lemon/maps.h
author ladanyi
Wed, 17 Aug 2005 12:35:43 +0000
changeset 1634 910b1bcb7d05
parent 1547 dd57a540ff5f
child 1660 93792a112fd5
permissions -rw-r--r--
Toolbar has custom icons now. Works only when installed.
     1 /* -*- C++ -*-
     2  * lemon/maps.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_MAPS_H
    18 #define LEMON_MAPS_H
    19 
    20 #include <lemon/graph_utils.h>
    21 #include <lemon/utility.h>
    22 
    23 
    24 ///\file
    25 ///\ingroup maps
    26 ///\brief Miscellaneous property maps
    27 ///
    28 ///\todo This file has the same name as the concept file in concept/,
    29 /// and this is not easily detectable in docs...
    30 
    31 #include <map>
    32 
    33 namespace lemon {
    34 
    35   /// \addtogroup maps
    36   /// @{
    37 
    38   /// Base class of maps.
    39 
    40   /// Base class of maps.
    41   /// It provides the necessary <tt>typedef</tt>s required by the map concept.
    42   template<typename K, typename T>
    43   class MapBase
    44   {
    45   public:
    46     ///\e
    47     typedef K Key;
    48     ///\e
    49     typedef T Value;
    50   };
    51 
    52   /// Null map. (a.k.a. DoNothingMap)
    53 
    54   /// If you have to provide a map only for its type definitions,
    55   /// or if you have to provide a writable map, but
    56   /// data written to it will sent to <tt>/dev/null</tt>...
    57   template<typename K, typename T>
    58   class NullMap : public MapBase<K,T>
    59   {
    60   public:
    61     
    62     typedef True NeedCopy;
    63 
    64     /// Gives back a default constructed element.
    65     T operator[](const K&) const { return T(); }
    66     /// Absorbs the value.
    67     void set(const K&, const T&) {}
    68   };
    69 
    70   template <typename K, typename V> 
    71   NullMap<K, V> nullMap() {
    72     return NullMap<K, V>();
    73   }
    74 
    75 
    76   /// Constant map.
    77 
    78   /// This is a readable map which assigns a specified value to each key.
    79   /// In other aspects it is equivalent to the \ref NullMap.
    80   /// \todo set could be used to set the value.
    81   template<typename K, typename T>
    82   class ConstMap : public MapBase<K,T>
    83   {
    84     T v;
    85   public:
    86 
    87     typedef True NeedCopy;
    88 
    89     /// Default constructor
    90 
    91     /// The value of the map will be uninitialized. 
    92     /// (More exactly it will be default constructed.)
    93     ConstMap() {}
    94     ///\e
    95 
    96     /// \param _v The initial value of the map.
    97     ///
    98     ConstMap(const T &_v) : v(_v) {}
    99 
   100     T operator[](const K&) const { return v; }
   101     void set(const K&, const T&) {}
   102 
   103     template<typename T1>
   104     struct rebind {
   105       typedef ConstMap<K,T1> other;
   106     };
   107 
   108     template<typename T1>
   109     ConstMap(const ConstMap<K,T1> &, const T &_v) : v(_v) {}
   110   };
   111 
   112   ///Returns a \ref ConstMap class
   113 
   114   ///This function just returns a \ref ConstMap class.
   115   ///\relates ConstMap
   116   template<class V,class K> 
   117   inline ConstMap<V,K> constMap(const K &k) 
   118   {
   119     return ConstMap<V,K>(k);
   120   }
   121 
   122 
   123   ///\todo to document later
   124   template<typename T, T v>
   125   struct Const { };
   126   ///\todo to document later
   127   template<typename K, typename V, V v>
   128   class ConstMap<K, Const<V, v> > : public MapBase<K, V>
   129   {
   130   public:
   131     ConstMap() { }
   132     V operator[](const K&) const { return v; }
   133     void set(const K&, const V&) { }
   134   };
   135 
   136   /// \c std::map wrapper
   137 
   138   /// This is essentially a wrapper for \c std::map. With addition that
   139   /// you can specify a default value different from \c Value() .
   140   ///
   141   /// \todo Provide allocator parameter...
   142   template <typename K, typename T, typename Compare = std::less<K> >
   143   class StdMap : public std::map<K,T,Compare> {
   144     typedef std::map<K,T,Compare> parent;
   145     T v;
   146     typedef typename parent::value_type PairType;
   147 
   148   public:
   149     ///\e
   150     typedef K Key;
   151     ///\e
   152     typedef T Value;
   153     ///\e
   154     typedef T& Reference;
   155     ///\e
   156     typedef const T& ConstReference;
   157 
   158 
   159     StdMap() : v() {}
   160     /// Constructor with specified default value
   161     StdMap(const T& _v) : v(_v) {}
   162 
   163     /// \brief Constructs the map from an appropriate std::map.
   164     ///
   165     /// \warning Inefficient: copies the content of \c m !
   166     StdMap(const parent &m) : parent(m) {}
   167     /// \brief Constructs the map from an appropriate std::map, and explicitly
   168     /// specifies a default value.
   169     ///
   170     /// \warning Inefficient: copies the content of \c m !
   171     StdMap(const parent &m, const T& _v) : parent(m), v(_v) {}
   172     
   173     template<typename T1, typename Comp1>
   174     StdMap(const StdMap<Key,T1,Comp1> &m, const T &_v) { 
   175       //FIXME; 
   176     }
   177 
   178     Reference operator[](const Key &k) {
   179       return insert(PairType(k,v)).first -> second;
   180     }
   181     ConstReference operator[](const Key &k) const {
   182       typename parent::iterator i = lower_bound(k);
   183       if (i == parent::end() || parent::key_comp()(k, (*i).first))
   184 	return v;
   185       return (*i).second;
   186     }
   187     void set(const Key &k, const T &t) {
   188       parent::operator[](k) = t;
   189     }
   190 
   191     /// Changes the default value of the map.
   192     /// \return Returns the previous default value.
   193     ///
   194     /// \warning The value of some keys (which has already been queried, but
   195     /// the value has been unchanged from the default) may change!
   196     T setDefault(const T &_v) { T old=v; v=_v; return old; }
   197 
   198     template<typename T1>
   199     struct rebind {
   200       typedef StdMap<Key,T1,Compare> other;
   201     };
   202   };
   203 
   204   /// @}
   205 
   206   /// \addtogroup map_adaptors
   207   /// @{
   208 
   209   /// \brief Identity mapping.
   210   ///
   211   /// This mapping gives back the given key as value without any
   212   /// modification. 
   213   template <typename T>
   214   class IdentityMap {
   215   public:
   216     typedef T Key;
   217     typedef T Value;
   218 
   219     const Value& operator[](const Key& t) const {
   220       return t;
   221     }
   222   };
   223 
   224   ///Convert the \c Value of a map to another type.
   225 
   226   ///This \ref concept::ReadMap "read only map"
   227   ///converts the \c Value of a maps to type \c T.
   228   ///Its \c Key is inherited from \c M.
   229   template<class M, class T> 
   230   class ConvertMap {
   231     typename SmartConstReference<M>::Type m;
   232   public:
   233 
   234     typedef True NeedCopy;
   235 
   236     ///\e
   237     typedef typename M::Key Key;
   238     ///\e
   239     typedef T Value;
   240 
   241     ///Constructor
   242 
   243     ///Constructor
   244     ///\param _m is the underlying map
   245     ConvertMap(const M &_m) : m(_m) {};
   246 
   247     /// \brief The subscript operator.
   248     ///
   249     /// The subscript operator.
   250     /// \param k The key
   251     /// \return The target of the edge 
   252     Value operator[](Key k) const {return m[k];}
   253   };
   254   
   255   ///Returns an \ref ConvertMap class
   256 
   257   ///This function just returns an \ref ConvertMap class.
   258   ///\relates ConvertMap
   259   ///\todo The order of the template parameters are changed.
   260   template<class T, class M>
   261   inline ConvertMap<M,T> convertMap(const M &m) 
   262   {
   263     return ConvertMap<M,T>(m);
   264   }
   265 
   266   ///Sum of two maps
   267 
   268   ///This \ref concept::ReadMap "read only map" returns the sum of the two
   269   ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   270   ///The \c Key and \c Value of M2 must be convertible to those of \c M1.
   271 
   272   template<class M1,class M2> 
   273   class AddMap
   274   {
   275     typename SmartConstReference<M1>::Type m1;
   276     typename SmartConstReference<M2>::Type m2;
   277 
   278   public:
   279 
   280     typedef True NeedCopy;
   281 
   282     ///\e
   283     typedef typename M1::Key Key;
   284     ///\e
   285     typedef typename M1::Value Value;
   286 
   287     ///Constructor
   288     AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   289     Value operator[](Key k) const {return m1[k]+m2[k];}
   290   };
   291   
   292   ///Returns an \ref AddMap class
   293 
   294   ///This function just returns an \ref AddMap class.
   295   ///\todo How to call these type of functions?
   296   ///
   297   ///\relates AddMap
   298   ///\todo Wrong scope in Doxygen when \c \\relates is used
   299   template<class M1,class M2> 
   300   inline AddMap<M1,M2> addMap(const M1 &m1,const M2 &m2) 
   301   {
   302     return AddMap<M1,M2>(m1,m2);
   303   }
   304 
   305   ///Shift a map with a constant.
   306 
   307   ///This \ref concept::ReadMap "read only map" returns the sum of the
   308   ///given map and a constant value.
   309   ///Its \c Key and \c Value is inherited from \c M.
   310   ///
   311   ///Actually,
   312   ///\code
   313   ///  ShiftMap<X> sh(x,v);
   314   ///\endcode
   315   ///is equivalent with
   316   ///\code
   317   ///  ConstMap<X::Key, X::Value> c_tmp(v);
   318   ///  AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
   319   ///\endcode
   320   template<class M> 
   321   class ShiftMap
   322   {
   323     typename SmartConstReference<M>::Type m;
   324     typename M::Value v;
   325   public:
   326 
   327     typedef True NeedCopy;
   328     ///\e
   329     typedef typename M::Key Key;
   330     ///\e
   331     typedef typename M::Value Value;
   332 
   333     ///Constructor
   334 
   335     ///Constructor
   336     ///\param _m is the undelying map
   337     ///\param _v is the shift value
   338     ShiftMap(const M &_m,const Value &_v ) : m(_m), v(_v) {};
   339     Value operator[](Key k) const {return m[k]+v;}
   340   };
   341   
   342   ///Returns an \ref ShiftMap class
   343 
   344   ///This function just returns an \ref ShiftMap class.
   345   ///\relates ShiftMap
   346   ///\todo A better name is required.
   347   template<class M> 
   348   inline ShiftMap<M> shiftMap(const M &m,const typename M::Value &v) 
   349   {
   350     return ShiftMap<M>(m,v);
   351   }
   352 
   353   ///Difference of two maps
   354 
   355   ///This \ref concept::ReadMap "read only map" returns the difference
   356   ///of the values of the two
   357   ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   358   ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   359 
   360   template<class M1,class M2> 
   361   class SubMap
   362   {
   363     typename SmartConstReference<M1>::Type m1;
   364     typename SmartConstReference<M2>::Type m2;
   365   public:
   366 
   367     typedef True NeedCopy;
   368     ///\e
   369     typedef typename M1::Key Key;
   370     ///\e
   371     typedef typename M1::Value Value;
   372 
   373     ///Constructor
   374     SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   375     Value operator[](Key k) const {return m1[k]-m2[k];}
   376   };
   377   
   378   ///Returns a \ref SubMap class
   379 
   380   ///This function just returns a \ref SubMap class.
   381   ///
   382   ///\relates SubMap
   383   template<class M1,class M2> 
   384   inline SubMap<M1,M2> subMap(const M1 &m1,const M2 &m2) 
   385   {
   386     return SubMap<M1,M2>(m1,m2);
   387   }
   388 
   389   ///Product of two maps
   390 
   391   ///This \ref concept::ReadMap "read only map" returns the product of the
   392   ///values of the two
   393   ///given
   394   ///maps. Its \c Key and \c Value will be inherited from \c M1.
   395   ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   396 
   397   template<class M1,class M2> 
   398   class MulMap
   399   {
   400     typename SmartConstReference<M1>::Type m1;
   401     typename SmartConstReference<M2>::Type m2;
   402   public:
   403 
   404     typedef True NeedCopy;
   405     ///\e
   406     typedef typename M1::Key Key;
   407     ///\e
   408     typedef typename M1::Value Value;
   409 
   410     ///Constructor
   411     MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   412     Value operator[](Key k) const {return m1[k]*m2[k];}
   413   };
   414   
   415   ///Returns a \ref MulMap class
   416 
   417   ///This function just returns a \ref MulMap class.
   418   ///\relates MulMap
   419   template<class M1,class M2> 
   420   inline MulMap<M1,M2> mulMap(const M1 &m1,const M2 &m2) 
   421   {
   422     return MulMap<M1,M2>(m1,m2);
   423   }
   424  
   425   ///Scales a maps with a constant.
   426 
   427   ///This \ref concept::ReadMap "read only map" returns the value of the
   428   ///given map multiplied with a constant value.
   429   ///Its \c Key and \c Value is inherited from \c M.
   430   ///
   431   ///Actually,
   432   ///\code
   433   ///  ScaleMap<X> sc(x,v);
   434   ///\endcode
   435   ///is equivalent with
   436   ///\code
   437   ///  ConstMap<X::Key, X::Value> c_tmp(v);
   438   ///  MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v);
   439   ///\endcode
   440   template<class M> 
   441   class ScaleMap
   442   {
   443     typename SmartConstReference<M>::Type m;
   444     typename M::Value v;
   445   public:
   446 
   447     typedef True NeedCopy;
   448     ///\e
   449     typedef typename M::Key Key;
   450     ///\e
   451     typedef typename M::Value Value;
   452 
   453     ///Constructor
   454 
   455     ///Constructor
   456     ///\param _m is the undelying map
   457     ///\param _v is the scaling value
   458     ScaleMap(const M &_m,const Value &_v ) : m(_m), v(_v) {};
   459     Value operator[](Key k) const {return m[k]*v;}
   460   };
   461   
   462   ///Returns an \ref ScaleMap class
   463 
   464   ///This function just returns an \ref ScaleMap class.
   465   ///\relates ScaleMap
   466   ///\todo A better name is required.
   467   template<class M> 
   468   inline ScaleMap<M> scaleMap(const M &m,const typename M::Value &v) 
   469   {
   470     return ScaleMap<M>(m,v);
   471   }
   472 
   473   ///Quotient of two maps
   474 
   475   ///This \ref concept::ReadMap "read only map" returns the quotient of the
   476   ///values of the two
   477   ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   478   ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   479 
   480   template<class M1,class M2> 
   481   class DivMap
   482   {
   483     typename SmartConstReference<M1>::Type m1;
   484     typename SmartConstReference<M2>::Type m2;
   485   public:
   486 
   487     typedef True NeedCopy;
   488     ///\e
   489     typedef typename M1::Key Key;
   490     ///\e
   491     typedef typename M1::Value Value;
   492 
   493     ///Constructor
   494     DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   495     Value operator[](Key k) const {return m1[k]/m2[k];}
   496   };
   497   
   498   ///Returns a \ref DivMap class
   499 
   500   ///This function just returns a \ref DivMap class.
   501   ///\relates DivMap
   502   template<class M1,class M2> 
   503   inline DivMap<M1,M2> divMap(const M1 &m1,const M2 &m2) 
   504   {
   505     return DivMap<M1,M2>(m1,m2);
   506   }
   507   
   508   ///Composition of two maps
   509 
   510   ///This \ref concept::ReadMap "read only map" returns the composition of
   511   ///two
   512   ///given maps. That is to say, if \c m1 is of type \c M1 and \c m2 is
   513   ///of \c M2,
   514   ///then for
   515   ///\code
   516   ///  ComposeMap<M1,M2> cm(m1,m2);
   517   ///\endcode
   518   /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>
   519   ///
   520   ///Its \c Key is inherited from \c M2 and its \c Value is from
   521   ///\c M1.
   522   ///The \c M2::Value must be convertible to \c M1::Key.
   523   ///\todo Check the requirements.
   524 
   525   template<class M1,class M2> 
   526   class ComposeMap
   527   {
   528     typename SmartConstReference<M1>::Type m1;
   529     typename SmartConstReference<M2>::Type m2;
   530   public:
   531 
   532     typedef True NeedCopy;
   533     ///\e
   534     typedef typename M2::Key Key;
   535     ///\e
   536     typedef typename M1::Value Value;
   537 
   538     ///Constructor
   539     ComposeMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   540     Value operator[](Key k) const {return m1[m2[k]];}
   541   };
   542   ///Returns a \ref ComposeMap class
   543 
   544   ///This function just returns a \ref ComposeMap class.
   545   ///
   546   ///\relates ComposeMap
   547   template<class M1,class M2> 
   548   inline ComposeMap<M1,M2> composeMap(const M1 &m1,const M2 &m2) 
   549   {
   550     return ComposeMap<M1,M2>(m1,m2);
   551   }
   552   
   553   ///Combines of two maps using an STL (binary) functor.
   554 
   555   ///Combines of two maps using an STL (binary) functor.
   556   ///
   557   ///
   558   ///This \ref concept::ReadMap "read only map" takes two maps and a
   559   ///binary functor and returns the composition of
   560   ///the two
   561   ///given maps unsing the functor. 
   562   ///That is to say, if \c m1 and \c m2 is of type \c M1 and \c M2
   563   ///and \c f is of \c F,
   564   ///then for
   565   ///\code
   566   ///  CombineMap<M1,M2,F,V> cm(m1,m2,f);
   567   ///\endcode
   568   /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>
   569   ///
   570   ///Its \c Key is inherited from \c M1 and its \c Value is \c V.
   571   ///The \c M2::Value and \c M1::Value must be convertible to the corresponding
   572   ///input parameter of \c F and the return type of \c F must be convertible
   573   ///to \c V.
   574   ///\todo Check the requirements.
   575 
   576   template<class M1,class M2,class F,class V = typename F::result_type> 
   577   class CombineMap
   578   {
   579     typename SmartConstReference<M1>::Type m1;
   580     typename SmartConstReference<M2>::Type m2;
   581     F f;
   582   public:
   583 
   584     typedef True NeedCopy;
   585     ///\e
   586     typedef typename M1::Key Key;
   587     ///\e
   588     typedef V Value;
   589 
   590     ///Constructor
   591     CombineMap(const M1 &_m1,const M2 &_m2,const F &_f)
   592       : m1(_m1), m2(_m2), f(_f) {};
   593     Value operator[](Key k) const {return f(m1[k],m2[k]);}
   594   };
   595   
   596   ///Returns a \ref CombineMap class
   597 
   598   ///This function just returns a \ref CombineMap class.
   599   ///
   600   ///Only the first template parameter (the value type) must be given.
   601   ///
   602   ///For example if \c m1 and \c m2 are both \c double valued maps, then 
   603   ///\code
   604   ///combineMap<double>(m1,m2,std::plus<double>)
   605   ///\endcode
   606   ///is equivalent with
   607   ///\code
   608   ///addMap(m1,m2)
   609   ///\endcode
   610   ///
   611   ///\relates CombineMap
   612   template<class M1,class M2,class F> 
   613   inline CombineMap<M1,M2,F> combineMap(const M1 &m1,const M2 &m2,const F &f) 
   614   {
   615     return CombineMap<M1,M2,F>(m1,m2,f);
   616   }
   617 
   618   ///Negative value of a map
   619 
   620   ///This \ref concept::ReadMap "read only map" returns the negative
   621   ///value of the
   622   ///value returned by the
   623   ///given map. Its \c Key and \c Value will be inherited from \c M.
   624   ///The unary \c - operator must be defined for \c Value, of course.
   625 
   626   template<class M> 
   627   class NegMap
   628   {
   629     typename SmartConstReference<M>::Type m;
   630   public:
   631 
   632     typedef True NeedCopy;
   633     ///\e
   634     typedef typename M::Key Key;
   635     ///\e
   636     typedef typename M::Value Value;
   637 
   638     ///Constructor
   639     NegMap(const M &_m) : m(_m) {};
   640     Value operator[](Key k) const {return -m[k];}
   641   };
   642   
   643   ///Returns a \ref NegMap class
   644 
   645   ///This function just returns a \ref NegMap class.
   646   ///\relates NegMap
   647   template<class M> 
   648   inline NegMap<M> negMap(const M &m) 
   649   {
   650     return NegMap<M>(m);
   651   }
   652 
   653 
   654   ///Absolute value of a map
   655 
   656   ///This \ref concept::ReadMap "read only map" returns the absolute value
   657   ///of the
   658   ///value returned by the
   659   ///given map. Its \c Key and \c Value will be inherited
   660   ///from <tt>M</tt>. <tt>Value</tt>
   661   ///must be comparable to <tt>0</tt> and the unary <tt>-</tt>
   662   ///operator must be defined for it, of course.
   663   ///
   664   ///\bug We need a unified way to handle the situation below:
   665   ///\code
   666   ///  struct _UnConvertible {};
   667   ///  template<class A> inline A t_abs(A a) {return _UnConvertible();}
   668   ///  template<> inline int t_abs<>(int n) {return abs(n);}
   669   ///  template<> inline long int t_abs<>(long int n) {return labs(n);}
   670   ///  template<> inline long long int t_abs<>(long long int n) {return ::llabs(n);}
   671   ///  template<> inline float t_abs<>(float n) {return fabsf(n);}
   672   ///  template<> inline double t_abs<>(double n) {return fabs(n);}
   673   ///  template<> inline long double t_abs<>(long double n) {return fabsl(n);}
   674   ///\endcode
   675   
   676 
   677   template<class M> 
   678   class AbsMap
   679   {
   680     typename SmartConstReference<M>::Type m;
   681   public:
   682 
   683     typedef True NeedCopy;
   684     ///\e
   685     typedef typename M::Key Key;
   686     ///\e
   687     typedef typename M::Value Value;
   688 
   689     ///Constructor
   690     AbsMap(const M &_m) : m(_m) {};
   691     Value operator[](Key k) const {Value tmp=m[k]; return tmp>=0?tmp:-tmp;}
   692   };
   693   
   694   ///Returns a \ref AbsMap class
   695 
   696   ///This function just returns a \ref AbsMap class.
   697   ///\relates AbsMap
   698   template<class M> 
   699   inline AbsMap<M> absMap(const M &m) 
   700   {
   701     return AbsMap<M>(m);
   702   }
   703 
   704   ///Converts an STL style functor to a map
   705 
   706   ///This \ref concept::ReadMap "read only map" returns the value
   707   ///of a
   708   ///given map.
   709   ///
   710   ///Template parameters \c K and \c V will become its
   711   ///\c Key and \c Value. They must be given explicitely
   712   ///because a functor does not provide such typedefs.
   713   ///
   714   ///Parameter \c F is the type of the used functor.
   715   
   716 
   717   template<class K,class V,class F> 
   718   class FunctorMap
   719   {
   720     const F &f;
   721   public:
   722 
   723     typedef True NeedCopy;
   724     ///\e
   725     typedef K Key;
   726     ///\e
   727     typedef V Value;
   728 
   729     ///Constructor
   730     FunctorMap(const F &_f) : f(_f) {};
   731     Value operator[](Key k) const {return f(k);}
   732   };
   733   
   734   ///Returns a \ref FunctorMap class
   735 
   736   ///This function just returns a \ref FunctorMap class.
   737   ///
   738   ///The third template parameter isn't necessary to be given.
   739   ///\relates FunctorMap
   740   template<class K,class V, class F>
   741   inline FunctorMap<K,V,F> functorMap(const F &f) 
   742   {
   743     return FunctorMap<K,V,F>(f);
   744   }
   745 
   746   ///Converts a map to an STL style (unary) functor
   747 
   748   ///This class Converts a map to an STL style (unary) functor.
   749   ///that is it provides an <tt>operator()</tt> to read its values.
   750   ///
   751   ///For the sake of convenience it also works as
   752   ///a ususal \ref concept::ReadMap "readable map",
   753   ///i.e. <tt>operator[]</tt> and the \c Key and \c Value typedefs also exist.
   754 
   755   template<class M> 
   756   class MapFunctor
   757   {
   758     typename SmartConstReference<M>::Type m;
   759   public:
   760 
   761     typedef True NeedCopy;
   762     ///\e
   763     typedef typename M::Key argument_type;
   764     ///\e
   765     typedef typename M::Value result_type;
   766     ///\e
   767     typedef typename M::Key Key;
   768     ///\e
   769     typedef typename M::Value Value;
   770 
   771     ///Constructor
   772     MapFunctor(const M &_m) : m(_m) {};
   773     ///Returns a value of the map
   774     Value operator()(Key k) const {return m[k];}
   775     ///\e
   776     Value operator[](Key k) const {return m[k];}
   777   };
   778   
   779   ///Returns a \ref MapFunctor class
   780 
   781   ///This function just returns a \ref MapFunctor class.
   782   ///\relates MapFunctor
   783   template<class M> 
   784   inline MapFunctor<M> mapFunctor(const M &m) 
   785   {
   786     return MapFunctor<M>(m);
   787   }
   788 
   789 
   790   ///Applies all map setting operations to two maps
   791 
   792   ///This map has two \ref concept::WriteMap "writable map"
   793   ///parameters and each write request will be passed to both of them.
   794   ///If \c M1 is also \ref concept::ReadMap "readable",
   795   ///then the read operations will return the
   796   ///corresponding values of \c M1.
   797   ///
   798   ///The \c Key and \c Value will be inherited from \c M1.
   799   ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
   800 
   801   template<class M1,class M2> 
   802   class ForkMap
   803   {
   804     typename SmartConstReference<M1>::Type m1;
   805     typename SmartConstReference<M2>::Type m2;
   806   public:
   807 
   808     typedef True NeedCopy;
   809     ///\e
   810     typedef typename M1::Key Key;
   811     ///\e
   812     typedef typename M1::Value Value;
   813 
   814     ///Constructor
   815     ForkMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   816     Value operator[](Key k) const {return m1[k];}
   817     void set(Key k,const Value &v) {m1.set(k,v); m2.set(k,v);}
   818   };
   819   
   820   ///Returns an \ref ForkMap class
   821 
   822   ///This function just returns an \ref ForkMap class.
   823   ///\todo How to call these type of functions?
   824   ///
   825   ///\relates ForkMap
   826   ///\todo Wrong scope in Doxygen when \c \\relates is used
   827   template<class M1,class M2> 
   828   inline ForkMap<M1,M2> forkMap(const M1 &m1,const M2 &m2) 
   829   {
   830     return ForkMap<M1,M2>(m1,m2);
   831   }
   832 
   833 
   834   
   835   /* ************* BOOL MAPS ******************* */
   836   
   837   ///Logical 'not' of a map
   838   
   839   ///This bool \ref concept::ReadMap "read only map" returns the 
   840   ///logical negation of
   841   ///value returned by the
   842   ///given map. Its \c Key and will be inherited from \c M,
   843   ///its Value is <tt>bool</tt>.
   844 
   845   template<class M> 
   846   class NotMap
   847   {
   848     typename SmartConstReference<M>::Type m;
   849   public:
   850 
   851     typedef True NeedCopy;
   852     ///\e
   853     typedef typename M::Key Key;
   854     ///\e
   855     typedef bool Value;
   856 
   857     ///Constructor
   858     NotMap(const M &_m) : m(_m) {};
   859     Value operator[](Key k) const {return !m[k];}
   860   };
   861   
   862   ///Returns a \ref NotMap class
   863   
   864   ///This function just returns a \ref NotMap class.
   865   ///\relates NotMap
   866   template<class M> 
   867   inline NotMap<M> notMap(const M &m) 
   868   {
   869     return NotMap<M>(m);
   870   }
   871 
   872 
   873 
   874 
   875 
   876 
   877 
   878 
   879 
   880 
   881 
   882   /// @}
   883 }
   884 
   885 #endif // LEMON_MAPS_H