src/work/jacint/max_flow.h
author marci
Fri, 21 May 2004 10:18:30 +0000
changeset 654 8fd893331298
parent 650 588ff2ca55bd
child 656 9971eb8bfbe8
permissions -rw-r--r--
The new for macros are: h_for, h_for_inc, h_for_glob, h_for_inc_glob.
     1 // -*- C++ -*-
     2 #ifndef HUGO_MAX_FLOW_H
     3 #define HUGO_MAX_FLOW_H
     4 
     5 #include <vector>
     6 #include <queue>
     7 #include <stack>
     8 
     9 #include <hugo/graph_wrapper.h>
    10 #include <bfs_dfs.h>
    11 #include <hugo/invalid.h>
    12 #include <hugo/maps.h>
    13 #include <hugo/for_each_macros.h>
    14 
    15 /// \file
    16 /// \brief Maximum flow algorithms.
    17 /// \ingroup galgs
    18 
    19 namespace hugo {
    20 
    21   /// \addtogroup galgs
    22   /// @{                                                                                                                                        
    23   ///Maximum flow algorithms class.
    24 
    25   ///This class provides various algorithms for finding a flow of
    26   ///maximum value in a directed graph. The \e source node, the \e
    27   ///target node, the \e capacity of the edges and the \e starting \e
    28   ///flow value of the edges should be passed to the algorithm through the
    29   ///constructor. It is possible to change these quantities using the
    30   ///functions \ref resetSource, \ref resetTarget, \ref resetCap and
    31   ///\ref resetFlow. Before any subsequent runs of any algorithm of
    32   ///the class \ref resetFlow should be called. 
    33 
    34   ///After running an algorithm of the class, the actual flow value 
    35   ///can be obtained by calling \ref flowValue(). The minimum
    36   ///value cut can be written into a \c node map of \c bools by
    37   ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
    38   ///the inclusionwise minimum and maximum of the minimum value
    39   ///cuts, resp.)                                                                                                                               
    40   ///\param Graph The directed graph type the algorithm runs on.
    41   ///\param Num The number type of the capacities and the flow values.
    42   ///\param CapMap The capacity map type.
    43   ///\param FlowMap The flow map type.                                                                                                           
    44   ///\author Marton Makai, Jacint Szabo 
    45   template <typename Graph, typename Num,
    46 	    typename CapMap=typename Graph::template EdgeMap<Num>,
    47             typename FlowMap=typename Graph::template EdgeMap<Num> >
    48   class MaxFlow {
    49   protected:
    50     typedef typename Graph::Node Node;
    51     typedef typename Graph::NodeIt NodeIt;
    52     typedef typename Graph::EdgeIt EdgeIt;
    53     typedef typename Graph::OutEdgeIt OutEdgeIt;
    54     typedef typename Graph::InEdgeIt InEdgeIt;
    55 
    56     typedef typename std::vector<std::stack<Node> > VecStack;
    57     typedef typename Graph::template NodeMap<Node> NNMap;
    58     typedef typename std::vector<Node> VecNode;
    59 
    60     const Graph* g;
    61     Node s;
    62     Node t;
    63     const CapMap* capacity;
    64     FlowMap* flow;
    65     int n;      //the number of nodes of G
    66     typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;   
    67     //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
    68     typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
    69     typedef typename ResGW::Edge ResGWEdge;
    70     //typedef typename ResGW::template NodeMap<bool> ReachedMap;
    71     typedef typename Graph::template NodeMap<int> ReachedMap;
    72 
    73 
    74     //level works as a bool map in augmenting path algorithms and is
    75     //used by bfs for storing reached information.  In preflow, it
    76     //shows the levels of nodes.     
    77     ReachedMap level;
    78 
    79     //excess is needed only in preflow
    80     typename Graph::template NodeMap<Num> excess;
    81 
    82     //fixme    
    83 //   protected:
    84     //     MaxFlow() { }
    85     //     void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
    86     // 	     FlowMap& _flow)
    87     //       {
    88     // 	g=&_G;
    89     // 	s=_s;
    90     // 	t=_t;
    91     // 	capacity=&_capacity;
    92     // 	flow=&_flow;
    93     // 	n=_G.nodeNum;
    94     // 	level.set (_G); //kellene vmi ilyesmi fv
    95     // 	excess(_G,0); //itt is
    96     //       }
    97 
    98     // constants used for heuristics
    99     static const int H0=20;
   100     static const int H1=1;
   101 
   102   public:
   103 
   104     ///Indicates the property of the starting flow.
   105 
   106     ///Indicates the property of the starting flow. The meanings are as follows:
   107     ///- \c ZERO_FLOW: constant zero flow
   108     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
   109     ///the sum of the out-flows in every node except the \e source and
   110     ///the \e target.
   111     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
   112     ///least the sum of the out-flows in every node except the \e source.
   113     ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be 
   114     ///set to the constant zero flow in the beginning of the algorithm in this case.
   115     enum FlowEnum{
   116       ZERO_FLOW,
   117       GEN_FLOW,
   118       PRE_FLOW,
   119       NO_FLOW
   120     };
   121 
   122     enum StatusEnum {
   123       AFTER_NOTHING,
   124       AFTER_AUGMENTING,
   125       AFTER_PRE_FLOW_PHASE_1,      
   126       AFTER_PRE_FLOW_PHASE_2
   127     };
   128 
   129     /// Don not needle this flag only if necessary.
   130     StatusEnum status;
   131     int number_of_augmentations;
   132 
   133 
   134     template<typename IntMap>
   135     class TrickyReachedMap {
   136     protected:
   137       IntMap* map;
   138       int* number_of_augmentations;
   139     public:
   140       TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : 
   141 	map(&_map), number_of_augmentations(&_number_of_augmentations) { }
   142       void set(const Node& n, bool b) {
   143 	if (b)
   144 	  map->set(n, *number_of_augmentations);
   145 	else 
   146 	  map->set(n, *number_of_augmentations-1);
   147       }
   148       bool operator[](const Node& n) const { 
   149 	return (*map)[n]==*number_of_augmentations; 
   150       }
   151     };
   152     
   153     MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
   154 	    FlowMap& _flow) :
   155       g(&_G), s(_s), t(_t), capacity(&_capacity),
   156       flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), 
   157       status(AFTER_NOTHING), number_of_augmentations(0) { }
   158 
   159     ///Runs a maximum flow algorithm.
   160 
   161     ///Runs a preflow algorithm, which is the fastest maximum flow
   162     ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
   163     ///\pre The starting flow must be
   164     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   165     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   166     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   167     /// - any map if \c fe is NO_FLOW.
   168     void run(FlowEnum fe=ZERO_FLOW) {
   169       preflow(fe);
   170     }
   171 
   172                                                                               
   173     ///Runs a preflow algorithm.  
   174 
   175     ///Runs a preflow algorithm. The preflow algorithms provide the
   176     ///fastest way to compute a maximum flow in a directed graph.
   177     ///\pre The starting flow must be
   178     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   179     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   180     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   181     /// - any map if \c fe is NO_FLOW.
   182     void preflow(FlowEnum fe) {
   183       preflowPhase1(fe);
   184       preflowPhase2();
   185     }
   186     // Heuristics:
   187     //   2 phase
   188     //   gap
   189     //   list 'level_list' on the nodes on level i implemented by hand
   190     //   stack 'active' on the active nodes on level i                                                                                    
   191     //   runs heuristic 'highest label' for H1*n relabels
   192     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
   193     //   Parameters H0 and H1 are initialized to 20 and 1.
   194 
   195     ///Runs the first phase of the preflow algorithm.
   196 
   197     ///The preflow algorithm consists of two phases, this method runs the
   198     ///first phase. After the first phase the maximum flow value and a
   199     ///minimum value cut can already be computed, though a maximum flow
   200     ///is net yet obtained. So after calling this method \ref flowValue
   201     ///and \ref actMinCut gives proper results.
   202     ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
   203     ///give minimum value cuts unless calling \ref preflowPhase2.
   204     ///\pre The starting flow must be
   205     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   206     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   207     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   208     /// - any map if \c fe is NO_FLOW.
   209     void preflowPhase1(FlowEnum fe);
   210 
   211     ///Runs the second phase of the preflow algorithm.
   212 
   213     ///The preflow algorithm consists of two phases, this method runs
   214     ///the second phase. After calling \ref preflowPhase1 and then
   215     ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
   216     ///\ref minMinCut and \ref maxMinCut give proper results.
   217     ///\pre \ref preflowPhase1 must be called before.
   218     void preflowPhase2();
   219 
   220     /// Starting from a flow, this method searches for an augmenting path
   221     /// according to the Edmonds-Karp algorithm
   222     /// and augments the flow on if any.
   223     /// The return value shows if the augmentation was succesful.
   224     bool augmentOnShortestPath();
   225     bool augmentOnShortestPath2();
   226 
   227     /// Starting from a flow, this method searches for an augmenting blocking
   228     /// flow according to Dinits' algorithm and augments the flow on if any.
   229     /// The blocking flow is computed in a physically constructed
   230     /// residual graph of type \c Mutablegraph.
   231     /// The return value show sif the augmentation was succesful.
   232     template<typename MutableGraph> bool augmentOnBlockingFlow();
   233 
   234     /// The same as \c augmentOnBlockingFlow<MutableGraph> but the
   235     /// residual graph is not constructed physically.
   236     /// The return value shows if the augmentation was succesful.
   237     bool augmentOnBlockingFlow2();
   238 
   239     /// Returns the maximum value of a flow.
   240 
   241     /// Returns the maximum value of a flow, by counting the 
   242     /// over-flow of the target node \ref t.
   243     /// It can be called already after running \ref preflowPhase1.
   244     Num flowValue() const {
   245       Num a=0;
   246       FOR_EACH_INC_LOC(InEdgeIt, e, *g, t) a+=(*flow)[e];
   247       FOR_EACH_INC_LOC(OutEdgeIt, e, *g, t) a-=(*flow)[e];
   248       return a;
   249       //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan   
   250     }
   251 
   252     ///Returns a minimum value cut after calling \ref preflowPhase1.
   253 
   254     ///After the first phase of the preflow algorithm the maximum flow
   255     ///value and a minimum value cut can already be computed. This
   256     ///method can be called after running \ref preflowPhase1 for
   257     ///obtaining a minimum value cut.
   258     /// \warning Gives proper result only right after calling \ref
   259     /// preflowPhase1.
   260     /// \todo We have to make some status variable which shows the
   261     /// actual state
   262     /// of the class. This enables us to determine which methods are valid
   263     /// for MinCut computation
   264     template<typename _CutMap>
   265     void actMinCut(_CutMap& M) const {
   266       NodeIt v;
   267       switch (status) {
   268 	case AFTER_PRE_FLOW_PHASE_1:
   269 	for(g->first(v); g->valid(v); g->next(v)) {
   270 	  if (level[v] < n) {
   271 	    M.set(v, false);
   272 	  } else {
   273 	    M.set(v, true);
   274 	  }
   275 	}
   276 	break;
   277 	case AFTER_PRE_FLOW_PHASE_2:
   278 	case AFTER_NOTHING:
   279 	minMinCut(M);
   280 	break;
   281 	case AFTER_AUGMENTING:
   282 	for(g->first(v); g->valid(v); g->next(v)) {
   283 	  if (level[v]) {
   284 	    M.set(v, true);
   285 	  } else {
   286 	    M.set(v, false);
   287 	  }
   288 	}
   289 	break;
   290       }
   291     }
   292 
   293     ///Returns the inclusionwise minimum of the minimum value cuts.
   294 
   295     ///Sets \c M to the characteristic vector of the minimum value cut
   296     ///which is inclusionwise minimum. It is computed by processing
   297     ///a bfs from the source node \c s in the residual graph.
   298     ///\pre M should be a node map of bools initialized to false.
   299     ///\pre \c flow must be a maximum flow.
   300     template<typename _CutMap>
   301     void minMinCut(_CutMap& M) const {
   302       std::queue<Node> queue;
   303 
   304       M.set(s,true);
   305       queue.push(s);
   306 
   307       while (!queue.empty()) {
   308         Node w=queue.front();
   309 	queue.pop();
   310 
   311 	OutEdgeIt e;
   312 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   313 	  Node v=g->head(e);
   314 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
   315 	    queue.push(v);
   316 	    M.set(v, true);
   317 	  }
   318 	}
   319 
   320 	InEdgeIt f;
   321 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   322 	  Node v=g->tail(f);
   323 	  if (!M[v] && (*flow)[f] > 0 ) {
   324 	    queue.push(v);
   325 	    M.set(v, true);
   326 	  }
   327 	}
   328       }
   329     }
   330 
   331     ///Returns the inclusionwise maximum of the minimum value cuts.
   332 
   333     ///Sets \c M to the characteristic vector of the minimum value cut
   334     ///which is inclusionwise maximum. It is computed by processing a
   335     ///backward bfs from the target node \c t in the residual graph.
   336     ///\pre M should be a node map of bools initialized to false.
   337     ///\pre \c flow must be a maximum flow. 
   338     template<typename _CutMap>
   339     void maxMinCut(_CutMap& M) const {
   340 
   341       NodeIt v;
   342       for(g->first(v) ; g->valid(v); g->next(v)) {
   343 	M.set(v, true);
   344       }
   345 
   346       std::queue<Node> queue;
   347 
   348       M.set(t,false);
   349       queue.push(t);
   350 
   351       while (!queue.empty()) {
   352         Node w=queue.front();
   353 	queue.pop();
   354 
   355 	InEdgeIt e;
   356 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   357 	  Node v=g->tail(e);
   358 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
   359 	    queue.push(v);
   360 	    M.set(v, false);
   361 	  }
   362 	}
   363 
   364 	OutEdgeIt f;
   365 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   366 	  Node v=g->head(f);
   367 	  if (M[v] && (*flow)[f] > 0 ) {
   368 	    queue.push(v);
   369 	    M.set(v, false);
   370 	  }
   371 	}
   372       }
   373     }
   374 
   375     ///Returns a minimum value cut.
   376 
   377     ///Sets \c M to the characteristic vector of a minimum value cut.
   378     ///\pre M should be a node map of bools initialized to false.
   379     ///\pre \c flow must be a maximum flow.    
   380     template<typename CutMap>
   381     void minCut(CutMap& M) const { minMinCut(M); }
   382 
   383     ///Resets the source node to \c _s.
   384 
   385     ///Resets the source node to \c _s.
   386     /// 
   387     void resetSource(Node _s) { s=_s; status=AFTER_NOTHING; }
   388 
   389     ///Resets the target node to \c _t.
   390 
   391     ///Resets the target node to \c _t.
   392     ///
   393     void resetTarget(Node _t) { t=_t; status=AFTER_NOTHING; }
   394 
   395     /// Resets the edge map of the capacities to _cap.
   396 
   397     /// Resets the edge map of the capacities to _cap.
   398     /// 
   399     void resetCap(const CapMap& _cap) { capacity=&_cap; status=AFTER_NOTHING; }
   400 
   401     /// Resets the edge map of the flows to _flow.
   402 
   403     /// Resets the edge map of the flows to _flow.
   404     /// 
   405     void resetFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; }
   406 
   407 
   408   private:
   409 
   410     int push(Node w, VecStack& active) {
   411 
   412       int lev=level[w];
   413       Num exc=excess[w];
   414       int newlevel=n;       //bound on the next level of w
   415 
   416       OutEdgeIt e;
   417       for(g->first(e,w); g->valid(e); g->next(e)) {
   418 
   419 	if ( (*flow)[e] >= (*capacity)[e] ) continue;
   420 	Node v=g->head(e);
   421 
   422 	if( lev > level[v] ) { //Push is allowed now
   423 
   424 	  if ( excess[v]<=0 && v!=t && v!=s ) {
   425 	    int lev_v=level[v];
   426 	    active[lev_v].push(v);
   427 	  }
   428 
   429 	  Num cap=(*capacity)[e];
   430 	  Num flo=(*flow)[e];
   431 	  Num remcap=cap-flo;
   432 
   433 	  if ( remcap >= exc ) { //A nonsaturating push.
   434 
   435 	    flow->set(e, flo+exc);
   436 	    excess.set(v, excess[v]+exc);
   437 	    exc=0;
   438 	    break;
   439 
   440 	  } else { //A saturating push.
   441 	    flow->set(e, cap);
   442 	    excess.set(v, excess[v]+remcap);
   443 	    exc-=remcap;
   444 	  }
   445 	} else if ( newlevel > level[v] ) newlevel = level[v];
   446       } //for out edges wv
   447 
   448       if ( exc > 0 ) {
   449 	InEdgeIt e;
   450 	for(g->first(e,w); g->valid(e); g->next(e)) {
   451 
   452 	  if( (*flow)[e] <= 0 ) continue;
   453 	  Node v=g->tail(e);
   454 
   455 	  if( lev > level[v] ) { //Push is allowed now
   456 
   457 	    if ( excess[v]<=0 && v!=t && v!=s ) {
   458 	      int lev_v=level[v];
   459 	      active[lev_v].push(v);
   460 	    }
   461 
   462 	    Num flo=(*flow)[e];
   463 
   464 	    if ( flo >= exc ) { //A nonsaturating push.
   465 
   466 	      flow->set(e, flo-exc);
   467 	      excess.set(v, excess[v]+exc);
   468 	      exc=0;
   469 	      break;
   470 	    } else {  //A saturating push.
   471 
   472 	      excess.set(v, excess[v]+flo);
   473 	      exc-=flo;
   474 	      flow->set(e,0);
   475 	    }
   476 	  } else if ( newlevel > level[v] ) newlevel = level[v];
   477 	} //for in edges vw
   478 
   479       } // if w still has excess after the out edge for cycle
   480 
   481       excess.set(w, exc);
   482 
   483       return newlevel;
   484     }
   485 
   486 
   487     void preflowPreproc(FlowEnum fe, VecStack& active,
   488 			VecNode& level_list, NNMap& left, NNMap& right)
   489     {
   490       std::queue<Node> bfs_queue;
   491 
   492       switch (fe) {
   493       case NO_FLOW:   //flow is already set to const zero in this case
   494       case ZERO_FLOW:
   495 	{
   496 	  //Reverse_bfs from t, to find the starting level.
   497 	  level.set(t,0);
   498 	  bfs_queue.push(t);
   499 
   500 	  while (!bfs_queue.empty()) {
   501 
   502 	    Node v=bfs_queue.front();
   503 	    bfs_queue.pop();
   504 	    int l=level[v]+1;
   505 
   506 	    InEdgeIt e;
   507 	    for(g->first(e,v); g->valid(e); g->next(e)) {
   508 	      Node w=g->tail(e);
   509 	      if ( level[w] == n && w != s ) {
   510 		bfs_queue.push(w);
   511 		Node first=level_list[l];
   512 		if ( g->valid(first) ) left.set(first,w);
   513 		right.set(w,first);
   514 		level_list[l]=w;
   515 		level.set(w, l);
   516 	      }
   517 	    }
   518 	  }
   519 
   520 	  //the starting flow
   521 	  OutEdgeIt e;
   522 	  for(g->first(e,s); g->valid(e); g->next(e))
   523 	    {
   524 	      Num c=(*capacity)[e];
   525 	      if ( c <= 0 ) continue;
   526 	      Node w=g->head(e);
   527 	      if ( level[w] < n ) {
   528 		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   529 		flow->set(e, c);
   530 		excess.set(w, excess[w]+c);
   531 	      }
   532 	    }
   533 	  break;
   534 	}
   535 
   536       case GEN_FLOW:
   537       case PRE_FLOW:
   538 	{
   539 	  //Reverse_bfs from t in the residual graph,
   540 	  //to find the starting level.
   541 	  level.set(t,0);
   542 	  bfs_queue.push(t);
   543 
   544 	  while (!bfs_queue.empty()) {
   545 
   546 	    Node v=bfs_queue.front();
   547 	    bfs_queue.pop();
   548 	    int l=level[v]+1;
   549 
   550 	    InEdgeIt e;
   551 	    for(g->first(e,v); g->valid(e); g->next(e)) {
   552 	      if ( (*capacity)[e] <= (*flow)[e] ) continue;
   553 	      Node w=g->tail(e);
   554 	      if ( level[w] == n && w != s ) {
   555 		bfs_queue.push(w);
   556 		Node first=level_list[l];
   557 		if ( g->valid(first) ) left.set(first,w);
   558 		right.set(w,first);
   559 		level_list[l]=w;
   560 		level.set(w, l);
   561 	      }
   562 	    }
   563 
   564 	    OutEdgeIt f;
   565 	    for(g->first(f,v); g->valid(f); g->next(f)) {
   566 	      if ( 0 >= (*flow)[f] ) continue;
   567 	      Node w=g->head(f);
   568 	      if ( level[w] == n && w != s ) {
   569 		bfs_queue.push(w);
   570 		Node first=level_list[l];
   571 		if ( g->valid(first) ) left.set(first,w);
   572 		right.set(w,first);
   573 		level_list[l]=w;
   574 		level.set(w, l);
   575 	      }
   576 	    }
   577 	  }
   578 
   579 
   580 	  //the starting flow
   581 	  OutEdgeIt e;
   582 	  for(g->first(e,s); g->valid(e); g->next(e))
   583 	    {
   584 	      Num rem=(*capacity)[e]-(*flow)[e];
   585 	      if ( rem <= 0 ) continue;
   586 	      Node w=g->head(e);
   587 	      if ( level[w] < n ) {
   588 		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   589 		flow->set(e, (*capacity)[e]);
   590 		excess.set(w, excess[w]+rem);
   591 	      }
   592 	    }
   593 
   594 	  InEdgeIt f;
   595 	  for(g->first(f,s); g->valid(f); g->next(f))
   596 	    {
   597 	      if ( (*flow)[f] <= 0 ) continue;
   598 	      Node w=g->tail(f);
   599 	      if ( level[w] < n ) {
   600 		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   601 		excess.set(w, excess[w]+(*flow)[f]);
   602 		flow->set(f, 0);
   603 	      }
   604 	    }
   605 	  break;
   606 	} //case PRE_FLOW
   607       }
   608     } //preflowPreproc
   609 
   610 
   611 
   612     void relabel(Node w, int newlevel, VecStack& active,
   613 		 VecNode& level_list, NNMap& left,
   614 		 NNMap& right, int& b, int& k, bool what_heur )
   615     {
   616 
   617       Num lev=level[w];
   618 
   619       Node right_n=right[w];
   620       Node left_n=left[w];
   621 
   622       //unlacing starts
   623       if ( g->valid(right_n) ) {
   624 	if ( g->valid(left_n) ) {
   625 	  right.set(left_n, right_n);
   626 	  left.set(right_n, left_n);
   627 	} else {
   628 	  level_list[lev]=right_n;
   629 	  left.set(right_n, INVALID);
   630 	}
   631       } else {
   632 	if ( g->valid(left_n) ) {
   633 	  right.set(left_n, INVALID);
   634 	} else {
   635 	  level_list[lev]=INVALID;
   636 	}
   637       }
   638       //unlacing ends
   639 
   640       if ( !g->valid(level_list[lev]) ) {
   641 
   642 	//gapping starts
   643 	for (int i=lev; i!=k ; ) {
   644 	  Node v=level_list[++i];
   645 	  while ( g->valid(v) ) {
   646 	    level.set(v,n);
   647 	    v=right[v];
   648 	  }
   649 	  level_list[i]=INVALID;
   650 	  if ( !what_heur ) {
   651 	    while ( !active[i].empty() ) {
   652 	      active[i].pop();    //FIXME: ezt szebben kene
   653 	    }
   654 	  }
   655 	}
   656 
   657 	level.set(w,n);
   658 	b=lev-1;
   659 	k=b;
   660 	//gapping ends
   661 
   662       } else {
   663 
   664 	if ( newlevel == n ) level.set(w,n);
   665 	else {
   666 	  level.set(w,++newlevel);
   667 	  active[newlevel].push(w);
   668 	  if ( what_heur ) b=newlevel;
   669 	  if ( k < newlevel ) ++k;      //now k=newlevel
   670 	  Node first=level_list[newlevel];
   671 	  if ( g->valid(first) ) left.set(first,w);
   672 	  right.set(w,first);
   673 	  left.set(w,INVALID);
   674 	  level_list[newlevel]=w;
   675 	}
   676       }
   677 
   678     } //relabel
   679 
   680 
   681     template<typename MapGraphWrapper>
   682     class DistanceMap {
   683     protected:
   684       const MapGraphWrapper* g;
   685       typename MapGraphWrapper::template NodeMap<int> dist;
   686     public:
   687       DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { }
   688       void set(const typename MapGraphWrapper::Node& n, int a) {
   689 	dist.set(n, a);
   690       }
   691       int operator[](const typename MapGraphWrapper::Node& n) const { 
   692 	return dist[n]; 
   693       }
   694       //       int get(const typename MapGraphWrapper::Node& n) const {
   695       // 	return dist[n]; }
   696       //       bool get(const typename MapGraphWrapper::Edge& e) const {
   697       // 	return (dist.get(g->tail(e))<dist.get(g->head(e))); }
   698       bool operator[](const typename MapGraphWrapper::Edge& e) const {
   699 	return (dist[g->tail(e)]<dist[g->head(e)]);
   700       }
   701     };
   702 
   703   };
   704 
   705 
   706   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   707   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase1(FlowEnum fe)
   708   {
   709 
   710     int heur0=(int)(H0*n);  //time while running 'bound decrease'
   711     int heur1=(int)(H1*n);  //time while running 'highest label'
   712     int heur=heur1;         //starting time interval (#of relabels)
   713     int numrelabel=0;
   714 
   715     bool what_heur=1;
   716     //It is 0 in case 'bound decrease' and 1 in case 'highest label'
   717 
   718     bool end=false;
   719     //Needed for 'bound decrease', true means no active nodes are above bound
   720     //b.
   721 
   722     int k=n-2;  //bound on the highest level under n containing a node
   723     int b=k;    //bound on the highest level under n of an active node
   724 
   725     VecStack active(n);
   726 
   727     NNMap left(*g, INVALID);
   728     NNMap right(*g, INVALID);
   729     VecNode level_list(n,INVALID);
   730     //List of the nodes in level i<n, set to n.
   731 
   732     NodeIt v;
   733     for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
   734     //setting each node to level n
   735 
   736     if ( fe == NO_FLOW ) {
   737       EdgeIt e;
   738       for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0);
   739     }
   740 
   741     switch (fe) { //computing the excess
   742     case PRE_FLOW:
   743       {
   744 	NodeIt v;
   745 	for(g->first(v); g->valid(v); g->next(v)) {
   746 	  Num exc=0;
   747 
   748 	  InEdgeIt e;
   749 	  for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];
   750 	  OutEdgeIt f;
   751 	  for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];
   752 
   753 	  excess.set(v,exc);
   754 
   755 	  //putting the active nodes into the stack
   756 	  int lev=level[v];
   757 	  if ( exc > 0 && lev < n && v != t ) active[lev].push(v);
   758 	}
   759 	break;
   760       }
   761     case GEN_FLOW:
   762       {
   763 	NodeIt v;
   764 	for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
   765 
   766 	Num exc=0;
   767 	InEdgeIt e;
   768 	for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
   769 	OutEdgeIt f;
   770 	for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
   771 	excess.set(t,exc);
   772 	break;
   773       }
   774     case ZERO_FLOW:
   775     case NO_FLOW:
   776       {
   777 	NodeIt v;
   778         for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
   779 	break;
   780       }
   781     }
   782 
   783     preflowPreproc(fe, active, level_list, left, right);
   784     //End of preprocessing
   785 
   786 
   787     //Push/relabel on the highest level active nodes.
   788     while ( true ) {
   789       if ( b == 0 ) {
   790 	if ( !what_heur && !end && k > 0 ) {
   791 	  b=k;
   792 	  end=true;
   793 	} else break;
   794       }
   795 
   796       if ( active[b].empty() ) --b;
   797       else {
   798 	end=false;
   799 	Node w=active[b].top();
   800 	active[b].pop();
   801 	int newlevel=push(w,active);
   802 	if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list,
   803 				     left, right, b, k, what_heur);
   804 
   805 	++numrelabel;
   806 	if ( numrelabel >= heur ) {
   807 	  numrelabel=0;
   808 	  if ( what_heur ) {
   809 	    what_heur=0;
   810 	    heur=heur0;
   811 	    end=false;
   812 	  } else {
   813 	    what_heur=1;
   814 	    heur=heur1;
   815 	    b=k;
   816 	  }
   817 	}
   818       }
   819     }
   820 
   821     status=AFTER_PRE_FLOW_PHASE_1;
   822   }
   823 
   824 
   825 
   826   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   827   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase2()
   828   {
   829 
   830     int k=n-2;  //bound on the highest level under n containing a node
   831     int b=k;    //bound on the highest level under n of an active node
   832 
   833     VecStack active(n);
   834     level.set(s,0);
   835     std::queue<Node> bfs_queue;
   836     bfs_queue.push(s);
   837 
   838     while (!bfs_queue.empty()) {
   839 
   840       Node v=bfs_queue.front();
   841       bfs_queue.pop();
   842       int l=level[v]+1;
   843 
   844       InEdgeIt e;
   845       for(g->first(e,v); g->valid(e); g->next(e)) {
   846 	if ( (*capacity)[e] <= (*flow)[e] ) continue;
   847 	Node u=g->tail(e);
   848 	if ( level[u] >= n ) {
   849 	  bfs_queue.push(u);
   850 	  level.set(u, l);
   851 	  if ( excess[u] > 0 ) active[l].push(u);
   852 	}
   853       }
   854 
   855       OutEdgeIt f;
   856       for(g->first(f,v); g->valid(f); g->next(f)) {
   857 	if ( 0 >= (*flow)[f] ) continue;
   858 	Node u=g->head(f);
   859 	if ( level[u] >= n ) {
   860 	  bfs_queue.push(u);
   861 	  level.set(u, l);
   862 	  if ( excess[u] > 0 ) active[l].push(u);
   863 	}
   864       }
   865     }
   866     b=n-2;
   867 
   868     while ( true ) {
   869 
   870       if ( b == 0 ) break;
   871 
   872       if ( active[b].empty() ) --b;
   873       else {
   874 	Node w=active[b].top();
   875 	active[b].pop();
   876 	int newlevel=push(w,active);
   877 
   878 	//relabel
   879 	if ( excess[w] > 0 ) {
   880 	  level.set(w,++newlevel);
   881 	  active[newlevel].push(w);
   882 	  b=newlevel;
   883 	}
   884       }  // if stack[b] is nonempty
   885     } // while(true)
   886 
   887     status=AFTER_PRE_FLOW_PHASE_2;
   888   }
   889 
   890 
   891 
   892   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   893   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath()
   894   {
   895     ResGW res_graph(*g, *capacity, *flow);
   896     bool _augment=false;
   897 
   898     //ReachedMap level(res_graph);
   899     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
   900     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
   901     bfs.pushAndSetReached(s);
   902 
   903     typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
   904     pred.set(s, INVALID);
   905 
   906     typename ResGW::template NodeMap<Num> free(res_graph);
   907 
   908     //searching for augmenting path
   909     while ( !bfs.finished() ) {
   910       ResGWOutEdgeIt e=bfs;
   911       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   912 	Node v=res_graph.tail(e);
   913 	Node w=res_graph.head(e);
   914 	pred.set(w, e);
   915 	if (res_graph.valid(pred[v])) {
   916 	  free.set(w, std::min(free[v], res_graph.resCap(e)));
   917 	} else {
   918 	  free.set(w, res_graph.resCap(e));
   919 	}
   920 	if (res_graph.head(e)==t) { _augment=true; break; }
   921       }
   922 
   923       ++bfs;
   924     } //end of searching augmenting path
   925 
   926     if (_augment) {
   927       Node n=t;
   928       Num augment_value=free[t];
   929       while (res_graph.valid(pred[n])) {
   930 	ResGWEdge e=pred[n];
   931 	res_graph.augment(e, augment_value);
   932 	n=res_graph.tail(e);
   933       }
   934     }
   935 
   936     status=AFTER_AUGMENTING;
   937     return _augment;
   938   }
   939 
   940 
   941   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   942   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath2()
   943   {
   944     ResGW res_graph(*g, *capacity, *flow);
   945     bool _augment=false;
   946 
   947     if (status!=AFTER_AUGMENTING) {
   948       FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 3*n); 
   949       number_of_augmentations=3*n+1;
   950     } else {
   951       ++number_of_augmentations;
   952     }
   953     TrickyReachedMap<ReachedMap> 
   954       tricky_reached_map(level, number_of_augmentations);
   955     //ReachedMap level(res_graph);
   956 //    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
   957     BfsIterator<ResGW, TrickyReachedMap<ReachedMap> > 
   958       bfs(res_graph, tricky_reached_map);
   959     bfs.pushAndSetReached(s);
   960 
   961     typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
   962     pred.set(s, INVALID);
   963 
   964     typename ResGW::template NodeMap<Num> free(res_graph);
   965 
   966     //searching for augmenting path
   967     while ( !bfs.finished() ) {
   968       ResGWOutEdgeIt e=bfs;
   969       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   970 	Node v=res_graph.tail(e);
   971 	Node w=res_graph.head(e);
   972 	pred.set(w, e);
   973 	if (res_graph.valid(pred[v])) {
   974 	  free.set(w, std::min(free[v], res_graph.resCap(e)));
   975 	} else {
   976 	  free.set(w, res_graph.resCap(e));
   977 	}
   978 	if (res_graph.head(e)==t) { _augment=true; break; }
   979       }
   980 
   981       ++bfs;
   982     } //end of searching augmenting path
   983 
   984     if (_augment) {
   985       Node n=t;
   986       Num augment_value=free[t];
   987       while (res_graph.valid(pred[n])) {
   988 	ResGWEdge e=pred[n];
   989 	res_graph.augment(e, augment_value);
   990 	n=res_graph.tail(e);
   991       }
   992     }
   993 
   994     status=AFTER_AUGMENTING;
   995     return _augment;
   996   }
   997 
   998 
   999   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
  1000   template<typename MutableGraph>
  1001   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow()
  1002   {
  1003     typedef MutableGraph MG;
  1004     bool _augment=false;
  1005 
  1006     ResGW res_graph(*g, *capacity, *flow);
  1007 
  1008     //bfs for distances on the residual graph
  1009     //ReachedMap level(res_graph);
  1010     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
  1011     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
  1012     bfs.pushAndSetReached(s);
  1013     typename ResGW::template NodeMap<int>
  1014       dist(res_graph); //filled up with 0's
  1015 
  1016     //F will contain the physical copy of the residual graph
  1017     //with the set of edges which are on shortest paths
  1018     MG F;
  1019     typename ResGW::template NodeMap<typename MG::Node>
  1020       res_graph_to_F(res_graph);
  1021     {
  1022       typename ResGW::NodeIt n;
  1023       for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
  1024 	res_graph_to_F.set(n, F.addNode());
  1025       }
  1026     }
  1027 
  1028     typename MG::Node sF=res_graph_to_F[s];
  1029     typename MG::Node tF=res_graph_to_F[t];
  1030     typename MG::template EdgeMap<ResGWEdge> original_edge(F);
  1031     typename MG::template EdgeMap<Num> residual_capacity(F);
  1032 
  1033     while ( !bfs.finished() ) {
  1034       ResGWOutEdgeIt e=bfs;
  1035       if (res_graph.valid(e)) {
  1036 	if (bfs.isBNodeNewlyReached()) {
  1037 	  dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
  1038 	  typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
  1039 					res_graph_to_F[res_graph.head(e)]);
  1040 	  original_edge.update();
  1041 	  original_edge.set(f, e);
  1042 	  residual_capacity.update();
  1043 	  residual_capacity.set(f, res_graph.resCap(e));
  1044 	} else {
  1045 	  if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) {
  1046 	    typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
  1047 					  res_graph_to_F[res_graph.head(e)]);
  1048 	    original_edge.update();
  1049 	    original_edge.set(f, e);
  1050 	    residual_capacity.update();
  1051 	    residual_capacity.set(f, res_graph.resCap(e));
  1052 	  }
  1053 	}
  1054       }
  1055       ++bfs;
  1056     } //computing distances from s in the residual graph
  1057 
  1058     bool __augment=true;
  1059 
  1060     while (__augment) {
  1061       __augment=false;
  1062       //computing blocking flow with dfs
  1063       DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F);
  1064       typename MG::template NodeMap<typename MG::Edge> pred(F);
  1065       pred.set(sF, INVALID);
  1066       //invalid iterators for sources
  1067 
  1068       typename MG::template NodeMap<Num> free(F);
  1069 
  1070       dfs.pushAndSetReached(sF);
  1071       while (!dfs.finished()) {
  1072 	++dfs;
  1073 	if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
  1074 	  if (dfs.isBNodeNewlyReached()) {
  1075 	    typename MG::Node v=F.aNode(dfs);
  1076 	    typename MG::Node w=F.bNode(dfs);
  1077 	    pred.set(w, dfs);
  1078 	    if (F.valid(pred[v])) {
  1079 	      free.set(w, std::min(free[v], residual_capacity[dfs]));
  1080 	    } else {
  1081 	      free.set(w, residual_capacity[dfs]);
  1082 	    }
  1083 	    if (w==tF) {
  1084 	      __augment=true;
  1085 	      _augment=true;
  1086 	      break;
  1087 	    }
  1088 
  1089 	  } else {
  1090 	    F.erase(/*typename MG::OutEdgeIt*/(dfs));
  1091 	  }
  1092 	}
  1093       }
  1094 
  1095       if (__augment) {
  1096 	typename MG::Node n=tF;
  1097 	Num augment_value=free[tF];
  1098 	while (F.valid(pred[n])) {
  1099 	  typename MG::Edge e=pred[n];
  1100 	  res_graph.augment(original_edge[e], augment_value);
  1101 	  n=F.tail(e);
  1102 	  if (residual_capacity[e]==augment_value)
  1103 	    F.erase(e);
  1104 	  else
  1105 	    residual_capacity.set(e, residual_capacity[e]-augment_value);
  1106 	}
  1107       }
  1108 
  1109     }
  1110 
  1111     status=AFTER_AUGMENTING;
  1112     return _augment;
  1113   }
  1114 
  1115 
  1116 
  1117 
  1118   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
  1119   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2()
  1120   {
  1121     bool _augment=false;
  1122 
  1123     ResGW res_graph(*g, *capacity, *flow);
  1124 
  1125     //ReachedMap level(res_graph);
  1126     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
  1127     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
  1128 
  1129     bfs.pushAndSetReached(s);
  1130     DistanceMap<ResGW> dist(res_graph);
  1131     while ( !bfs.finished() ) {
  1132       ResGWOutEdgeIt e=bfs;
  1133       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
  1134 	dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
  1135       }
  1136       ++bfs;
  1137     } //computing distances from s in the residual graph
  1138 
  1139       //Subgraph containing the edges on some shortest paths
  1140     ConstMap<typename ResGW::Node, bool> true_map(true);
  1141     typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>,
  1142       DistanceMap<ResGW> > FilterResGW;
  1143     FilterResGW filter_res_graph(res_graph, true_map, dist);
  1144 
  1145     //Subgraph, which is able to delete edges which are already
  1146     //met by the dfs
  1147     typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt>
  1148       first_out_edges(filter_res_graph);
  1149     typename FilterResGW::NodeIt v;
  1150     for(filter_res_graph.first(v); filter_res_graph.valid(v);
  1151 	filter_res_graph.next(v))
  1152       {
  1153  	typename FilterResGW::OutEdgeIt e;
  1154  	filter_res_graph.first(e, v);
  1155  	first_out_edges.set(v, e);
  1156       }
  1157     typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
  1158       template NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW;
  1159     ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
  1160 
  1161     bool __augment=true;
  1162 
  1163     while (__augment) {
  1164 
  1165       __augment=false;
  1166       //computing blocking flow with dfs
  1167       DfsIterator< ErasingResGW,
  1168 	typename ErasingResGW::template NodeMap<bool> >
  1169 	dfs(erasing_res_graph);
  1170       typename ErasingResGW::
  1171 	template NodeMap<typename ErasingResGW::OutEdgeIt>
  1172 	pred(erasing_res_graph);
  1173       pred.set(s, INVALID);
  1174       //invalid iterators for sources
  1175 
  1176       typename ErasingResGW::template NodeMap<Num>
  1177 	free1(erasing_res_graph);
  1178 
  1179       dfs.pushAndSetReached
  1180 	///\bug hugo 0.2
  1181 	(typename ErasingResGW::Node
  1182 	 (typename FilterResGW::Node
  1183 	  (typename ResGW::Node(s)
  1184 	   )
  1185 	  )
  1186 	 );
  1187       while (!dfs.finished()) {
  1188 	++dfs;
  1189 	if (erasing_res_graph.valid(typename ErasingResGW::OutEdgeIt(dfs)))
  1190  	  {
  1191   	    if (dfs.isBNodeNewlyReached()) {
  1192 
  1193  	      typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs);
  1194  	      typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs);
  1195 
  1196  	      pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs));
  1197  	      if (erasing_res_graph.valid(pred[v])) {
  1198  		free1.set
  1199 		  (w, std::min(free1[v], res_graph.resCap
  1200 			       (typename ErasingResGW::OutEdgeIt(dfs))));
  1201  	      } else {
  1202  		free1.set
  1203 		  (w, res_graph.resCap
  1204 		   (typename ErasingResGW::OutEdgeIt(dfs)));
  1205  	      }
  1206 
  1207  	      if (w==t) {
  1208  		__augment=true;
  1209  		_augment=true;
  1210  		break;
  1211  	      }
  1212  	    } else {
  1213  	      erasing_res_graph.erase(dfs);
  1214 	    }
  1215 	  }
  1216       }
  1217 
  1218       if (__augment) {
  1219 	typename ErasingResGW::Node
  1220 	  n=typename FilterResGW::Node(typename ResGW::Node(t));
  1221 	// 	  typename ResGW::NodeMap<Num> a(res_graph);
  1222 	// 	  typename ResGW::Node b;
  1223 	// 	  Num j=a[b];
  1224 	// 	  typename FilterResGW::NodeMap<Num> a1(filter_res_graph);
  1225 	// 	  typename FilterResGW::Node b1;
  1226 	// 	  Num j1=a1[b1];
  1227 	// 	  typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph);
  1228 	// 	  typename ErasingResGW::Node b2;
  1229 	// 	  Num j2=a2[b2];
  1230 	Num augment_value=free1[n];
  1231 	while (erasing_res_graph.valid(pred[n])) {
  1232 	  typename ErasingResGW::OutEdgeIt e=pred[n];
  1233 	  res_graph.augment(e, augment_value);
  1234 	  n=erasing_res_graph.tail(e);
  1235 	  if (res_graph.resCap(e)==0)
  1236 	    erasing_res_graph.erase(e);
  1237 	}
  1238       }
  1239 
  1240     } //while (__augment)
  1241 
  1242     status=AFTER_AUGMENTING;
  1243     return _augment;
  1244   }
  1245 
  1246 
  1247 } //namespace hugo
  1248 
  1249 #endif //HUGO_MAX_FLOW_H
  1250 
  1251 
  1252 
  1253