iterations
161 for(; n > 0 && step(); --n) ;
164 /// \brief Starts the annealing process.
167 do { } while (step());
169 /// \brief Destructor.
170 virtual ~SimAnnBase() {}
173 /// \brief Simulated annealing class.
174 class SimAnn : public SimAnnBase {
176 /// \brief Pointer to the current entity.
177 EntityBase *curr_ent;
178 /// \brief Pointer to the best entity.
179 EntityBase *best_ent;
180 /// \brief Does initializations before each run.
183 if (best_ent) delete best_ent;
185 curr_ent->randomize();
188 /// \brief Constructor.
189 SimAnn() : curr_ent(NULL), best_ent(NULL) {}
190 /// \brief Destructor.
192 if (best_ent) delete best_ent;
194 /// \brief Step to a neighbouring state.
196 return curr_ent->mutate();
198 /// \brief Reverts the last mutate().
202 /// \brief Saves the current solution as the best one.
204 if (best_ent) delete best_ent;
205 best_ent = curr_ent->clone();
207 /// \brief Sets the current entity.
208 void setEntity(EntityBase &_ent) {
211 /// \brief Returns a copy of the best found entity.
212 EntityBase* getBestEntity() { return best_ent->clone(); }
215 /// \brief A simple controller for the simulated annealing class.
216 /// This controller starts from a given initial temperature and evenly
218 class SimpleController : public ControllerBase {
220 /// \brief Maximum number of iterations.
222 /// \brief Maximum number of iterations which do not improve the
225 /// \brief Temperature.
227 /// \brief Annealing factor.
229 /// \brief Constructor.
230 /// \param _max_iter maximum number of iterations
231 /// \param _max_no_impr maximum number of consecutive iterations which do
232 /// not yield a better solution
233 /// \param _temp initial temperature
234 /// \param _ann_fact annealing factor
236 SimpleController(long _max_iter = 500000, long _max_no_impr = 20000,
237 double _temp = 1000.0, double _ann_fact = 0.9999) : max_iter(_max_iter),
238 max_no_impr(_max_no_impr), temp(_temp), ann_fact(_ann_fact)
242 /// \brief This is called when a neighbouring state gets accepted.
243 void acceptEvent() {}
244 /// \brief This is called when the accepted neighbouring state's cost is
245 /// less than the best found one's.
246 void improveEvent() {}
247 /// \brief This is called when a neighbouring state gets rejected.
248 void rejectEvent() {}
249 /// \brief Decides whether to continue the annealing process or not. Also
250 /// decreases the temperature.
253 bool quit = (simann->getIter() > max_iter) ||
254 (simann->getIter() - simann->getLastImpr() > max_no_impr);
257 /// \brief Decides whether to accept the current solution or not.
259 double cost_diff = simann->getCurrCost() - simann->getPrevCost();
260 return (drand48() <= exp(-(cost_diff / temp)));
262 /// \brief Destructor.
263 virtual ~SimpleController() {}
266 /// \brief A controller with preset running time for the simulated annealing
268 /// With this controller you can set the running time of the annealing
269 /// process in advance. It works the following way: the controller measures
270 /// a kind of divergence. The divergence is the difference of the average
271 /// cost of the recently found solutions the cost of the best found one. In
272 /// case this divergence is greater than a given threshold, then we decrease
273 /// the annealing factor, that is we cool the system faster. In case the
274 /// divergence is lower than the threshold, then we increase the temperature.
275 /// The threshold is a function of the elapsed time which reaches zero at the
276 /// desired end time.
277 class AdvancedController : public ControllerBase {
279 /// \brief Timer class to measure the elapsed time.
281 /// \brief Calculates the threshold value.
282 /// \param time the elapsed time in seconds
283 virtual double threshold(double time) {
284 return (-1.0) * start_threshold / end_time * time + start_threshold;
286 /// \brief Parameter used to calculate the running average.
288 /// \brief Parameter used to decrease the annealing factor.
290 /// \brief Parameter used to increase the temperature.
292 /// \brief The time at the end of the algorithm.
294 /// \brief The time at the start of the algorithm.
296 /// \brief Starting threshold.
297 double start_threshold;
298 /// \brief Average cost of recent solutions.
300 /// \brief Temperature.
302 /// \brief Annealing factor.
304 /// \brief Initial annealing factor.
305 double init_ann_fact;
306 /// \brief True when the annealing process has been started.
309 /// \brief Constructor.
310 /// \param _end_time running time in seconds
311 /// \param _alpha parameter used to calculate the running average
312 /// \param _beta parameter used to decrease the annealing factor
313 /// \param _gamma parameter used to increase the temperature
314 /// \param _ann_fact initial annealing factor
315 AdvancedController(double _end_time, double _alpha = 0.2,
316 double _beta = 0.9, double _gamma = 1.6, double _ann_fact = 0.9999) :
317 alpha(_alpha), beta(_beta), gamma(_gamma), end_time(_end_time),
318 ann_fact(_ann_fact), init_ann_fact(_ann_fact), start(false)
322 /// \brief Does initializations before each run.
324 avg_cost = simann->getCurrCost();
326 /// \brief This is called when a neighbouring state gets accepted.
328 avg_cost = alpha * simann->getCurrCost() + (1.0 - alpha) * avg_cost;
333 // calculate starting threshold and starting temperature
334 start_threshold = 5.0 * fabs(simann->getBestCost() - avg_cost);
341 /// \brief Decides whether to continue the annealing process or not.
347 double elapsed_time = timer.realTime();
348 if (fabs(avg_cost - simann->getBestCost()) > threshold(elapsed_time)) {
349 // decrease the annealing factor
353 // increase the temperature
355 // reset the annealing factor
356 ann_fact = init_ann_fact;
359 return elapsed_time < end_time;
362 /// \brief Decides whether to accept the current solution or not.
368 double cost_diff = simann->getCurrCost() - simann->getPrevCost();
369 return (drand48() <= exp(-(cost_diff / temp)));
372 /// \brief Destructor.
373 virtual ~AdvancedController() {}