lemon/belmann_ford.h
author klao
Wed, 16 Nov 2005 04:22:49 +0000
changeset 1797 91b8b9cea2f7
parent 1782 cb405cda0205
child 1816 19ee9133a28c
permissions -rw-r--r--
lp_test.cc:

* bugfix in cplex part: check compiling and running on two different instances
     1 /* -*- C++ -*-
     2  * lemon/belmann_ford.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_BELMANN_FORD_H
    18 #define LEMON_BELMANN_FORD_H
    19 
    20 ///\ingroup flowalgs
    21 /// \file
    22 /// \brief BelmannFord algorithm.
    23 ///
    24 
    25 #include <lemon/list_graph.h>
    26 #include <lemon/invalid.h>
    27 #include <lemon/error.h>
    28 #include <lemon/maps.h>
    29 
    30 #include <limits>
    31 
    32 namespace lemon {
    33 
    34   /// \brief Default OperationTraits for the BelmannFord algorithm class.
    35   ///  
    36   /// It defines all computational operations and constants which are
    37   /// used in the belmann ford algorithm. The default implementation
    38   /// is based on the numeric_limits class. If the numeric type does not
    39   /// have infinity value then the maximum value is used as extremal
    40   /// infinity value.
    41   template <
    42     typename Value, 
    43     bool has_infinity = std::numeric_limits<Value>::has_infinity>
    44   struct BelmannFordDefaultOperationTraits {
    45     /// \brief Gives back the zero value of the type.
    46     static Value zero() {
    47       return static_cast<Value>(0);
    48     }
    49     /// \brief Gives back the positive infinity value of the type.
    50     static Value infinity() {
    51       return std::numeric_limits<Value>::infinity();
    52     }
    53     /// \brief Gives back the sum of the given two elements.
    54     static Value plus(const Value& left, const Value& right) {
    55       return left + right;
    56     }
    57     /// \brief Gives back true only if the first value less than the second.
    58     static bool less(const Value& left, const Value& right) {
    59       return left < right;
    60     }
    61   };
    62 
    63   template <typename Value>
    64   struct BelmannFordDefaultOperationTraits<Value, false> {
    65     static Value zero() {
    66       return static_cast<Value>(0);
    67     }
    68     static Value infinity() {
    69       return std::numeric_limits<Value>::max();
    70     }
    71     static Value plus(const Value& left, const Value& right) {
    72       if (left == infinity() || right == infinity()) return infinity();
    73       return left + right;
    74     }
    75     static bool less(const Value& left, const Value& right) {
    76       return left < right;
    77     }
    78   };
    79   
    80   /// \brief Default traits class of BelmannFord class.
    81   ///
    82   /// Default traits class of BelmannFord class.
    83   /// \param _Graph Graph type.
    84   /// \param _LegthMap Type of length map.
    85   template<class _Graph, class _LengthMap>
    86   struct BelmannFordDefaultTraits {
    87     /// The graph type the algorithm runs on. 
    88     typedef _Graph Graph;
    89 
    90     /// \brief The type of the map that stores the edge lengths.
    91     ///
    92     /// The type of the map that stores the edge lengths.
    93     /// It must meet the \ref concept::ReadMap "ReadMap" concept.
    94     typedef _LengthMap LengthMap;
    95 
    96     // The type of the length of the edges.
    97     typedef typename _LengthMap::Value Value;
    98 
    99     /// \brief Operation traits for belmann-ford algorithm.
   100     ///
   101     /// It defines the infinity type on the given Value type
   102     /// and the used operation.
   103     /// \see BelmannFordDefaultOperationTraits
   104     typedef BelmannFordDefaultOperationTraits<Value> OperationTraits;
   105  
   106     /// \brief The type of the map that stores the last edges of the 
   107     /// shortest paths.
   108     /// 
   109     /// The type of the map that stores the last
   110     /// edges of the shortest paths.
   111     /// It must meet the \ref concept::WriteMap "WriteMap" concept.
   112     ///
   113     typedef typename Graph::template NodeMap<typename _Graph::Edge> PredMap;
   114 
   115     /// \brief Instantiates a PredMap.
   116     /// 
   117     /// This function instantiates a \ref PredMap. 
   118     /// \param G is the graph, to which we would like to define the PredMap.
   119     /// \todo The graph alone may be insufficient for the initialization
   120     static PredMap *createPredMap(const _Graph& graph) {
   121       return new PredMap(graph);
   122     }
   123 
   124     /// \brief The type of the map that stores the dists of the nodes.
   125     ///
   126     /// The type of the map that stores the dists of the nodes.
   127     /// It must meet the \ref concept::WriteMap "WriteMap" concept.
   128     ///
   129     typedef typename Graph::template NodeMap<typename _LengthMap::Value> 
   130     DistMap;
   131 
   132     /// \brief Instantiates a DistMap.
   133     ///
   134     /// This function instantiates a \ref DistMap. 
   135     /// \param G is the graph, to which we would like to define the 
   136     /// \ref DistMap
   137     static DistMap *createDistMap(const _Graph& graph) {
   138       return new DistMap(graph);
   139     }
   140 
   141   };
   142   
   143   /// \brief %BelmannFord algorithm class.
   144   ///
   145   /// \ingroup flowalgs
   146   /// This class provides an efficient implementation of \c Belmann-Ford 
   147   /// algorithm. The edge lengths are passed to the algorithm using a
   148   /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any 
   149   /// kind of length.
   150   ///
   151   /// The Belmann-Ford algorithm solves the shortest path from one node
   152   /// problem when the edges can have negative length but the graph should
   153   /// not contain cycles with negative sum of length. If we can assume
   154   /// that all edge is non-negative in the graph then the dijkstra algorithm
   155   /// should be used rather.
   156   ///
   157   /// The complexity of the algorithm is O(n * e).
   158   ///
   159   /// The type of the length is determined by the
   160   /// \ref concept::ReadMap::Value "Value" of the length map.
   161   ///
   162   /// \param _Graph The graph type the algorithm runs on. The default value
   163   /// is \ref ListGraph. The value of _Graph is not used directly by
   164   /// BelmannFord, it is only passed to \ref BelmannFordDefaultTraits.
   165   /// \param _LengthMap This read-only EdgeMap determines the lengths of the
   166   /// edges. The default map type is \ref concept::StaticGraph::EdgeMap 
   167   /// "Graph::EdgeMap<int>".  The value of _LengthMap is not used directly 
   168   /// by BelmannFord, it is only passed to \ref BelmannFordDefaultTraits.  
   169   /// \param _Traits Traits class to set various data types used by the 
   170   /// algorithm.  The default traits class is \ref BelmannFordDefaultTraits
   171   /// "BelmannFordDefaultTraits<_Graph,_LengthMap>".  See \ref
   172   /// BelmannFordDefaultTraits for the documentation of a BelmannFord traits
   173   /// class.
   174   ///
   175   /// \author Balazs Dezso
   176 
   177 #ifdef DOXYGEN
   178   template <typename _Graph, typename _LengthMap, typename _Traits>
   179 #else
   180   template <typename _Graph=ListGraph,
   181 	    typename _LengthMap=typename _Graph::template EdgeMap<int>,
   182 	    typename _Traits=BelmannFordDefaultTraits<_Graph,_LengthMap> >
   183 #endif
   184   class BelmannFord {
   185   public:
   186     
   187     /// \brief \ref Exception for uninitialized parameters.
   188     ///
   189     /// This error represents problems in the initialization
   190     /// of the parameters of the algorithms.
   191 
   192     class UninitializedParameter : public lemon::UninitializedParameter {
   193     public:
   194       virtual const char* exceptionName() const {
   195 	return "lemon::BelmannFord::UninitializedParameter";
   196       }
   197     };
   198 
   199     typedef _Traits Traits;
   200     ///The type of the underlying graph.
   201     typedef typename _Traits::Graph Graph;
   202 
   203     typedef typename Graph::Node Node;
   204     typedef typename Graph::NodeIt NodeIt;
   205     typedef typename Graph::Edge Edge;
   206     typedef typename Graph::OutEdgeIt OutEdgeIt;
   207     
   208     /// \brief The type of the length of the edges.
   209     typedef typename _Traits::LengthMap::Value Value;
   210     /// \brief The type of the map that stores the edge lengths.
   211     typedef typename _Traits::LengthMap LengthMap;
   212     /// \brief The type of the map that stores the last
   213     /// edges of the shortest paths.
   214     typedef typename _Traits::PredMap PredMap;
   215     /// \brief The type of the map that stores the dists of the nodes.
   216     typedef typename _Traits::DistMap DistMap;
   217     /// \brief The operation traits.
   218     typedef typename _Traits::OperationTraits OperationTraits;
   219   private:
   220     /// Pointer to the underlying graph.
   221     const Graph *graph;
   222     /// Pointer to the length map
   223     const LengthMap *length;
   224     ///Pointer to the map of predecessors edges.
   225     PredMap *_pred;
   226     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   227     bool local_pred;
   228     ///Pointer to the map of distances.
   229     DistMap *_dist;
   230     ///Indicates if \ref _dist is locally allocated (\c true) or not.
   231     bool local_dist;
   232 
   233     typedef typename Graph::template NodeMap<bool> MaskMap;
   234     MaskMap *_mask;
   235 
   236     std::vector<Node> _process;
   237 
   238     /// Creates the maps if necessary.
   239     void create_maps() {
   240       if(!_pred) {
   241 	local_pred = true;
   242 	_pred = Traits::createPredMap(*graph);
   243       }
   244       if(!_dist) {
   245 	local_dist = true;
   246 	_dist = Traits::createDistMap(*graph);
   247       }
   248       _mask = new MaskMap(*graph, false);
   249     }
   250     
   251   public :
   252  
   253     typedef BelmannFord Create;
   254 
   255     /// \name Named template parameters
   256 
   257     ///@{
   258 
   259     template <class T>
   260     struct DefPredMapTraits : public Traits {
   261       typedef T PredMap;
   262       static PredMap *createPredMap(const Graph&) {
   263 	throw UninitializedParameter();
   264       }
   265     };
   266 
   267     /// \brief \ref named-templ-param "Named parameter" for setting PredMap 
   268     /// type
   269     /// \ref named-templ-param "Named parameter" for setting PredMap type
   270     ///
   271     template <class T>
   272     struct DefPredMap {
   273       typedef BelmannFord< Graph, LengthMap, DefPredMapTraits<T> > Create;
   274     };
   275     
   276     template <class T>
   277     struct DefDistMapTraits : public Traits {
   278       typedef T DistMap;
   279       static DistMap *createDistMap(const Graph& graph) {
   280 	throw UninitializedParameter();
   281       }
   282     };
   283 
   284     /// \brief \ref named-templ-param "Named parameter" for setting DistMap 
   285     /// type
   286     ///
   287     /// \ref named-templ-param "Named parameter" for setting DistMap type
   288     ///
   289     template <class T>
   290     struct DefDistMap 
   291       : public BelmannFord< Graph, LengthMap, DefDistMapTraits<T> > {
   292       typedef BelmannFord< Graph, LengthMap, DefDistMapTraits<T> > Create;
   293     };
   294     
   295     template <class T>
   296     struct DefOperationTraitsTraits : public Traits {
   297       typedef T OperationTraits;
   298     };
   299     
   300     /// \brief \ref named-templ-param "Named parameter" for setting 
   301     /// OperationTraits type
   302     ///
   303     /// \ref named-templ-param "Named parameter" for setting OperationTraits
   304     /// type
   305     template <class T>
   306     struct DefOperationTraits
   307       : public BelmannFord< Graph, LengthMap, DefOperationTraitsTraits<T> > {
   308       typedef BelmannFord< Graph, LengthMap, DefOperationTraitsTraits<T> >
   309       Create;
   310     };
   311     
   312     ///@}
   313 
   314   protected:
   315     
   316     BelmannFord() {}
   317 
   318   public:      
   319     
   320     /// \brief Constructor.
   321     ///
   322     /// \param _graph the graph the algorithm will run on.
   323     /// \param _length the length map used by the algorithm.
   324     BelmannFord(const Graph& _graph, const LengthMap& _length) :
   325       graph(&_graph), length(&_length),
   326       _pred(0), local_pred(false),
   327       _dist(0), local_dist(false) {}
   328     
   329     ///Destructor.
   330     ~BelmannFord() {
   331       if(local_pred) delete _pred;
   332       if(local_dist) delete _dist;
   333       delete _mask;
   334     }
   335 
   336     /// \brief Sets the length map.
   337     ///
   338     /// Sets the length map.
   339     /// \return \c (*this)
   340     BelmannFord &lengthMap(const LengthMap &m) {
   341       length = &m;
   342       return *this;
   343     }
   344 
   345     /// \brief Sets the map storing the predecessor edges.
   346     ///
   347     /// Sets the map storing the predecessor edges.
   348     /// If you don't use this function before calling \ref run(),
   349     /// it will allocate one. The destuctor deallocates this
   350     /// automatically allocated map, of course.
   351     /// \return \c (*this)
   352     BelmannFord &predMap(PredMap &m) {
   353       if(local_pred) {
   354 	delete _pred;
   355 	local_pred=false;
   356       }
   357       _pred = &m;
   358       return *this;
   359     }
   360 
   361     /// \brief Sets the map storing the distances calculated by the algorithm.
   362     ///
   363     /// Sets the map storing the distances calculated by the algorithm.
   364     /// If you don't use this function before calling \ref run(),
   365     /// it will allocate one. The destuctor deallocates this
   366     /// automatically allocated map, of course.
   367     /// \return \c (*this)
   368     BelmannFord &distMap(DistMap &m) {
   369       if(local_dist) {
   370 	delete _dist;
   371 	local_dist=false;
   372       }
   373       _dist = &m;
   374       return *this;
   375     }
   376 
   377     /// \name Execution control
   378     /// The simplest way to execute the algorithm is to use
   379     /// one of the member functions called \c run(...).
   380     /// \n
   381     /// If you need more control on the execution,
   382     /// first you must call \ref init(), then you can add several source nodes
   383     /// with \ref addSource().
   384     /// Finally \ref start() will perform the actual path
   385     /// computation.
   386 
   387     ///@{
   388 
   389     /// \brief Initializes the internal data structures.
   390     /// 
   391     /// Initializes the internal data structures.
   392     void init(const Value value = OperationTraits::infinity()) {
   393       create_maps();
   394       for (NodeIt it(*graph); it != INVALID; ++it) {
   395 	_pred->set(it, INVALID);
   396 	_dist->set(it, value);
   397       }
   398       _process.clear();
   399       if (OperationTraits::less(value, OperationTraits::infinity())) {
   400 	for (NodeIt it(*graph); it != INVALID; ++it) {
   401 	  _process.push_back(it);
   402 	  _mask->set(it, true);
   403 	}
   404       }
   405     }
   406     
   407     /// \brief Adds a new source node.
   408     ///
   409     /// The optional second parameter is the initial distance of the node.
   410     /// It just sets the distance of the node to the given value.
   411     void addSource(Node source, Value dst = OperationTraits::zero()) {
   412       _dist->set(source, dst);
   413       if (!(*_mask)[source]) {
   414 	_process.push_back(source);
   415 	_mask->set(source, true);
   416       }
   417     }
   418 
   419     /// \brief Executes one round from the belmann ford algorithm.
   420     ///
   421     /// If the algoritm calculated the distances in the previous round 
   422     /// strictly for all at most k length pathes then it will calculate the 
   423     /// distances strictly for all at most k + 1 length pathes. With k
   424     /// iteration this function calculates the at most k length pathes. 
   425     bool processNextRound() {
   426       for (int i = 0; i < (int)_process.size(); ++i) {
   427 	_mask->set(_process[i], false);
   428       }
   429       std::vector<Node> nextProcess;
   430       std::vector<Value> values(_process.size());
   431       for (int i = 0; i < (int)_process.size(); ++i) {
   432 	values[i] = _dist[_process[i]];
   433       }
   434       for (int i = 0; i < (int)_process.size(); ++i) {
   435 	for (OutEdgeIt it(*graph, _process[i]); it != INVALID; ++it) {
   436 	  Node target = graph->target(it);
   437 	  Value relaxed = OperationTraits::plus(values[i], (*length)[it]);
   438 	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
   439 	    _pred->set(target, it);
   440 	    _dist->set(target, relaxed);
   441 	    if (!(*_mask)[target]) {
   442 	      _mask->set(target, true);
   443 	      nextProcess.push_back(target);
   444 	    }
   445 	  }	  
   446 	}
   447       }
   448       _process.swap(nextProcess);
   449       return _process.empty();
   450     }
   451 
   452     /// \brief Executes one weak round from the belmann ford algorithm.
   453     ///
   454     /// If the algorithm calculated the distances in the
   455     /// previous round at least for all at most k length pathes then it will
   456     /// calculate the distances at least for all at most k + 1 length pathes.
   457     /// This function does not make possible to calculate strictly the
   458     /// at most k length minimal pathes, this way it called just weak round.
   459     bool processNextWeakRound() {
   460       for (int i = 0; i < (int)_process.size(); ++i) {
   461 	_mask->set(_process[i], false);
   462       }
   463       std::vector<Node> nextProcess;
   464       for (int i = 0; i < (int)_process.size(); ++i) {
   465 	for (OutEdgeIt it(*graph, _process[i]); it != INVALID; ++it) {
   466 	  Node target = graph->target(it);
   467 	  Value relaxed = 
   468 	    OperationTraits::plus((*_dist)[_process[i]], (*length)[it]);
   469 	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
   470 	    _pred->set(target, it);
   471 	    _dist->set(target, relaxed);
   472 	    if (!(*_mask)[target]) {
   473 	      _mask->set(target, true);
   474 	      nextProcess.push_back(target);
   475 	    }
   476 	  }	  
   477 	}
   478       }
   479       _process.swap(nextProcess);
   480       return _process.empty();
   481     }
   482 
   483     /// \brief Executes the algorithm.
   484     ///
   485     /// \pre init() must be called and at least one node should be added
   486     /// with addSource() before using this function.
   487     ///
   488     /// This method runs the %BelmannFord algorithm from the root node(s)
   489     /// in order to compute the shortest path to each node. The algorithm 
   490     /// computes 
   491     /// - The shortest path tree.
   492     /// - The distance of each node from the root(s).
   493     void start() {
   494       int num = countNodes(*graph) - 1;
   495       for (int i = 0; i < num; ++i) {
   496 	if (processNextWeakRound()) break;
   497       }
   498     }
   499 
   500     /// \brief Executes the algorithm and checks the negative cycles.
   501     ///
   502     /// \pre init() must be called and at least one node should be added
   503     /// with addSource() before using this function. If there is
   504     /// a negative cycles in the graph it gives back false.
   505     ///
   506     /// This method runs the %BelmannFord algorithm from the root node(s)
   507     /// in order to compute the shortest path to each node. The algorithm 
   508     /// computes 
   509     /// - The shortest path tree.
   510     /// - The distance of each node from the root(s).
   511     bool checkedStart() {
   512       int num = countNodes(*graph);
   513       for (int i = 0; i < num; ++i) {
   514 	if (processNextWeakRound()) return true;
   515       }
   516       return false;
   517     }
   518 
   519     /// \brief Executes the algorithm with path length limit.
   520     ///
   521     /// \pre init() must be called and at least one node should be added
   522     /// with addSource() before using this function.
   523     ///
   524     /// This method runs the %BelmannFord algorithm from the root node(s)
   525     /// in order to compute the shortest path with at most \c length edge 
   526     /// long pathes to each node. The algorithm computes 
   527     /// - The shortest path tree.
   528     /// - The limited distance of each node from the root(s).
   529     void limitedStart(int length) {
   530       for (int i = 0; i < length; ++i) {
   531 	if (processNextRound()) break;
   532       }
   533     }
   534     
   535     /// \brief Runs %BelmannFord algorithm from node \c s.
   536     ///    
   537     /// This method runs the %BelmannFord algorithm from a root node \c s
   538     /// in order to compute the shortest path to each node. The algorithm 
   539     /// computes
   540     /// - The shortest path tree.
   541     /// - The distance of each node from the root.
   542     ///
   543     /// \note d.run(s) is just a shortcut of the following code.
   544     /// \code
   545     ///  d.init();
   546     ///  d.addSource(s);
   547     ///  d.start();
   548     /// \endcode
   549     void run(Node s) {
   550       init();
   551       addSource(s);
   552       start();
   553     }
   554     
   555     ///@}
   556 
   557     /// \name Query Functions
   558     /// The result of the %BelmannFord algorithm can be obtained using these
   559     /// functions.\n
   560     /// Before the use of these functions,
   561     /// either run() or start() must be called.
   562     
   563     ///@{
   564 
   565     /// \brief Copies the shortest path to \c t into \c p
   566     ///    
   567     /// This function copies the shortest path to \c t into \c p.
   568     /// If it \c t is a source itself or unreachable, then it does not
   569     /// alter \c p.
   570     ///
   571     /// \return Returns \c true if a path to \c t was actually copied to \c p,
   572     /// \c false otherwise.
   573     /// \sa DirPath
   574     template <typename Path>
   575     bool getPath(Path &p, Node t) {
   576       if(reached(t)) {
   577 	p.clear();
   578 	typename Path::Builder b(p);
   579 	for(b.setStartNode(t);predEdge(t)!=INVALID;t=predNode(t))
   580 	  b.pushFront(predEdge(t));
   581 	b.commit();
   582 	return true;
   583       }
   584       return false;
   585     }
   586 	  
   587     /// \brief The distance of a node from the root.
   588     ///
   589     /// Returns the distance of a node from the root.
   590     /// \pre \ref run() must be called before using this function.
   591     /// \warning If node \c v in unreachable from the root the return value
   592     /// of this funcion is undefined.
   593     Value dist(Node v) const { return (*_dist)[v]; }
   594 
   595     /// \brief Returns the 'previous edge' of the shortest path tree.
   596     ///
   597     /// For a node \c v it returns the 'previous edge' of the shortest path 
   598     /// tree, i.e. it returns the last edge of a shortest path from the root 
   599     /// to \c v. It is \ref INVALID if \c v is unreachable from the root or 
   600     /// if \c v=s. The shortest path tree used here is equal to the shortest 
   601     /// path tree used in \ref predNode(). 
   602     /// \pre \ref run() must be called before using
   603     /// this function.
   604     Edge predEdge(Node v) const { return (*_pred)[v]; }
   605 
   606     /// \brief Returns the 'previous node' of the shortest path tree.
   607     ///
   608     /// For a node \c v it returns the 'previous node' of the shortest path 
   609     /// tree, i.e. it returns the last but one node from a shortest path from 
   610     /// the root to \c /v. It is INVALID if \c v is unreachable from the root 
   611     /// or if \c v=s. The shortest path tree used here is equal to the 
   612     /// shortest path tree used in \ref predEdge().  \pre \ref run() must be 
   613     /// called before using this function.
   614     Node predNode(Node v) const { 
   615       return (*_pred)[v] == INVALID ? INVALID : graph->source((*_pred)[v]); 
   616     }
   617     
   618     /// \brief Returns a reference to the NodeMap of distances.
   619     ///
   620     /// Returns a reference to the NodeMap of distances. \pre \ref run() must
   621     /// be called before using this function.
   622     const DistMap &distMap() const { return *_dist;}
   623  
   624     /// \brief Returns a reference to the shortest path tree map.
   625     ///
   626     /// Returns a reference to the NodeMap of the edges of the
   627     /// shortest path tree.
   628     /// \pre \ref run() must be called before using this function.
   629     const PredMap &predMap() const { return *_pred; }
   630  
   631     /// \brief Checks if a node is reachable from the root.
   632     ///
   633     /// Returns \c true if \c v is reachable from the root.
   634     /// \pre \ref run() must be called before using this function.
   635     ///
   636     bool reached(Node v) { return (*_dist)[v] != OperationTraits::infinity(); }
   637     
   638     ///@}
   639   };
   640  
   641   /// \brief Default traits class of BelmannFord function.
   642   ///
   643   /// Default traits class of BelmannFord function.
   644   /// \param _Graph Graph type.
   645   /// \param _LengthMap Type of length map.
   646   template <typename _Graph, typename _LengthMap>
   647   struct BelmannFordWizardDefaultTraits {
   648     /// \brief The graph type the algorithm runs on. 
   649     typedef _Graph Graph;
   650 
   651     /// \brief The type of the map that stores the edge lengths.
   652     ///
   653     /// The type of the map that stores the edge lengths.
   654     /// It must meet the \ref concept::ReadMap "ReadMap" concept.
   655     typedef _LengthMap LengthMap;
   656 
   657     /// \brief The value type of the length map.
   658     typedef typename _LengthMap::Value Value;
   659 
   660     /// \brief Operation traits for belmann-ford algorithm.
   661     ///
   662     /// It defines the infinity type on the given Value type
   663     /// and the used operation.
   664     /// \see BelmannFordDefaultOperationTraits
   665     typedef BelmannFordDefaultOperationTraits<Value> OperationTraits;
   666 
   667     /// \brief The type of the map that stores the last
   668     /// edges of the shortest paths.
   669     /// 
   670     /// The type of the map that stores the last
   671     /// edges of the shortest paths.
   672     /// It must meet the \ref concept::WriteMap "WriteMap" concept.
   673     typedef NullMap <typename _Graph::Node,typename _Graph::Edge> PredMap;
   674 
   675     /// \brief Instantiates a PredMap.
   676     /// 
   677     /// This function instantiates a \ref PredMap. 
   678     static PredMap *createPredMap(const _Graph &) {
   679       return new PredMap();
   680     }
   681     /// \brief The type of the map that stores the dists of the nodes.
   682     ///
   683     /// The type of the map that stores the dists of the nodes.
   684     /// It must meet the \ref concept::WriteMap "WriteMap" concept.
   685     typedef NullMap<typename Graph::Node, Value> DistMap;
   686     /// \brief Instantiates a DistMap.
   687     ///
   688     /// This function instantiates a \ref DistMap. 
   689     static DistMap *createDistMap(const _Graph &) {
   690       return new DistMap();
   691     }
   692   };
   693   
   694   /// \brief Default traits used by \ref BelmannFordWizard
   695   ///
   696   /// To make it easier to use BelmannFord algorithm
   697   /// we have created a wizard class.
   698   /// This \ref BelmannFordWizard class needs default traits,
   699   /// as well as the \ref BelmannFord class.
   700   /// The \ref BelmannFordWizardBase is a class to be the default traits of the
   701   /// \ref BelmannFordWizard class.
   702   /// \todo More named parameters are required...
   703   template<class _Graph,class _LengthMap>
   704   class BelmannFordWizardBase 
   705     : public BelmannFordWizardDefaultTraits<_Graph,_LengthMap> {
   706 
   707     typedef BelmannFordWizardDefaultTraits<_Graph,_LengthMap> Base;
   708   protected:
   709     /// Type of the nodes in the graph.
   710     typedef typename Base::Graph::Node Node;
   711 
   712     /// Pointer to the underlying graph.
   713     void *_graph;
   714     /// Pointer to the length map
   715     void *_length;
   716     ///Pointer to the map of predecessors edges.
   717     void *_pred;
   718     ///Pointer to the map of distances.
   719     void *_dist;
   720     ///Pointer to the source node.
   721     Node _source;
   722 
   723     public:
   724     /// Constructor.
   725     
   726     /// This constructor does not require parameters, therefore it initiates
   727     /// all of the attributes to default values (0, INVALID).
   728     BelmannFordWizardBase() : _graph(0), _length(0), _pred(0),
   729 			   _dist(0), _source(INVALID) {}
   730 
   731     /// Constructor.
   732     
   733     /// This constructor requires some parameters,
   734     /// listed in the parameters list.
   735     /// Others are initiated to 0.
   736     /// \param graph is the initial value of  \ref _graph
   737     /// \param length is the initial value of  \ref _length
   738     /// \param source is the initial value of  \ref _source
   739     BelmannFordWizardBase(const _Graph& graph, 
   740 			  const _LengthMap& length, 
   741 			  Node source = INVALID) :
   742       _graph((void *)&graph), _length((void *)&length), _pred(0),
   743       _dist(0), _source(source) {}
   744 
   745   };
   746   
   747   /// A class to make the usage of BelmannFord algorithm easier
   748 
   749   /// This class is created to make it easier to use BelmannFord algorithm.
   750   /// It uses the functions and features of the plain \ref BelmannFord,
   751   /// but it is much simpler to use it.
   752   ///
   753   /// Simplicity means that the way to change the types defined
   754   /// in the traits class is based on functions that returns the new class
   755   /// and not on templatable built-in classes.
   756   /// When using the plain \ref BelmannFord
   757   /// the new class with the modified type comes from
   758   /// the original class by using the ::
   759   /// operator. In the case of \ref BelmannFordWizard only
   760   /// a function have to be called and it will
   761   /// return the needed class.
   762   ///
   763   /// It does not have own \ref run method. When its \ref run method is called
   764   /// it initiates a plain \ref BelmannFord class, and calls the \ref 
   765   /// BelmannFord::run method of it.
   766   template<class _Traits>
   767   class BelmannFordWizard : public _Traits {
   768     typedef _Traits Base;
   769 
   770     ///The type of the underlying graph.
   771     typedef typename _Traits::Graph Graph;
   772 
   773     typedef typename Graph::Node Node;
   774     typedef typename Graph::NodeIt NodeIt;
   775     typedef typename Graph::Edge Edge;
   776     typedef typename Graph::OutEdgeIt EdgeIt;
   777     
   778     ///The type of the map that stores the edge lengths.
   779     typedef typename _Traits::LengthMap LengthMap;
   780 
   781     ///The type of the length of the edges.
   782     typedef typename LengthMap::Value Value;
   783 
   784     ///\brief The type of the map that stores the last
   785     ///edges of the shortest paths.
   786     typedef typename _Traits::PredMap PredMap;
   787 
   788     ///The type of the map that stores the dists of the nodes.
   789     typedef typename _Traits::DistMap DistMap;
   790 
   791   public:
   792     /// Constructor.
   793     BelmannFordWizard() : _Traits() {}
   794 
   795     /// \brief Constructor that requires parameters.
   796     ///
   797     /// Constructor that requires parameters.
   798     /// These parameters will be the default values for the traits class.
   799     BelmannFordWizard(const Graph& graph, const LengthMap& length, 
   800 		      Node source = INVALID) 
   801       : _Traits(graph, length, source) {}
   802 
   803     /// \brief Copy constructor
   804     BelmannFordWizard(const _Traits &b) : _Traits(b) {}
   805 
   806     ~BelmannFordWizard() {}
   807 
   808     /// \brief Runs BelmannFord algorithm from a given node.
   809     ///    
   810     /// Runs BelmannFord algorithm from a given node.
   811     /// The node can be given by the \ref source function.
   812     void run() {
   813       if(Base::_source == INVALID) throw UninitializedParameter();
   814       BelmannFord<Graph,LengthMap,_Traits> 
   815 	bf(*(Graph*)Base::_graph, *(LengthMap*)Base::_length);
   816       if (Base::_pred) bf.predMap(*(PredMap*)Base::_pred);
   817       if (Base::_dist) bf.distMap(*(DistMap*)Base::_dist);
   818       bf.run(Base::_source);
   819     }
   820 
   821     /// \brief Runs BelmannFord algorithm from the given node.
   822     ///
   823     /// Runs BelmannFord algorithm from the given node.
   824     /// \param s is the given source.
   825     void run(Node source) {
   826       Base::_source = source;
   827       run();
   828     }
   829 
   830     template<class T>
   831     struct DefPredMapBase : public Base {
   832       typedef T PredMap;
   833       static PredMap *createPredMap(const Graph &) { return 0; };
   834       DefPredMapBase(const _Traits &b) : _Traits(b) {}
   835     };
   836     
   837     ///\brief \ref named-templ-param "Named parameter"
   838     ///function for setting PredMap type
   839     ///
   840     /// \ref named-templ-param "Named parameter"
   841     ///function for setting PredMap type
   842     ///
   843     template<class T>
   844     BelmannFordWizard<DefPredMapBase<T> > predMap(const T &t) 
   845     {
   846       Base::_pred=(void *)&t;
   847       return BelmannFordWizard<DefPredMapBase<T> >(*this);
   848     }
   849     
   850     template<class T>
   851     struct DefDistMapBase : public Base {
   852       typedef T DistMap;
   853       static DistMap *createDistMap(const Graph &) { return 0; };
   854       DefDistMapBase(const _Traits &b) : _Traits(b) {}
   855     };
   856     
   857     ///\brief \ref named-templ-param "Named parameter"
   858     ///function for setting DistMap type
   859     ///
   860     /// \ref named-templ-param "Named parameter"
   861     ///function for setting DistMap type
   862     ///
   863     template<class T>
   864     BelmannFordWizard<DefDistMapBase<T> > distMap(const T &t) {
   865       Base::_dist=(void *)&t;
   866       return BelmannFordWizard<DefDistMapBase<T> >(*this);
   867     }
   868 
   869     template<class T>
   870     struct DefOperationTraitsBase : public Base {
   871       typedef T OperationTraits;
   872       DefOperationTraitsBase(const _Traits &b) : _Traits(b) {}
   873     };
   874     
   875     ///\brief \ref named-templ-param "Named parameter"
   876     ///function for setting OperationTraits type
   877     ///
   878     /// \ref named-templ-param "Named parameter"
   879     ///function for setting OperationTraits type
   880     ///
   881     template<class T>
   882     BelmannFordWizard<DefOperationTraitsBase<T> > distMap() {
   883       return BelmannFordWizard<DefDistMapBase<T> >(*this);
   884     }
   885     
   886     /// \brief Sets the source node, from which the BelmannFord algorithm runs.
   887     ///
   888     /// Sets the source node, from which the BelmannFord algorithm runs.
   889     /// \param s is the source node.
   890     BelmannFordWizard<_Traits>& source(Node source) {
   891       Base::_source = source;
   892       return *this;
   893     }
   894     
   895   };
   896   
   897   /// \brief Function type interface for BelmannFord algorithm.
   898   ///
   899   /// \ingroup flowalgs
   900   /// Function type interface for BelmannFord algorithm.
   901   ///
   902   /// This function also has several \ref named-templ-func-param 
   903   /// "named parameters", they are declared as the members of class 
   904   /// \ref BelmannFordWizard.
   905   /// The following
   906   /// example shows how to use these parameters.
   907   /// \code
   908   /// belmannford(g,length,source).predMap(preds).run();
   909   /// \endcode
   910   /// \warning Don't forget to put the \ref BelmannFordWizard::run() "run()"
   911   /// to the end of the parameter list.
   912   /// \sa BelmannFordWizard
   913   /// \sa BelmannFord
   914   template<class _Graph, class _LengthMap>
   915   BelmannFordWizard<BelmannFordWizardBase<_Graph,_LengthMap> >
   916   belmannFord(const _Graph& graph,
   917 	      const _LengthMap& length, 
   918 	      typename _Graph::Node source = INVALID) {
   919     return BelmannFordWizard<BelmannFordWizardBase<_Graph,_LengthMap> >
   920       (graph, length, source);
   921   }
   922 
   923 } //END OF NAMESPACE LEMON
   924 
   925 #endif
   926