src/work/dijkstra.hh
author marci
Fri, 30 Jan 2004 14:49:04 +0000
changeset 43 8ff5dc7d18eb
permissions -rw-r--r--
marci_max_flow.hh in the new concept
     1 /*
     2  *dijkstra
     3  *by jacint
     4  *Performs Dijkstra's algorithm from node s. 
     5  *
     6  *Constructor: 
     7  *
     8  *dijkstra(graph_type& G, node_iterator s, edge_property_vector& distance)
     9  *
    10  *
    11  *
    12  *Member functions:
    13  *
    14  *void run()
    15  *
    16  *  The following function should be used after run() was already run.
    17  *
    18  *
    19  *T dist(node_iterator v) : returns the distance from s to v. 
    20  *   It is 0 if v is not reachable from s.
    21  *
    22  *
    23  *edge_iterator pred(node_iterator v)
    24  *   Returns the last edge of a shortest s-v path. 
    25  *   Returns an invalid iterator if v=s or v is not
    26  *   reachable from s.
    27  *
    28  *
    29  *bool reach(node_iterator v) : true if v is reachable from s
    30  *
    31  *
    32  *
    33  *
    34  *
    35  *Problems: 
    36  * 
    37  *Heap implementation is needed, because the priority queue of stl
    38  *does not have a mathod for key-decrease, so we had to use here a 
    39  *g\'any solution.
    40  * 
    41  *The implementation of infinity would be desirable, see after line 100. 
    42  */
    43 
    44 #ifndef DIJKSTRA_HH
    45 #define DIJKSTRA_HH
    46 
    47 #include <queue>
    48 #include <algorithm>
    49 
    50 #include <marci_graph_traits.hh>
    51 #include <marci_property_vector.hh>
    52 
    53 
    54 namespace std {
    55   namespace marci {
    56 
    57 
    58 
    59 
    60 
    61     template <typename graph_type, typename T>
    62     class dijkstra{
    63       typedef typename graph_traits<graph_type>::node_iterator node_iterator;
    64       typedef typename graph_traits<graph_type>::edge_iterator edge_iterator;
    65       typedef typename graph_traits<graph_type>::each_node_iterator each_node_iterator;
    66       typedef typename graph_traits<graph_type>::in_edge_iterator in_edge_iterator;
    67       typedef typename graph_traits<graph_type>::out_edge_iterator out_edge_iterator;
    68       
    69       
    70       graph_type& G;
    71       node_iterator s;
    72       node_property_vector<graph_type, edge_iterator> predecessor;
    73       node_property_vector<graph_type, T> distance;
    74       edge_property_vector<graph_type, T> length;
    75       node_property_vector<graph_type, bool> reached;
    76           
    77   public :
    78 
    79     /*
    80       The distance of all the nodes is 0.
    81     */
    82     dijkstra(graph_type& _G, node_iterator _s, edge_property_vector<graph_type, T>& _length) : 
    83       G(_G), s(_s), predecessor(G, 0), distance(G, 0), length(_length), reached(G, false) { }
    84     
    85 
    86       
    87       /*By Misi.*/
    88       struct node_dist_comp
    89       {
    90 	node_property_vector<graph_type, T> &d;
    91 	node_dist_comp(node_property_vector<graph_type, T> &_d) : d(_d) {} 
    92 	
    93 	bool operator()(const node_iterator& u, const node_iterator& v) const 
    94 	{ return d.get(u) < d.get(v); }
    95       };
    96 
    97 
    98       
    99       void run() {
   100 	
   101 	node_property_vector<graph_type, bool> scanned(G, false);
   102 	std::priority_queue<node_iterator, vector<node_iterator>, node_dist_comp> 
   103 	  heap(( node_dist_comp(distance) ));
   104       
   105 	heap.push(s);
   106 	reached.put(s, true);
   107 
   108 	while (!heap.empty()) {
   109 
   110 	  node_iterator v=heap.top();	
   111 	  heap.pop();
   112 
   113 
   114 	  if (!scanned.get(v)) {
   115 	
   116 	    for(out_edge_iterator e=G.first_out_edge(v); e.valid(); ++e) {
   117 	      node_iterator w=G.head(e);
   118 
   119 	      if (!scanned.get(w)) {
   120 		if (!reached.get(w)) {
   121 		  reached.put(w,true);
   122 		  distance.put(w, distance.get(v)-length.get(e));
   123 		  predecessor.put(w,e);
   124 		} else if (distance.get(v)-length.get(e)>distance.get(w)) {
   125 		  distance.put(w, distance.get(v)-length.get(e));
   126 		  predecessor.put(w,e);
   127 		}
   128 		
   129 		heap.push(w);
   130 	      
   131 	      } 
   132 
   133 	    } 
   134 	    scanned.put(v,true);
   135 	    
   136 	  } // if (!scanned.get(v))
   137 	  
   138 	  
   139 	  
   140 	} // while (!heap.empty())
   141 
   142 	
   143       } //void run()
   144       
   145       
   146       
   147 
   148 
   149       /*
   150        *Returns the distance of the node v.
   151        *It is 0 for the root and for the nodes not
   152        *reachable form the root.
   153        */      
   154       T dist(node_iterator v) {
   155 	return -distance.get(v);
   156       }
   157 
   158 
   159 
   160       /*
   161        *  Returns the last edge of a shortest s-v path. 
   162        *  Returns an invalid iterator if v=root or v is not
   163        *  reachable from the root.
   164        */      
   165       edge_iterator pred(node_iterator v) {
   166 	if (v!=s) { return predecessor.get(v);}
   167 	else {return edge_iterator();}
   168       }
   169      
   170 
   171       
   172       bool reach(node_iterator v) {
   173 	return reached.get(v);
   174       }
   175 
   176 
   177 
   178 
   179 
   180 
   181 
   182 
   183 
   184     };// class dijkstra
   185 
   186 
   187 
   188   } // namespace marci
   189 }
   190 #endif //DIJKSTRA_HH
   191 
   192