lemon/lp_base.h
author klao
Wed, 16 Nov 2005 04:22:49 +0000
changeset 1797 91b8b9cea2f7
parent 1771 5faaa9880d4d
child 1810 474d093466a5
permissions -rw-r--r--
lp_test.cc:

* bugfix in cplex part: check compiling and running on two different instances
     1 /* -*- C++ -*-
     2  * lemon/lp_base.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_LP_BASE_H
    18 #define LEMON_LP_BASE_H
    19 
    20 #include<vector>
    21 #include<map>
    22 #include<limits>
    23 #include<cmath>
    24 
    25 #include<lemon/utility.h>
    26 #include<lemon/error.h>
    27 #include<lemon/invalid.h>
    28 
    29 ///\file
    30 ///\brief The interface of the LP solver interface.
    31 ///\ingroup gen_opt_group
    32 namespace lemon {
    33   
    34   ///Internal data structure to convert floating id's to fix one's
    35     
    36   ///\todo This might be implemented to be also usable in other places.
    37   class _FixId 
    38   {
    39   protected:
    40     std::vector<int> index;
    41     std::vector<int> cross;
    42     int first_free;
    43   public:
    44     _FixId() : first_free(-1) {};
    45     ///Convert a floating id to a fix one
    46 
    47     ///\param n is a floating id
    48     ///\return the corresponding fix id
    49     int fixId(int n) const {return cross[n];}
    50     ///Convert a fix id to a floating one
    51 
    52     ///\param n is a fix id
    53     ///\return the corresponding floating id
    54     int floatingId(int n) const { return index[n];}
    55     ///Add a new floating id.
    56 
    57     ///\param n is a floating id
    58     ///\return the fix id of the new value
    59     ///\todo Multiple additions should also be handled.
    60     int insert(int n)
    61     {
    62       if(n>=int(cross.size())) {
    63 	cross.resize(n+1);
    64 	if(first_free==-1) {
    65 	  cross[n]=index.size();
    66 	  index.push_back(n);
    67 	}
    68 	else {
    69 	  cross[n]=first_free;
    70 	  int next=index[first_free];
    71 	  index[first_free]=n;
    72 	  first_free=next;
    73 	}
    74 	return cross[n];
    75       }
    76       ///\todo Create an own exception type.
    77       else throw LogicError(); //floatingId-s must form a continuous range;
    78     }
    79     ///Remove a fix id.
    80 
    81     ///\param n is a fix id
    82     ///
    83     void erase(int n) 
    84     {
    85       int fl=index[n];
    86       index[n]=first_free;
    87       first_free=n;
    88       for(int i=fl+1;i<int(cross.size());++i) {
    89 	cross[i-1]=cross[i];
    90 	index[cross[i]]--;
    91       }
    92       cross.pop_back();
    93     }
    94     ///An upper bound on the largest fix id.
    95 
    96     ///\todo Do we need this?
    97     ///
    98     std::size_t maxFixId() { return cross.size()-1; }
    99   
   100   };
   101     
   102   ///Common base class for LP solvers
   103   
   104   ///\todo Much more docs
   105   ///\ingroup gen_opt_group
   106   class LpSolverBase {
   107 
   108   public:
   109 
   110     ///Possible outcomes of an LP solving procedure
   111     enum SolveExitStatus {
   112       ///This means that the problem has been successfully solved: either
   113       ///an optimal solution has been found or infeasibility/unboundedness
   114       ///has been proved.
   115       SOLVED = 0,
   116       ///Any other case (including the case when some user specified limit has been exceeded)
   117       UNSOLVED = 1
   118     };
   119       
   120       ///\e
   121     enum SolutionStatus {
   122       ///Feasible solution has'n been found (but may exist).
   123 
   124       ///\todo NOTFOUND might be a better name.
   125       ///
   126       UNDEFINED = 0,
   127       ///The problem has no feasible solution
   128       INFEASIBLE = 1,
   129       ///Feasible solution found
   130       FEASIBLE = 2,
   131       ///Optimal solution exists and found
   132       OPTIMAL = 3,
   133       ///The cost function is unbounded
   134 
   135       ///\todo Give a feasible solution and an infinite ray (and the
   136       ///corresponding bases)
   137       INFINITE = 4
   138     };
   139 
   140     ///\e The type of the investigated LP problem
   141     enum ProblemTypes {
   142       ///Primal-dual feasible
   143       PRIMAL_DUAL_FEASIBLE = 0,
   144       ///Primal feasible dual infeasible
   145       PRIMAL_FEASIBLE_DUAL_INFEASIBLE = 1,
   146       ///Primal infeasible dual feasible
   147       PRIMAL_INFEASIBLE_DUAL_FEASIBLE = 2,
   148       ///Primal-dual infeasible
   149       PRIMAL_DUAL_INFEASIBLE = 3,
   150       ///Could not determine so far
   151       UNKNOWN = 4
   152     };
   153 
   154     ///The floating point type used by the solver
   155     typedef double Value;
   156     ///The infinity constant
   157     static const Value INF;
   158     ///The not a number constant
   159     static const Value NaN;
   160     
   161     ///Refer to a column of the LP.
   162 
   163     ///This type is used to refer to a column of the LP.
   164     ///
   165     ///Its value remains valid and correct even after the addition or erase of
   166     ///other columns.
   167     ///
   168     ///\todo Document what can one do with a Col (INVALID, comparing,
   169     ///it is similar to Node/Edge)
   170     class Col {
   171     protected:
   172       int id;
   173       friend class LpSolverBase;
   174     public:
   175       typedef Value ExprValue;
   176       typedef True LpSolverCol;
   177       Col() {}
   178       Col(const Invalid&) : id(-1) {}
   179       bool operator<(Col c) const  {return id<c.id;}
   180       bool operator==(Col c) const  {return id==c.id;}
   181       bool operator!=(Col c) const  {return id==c.id;}
   182     };
   183 
   184     ///Refer to a row of the LP.
   185 
   186     ///This type is used to refer to a row of the LP.
   187     ///
   188     ///Its value remains valid and correct even after the addition or erase of
   189     ///other rows.
   190     ///
   191     ///\todo Document what can one do with a Row (INVALID, comparing,
   192     ///it is similar to Node/Edge)
   193     class Row {
   194     protected:
   195       int id;
   196       friend class LpSolverBase;
   197     public:
   198       typedef Value ExprValue;
   199       typedef True LpSolverRow;
   200       Row() {}
   201       Row(const Invalid&) : id(-1) {}
   202 
   203       bool operator<(Row c) const  {return id<c.id;}
   204       bool operator==(Row c) const  {return id==c.id;}
   205       bool operator!=(Row c) const  {return id==c.id;} 
   206    };
   207     
   208     ///Linear expression of variables and a constant component
   209     
   210     ///This data structure strores a linear expression of the variables
   211     ///(\ref Col "Col"s) and also has a constant component.
   212     ///
   213     ///There are several ways to access and modify the contents of this
   214     ///container.
   215     ///- Its it fully compatible with \c std::map<Col,double>, so for expamle
   216     ///if \c e is an Expr and \c v and \c w are of type \ref Col, then you can
   217     ///read and modify the coefficients like
   218     ///these.
   219     ///\code
   220     ///e[v]=5;
   221     ///e[v]+=12;
   222     ///e.erase(v);
   223     ///\endcode
   224     ///or you can also iterate through its elements.
   225     ///\code
   226     ///double s=0;
   227     ///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i)
   228     ///  s+=i->second;
   229     ///\endcode
   230     ///(This code computes the sum of all coefficients).
   231     ///- Numbers (<tt>double</tt>'s)
   232     ///and variables (\ref Col "Col"s) directly convert to an
   233     ///\ref Expr and the usual linear operations are defined so  
   234     ///\code
   235     ///v+w
   236     ///2*v-3.12*(v-w/2)+2
   237     ///v*2.1+(3*v+(v*12+w+6)*3)/2
   238     ///\endcode
   239     ///are valid \ref Expr "Expr"essions.
   240     ///The usual assignment operations are also defined.
   241     ///\code
   242     ///e=v+w;
   243     ///e+=2*v-3.12*(v-w/2)+2;
   244     ///e*=3.4;
   245     ///e/=5;
   246     ///\endcode
   247     ///- The constant member can be set and read by \ref constComp()
   248     ///\code
   249     ///e.constComp()=12;
   250     ///double c=e.constComp();
   251     ///\endcode
   252     ///
   253     ///\note \ref clear() not only sets all coefficients to 0 but also
   254     ///clears the constant components.
   255     ///
   256     ///\sa Constr
   257     ///
   258     class Expr : public std::map<Col,Value>
   259     {
   260     public:
   261       typedef LpSolverBase::Col Key; 
   262       typedef LpSolverBase::Value Value;
   263       
   264     protected:
   265       typedef std::map<Col,Value> Base;
   266       
   267       Value const_comp;
   268   public:
   269       typedef True IsLinExpression;
   270       ///\e
   271       Expr() : Base(), const_comp(0) { }
   272       ///\e
   273       Expr(const Key &v) : const_comp(0) {
   274 	Base::insert(std::make_pair(v, 1));
   275       }
   276       ///\e
   277       Expr(const Value &v) : const_comp(v) {}
   278       ///\e
   279       void set(const Key &v,const Value &c) {
   280 	Base::insert(std::make_pair(v, c));
   281       }
   282       ///\e
   283       Value &constComp() { return const_comp; }
   284       ///\e
   285       const Value &constComp() const { return const_comp; }
   286       
   287       ///Removes the components with zero coefficient.
   288       void simplify() {
   289 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   290 	  Base::iterator j=i;
   291 	  ++j;
   292 	  if ((*i).second==0) Base::erase(i);
   293 	  j=i;
   294 	}
   295       }
   296 
   297       ///Removes the coefficients closer to zero than \c tolerance.
   298       void simplify(double &tolerance) {
   299 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   300 	  Base::iterator j=i;
   301 	  ++j;
   302 	  if (std::fabs((*i).second)<tolerance) Base::erase(i);
   303 	  j=i;
   304 	}
   305       }
   306 
   307       ///Sets all coefficients and the constant component to 0.
   308       void clear() {
   309 	Base::clear();
   310 	const_comp=0;
   311       }
   312 
   313       ///\e
   314       Expr &operator+=(const Expr &e) {
   315 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   316 	  (*this)[j->first]+=j->second;
   317 	const_comp+=e.const_comp;
   318 	return *this;
   319       }
   320       ///\e
   321       Expr &operator-=(const Expr &e) {
   322 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   323 	  (*this)[j->first]-=j->second;
   324 	const_comp-=e.const_comp;
   325 	return *this;
   326       }
   327       ///\e
   328       Expr &operator*=(const Value &c) {
   329 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   330 	  j->second*=c;
   331 	const_comp*=c;
   332 	return *this;
   333       }
   334       ///\e
   335       Expr &operator/=(const Value &c) {
   336 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   337 	  j->second/=c;
   338 	const_comp/=c;
   339 	return *this;
   340       }
   341     };
   342     
   343     ///Linear constraint
   344 
   345     ///This data stucture represents a linear constraint in the LP.
   346     ///Basically it is a linear expression with a lower or an upper bound
   347     ///(or both). These parts of the constraint can be obtained by the member
   348     ///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
   349     ///respectively.
   350     ///There are two ways to construct a constraint.
   351     ///- You can set the linear expression and the bounds directly
   352     ///  by the functions above.
   353     ///- The operators <tt>\<=</tt>, <tt>==</tt> and  <tt>\>=</tt>
   354     ///  are defined between expressions, or even between constraints whenever
   355     ///  it makes sense. Therefore if \c e and \c f are linear expressions and
   356     ///  \c s and \c t are numbers, then the followings are valid expressions
   357     ///  and thus they can be used directly e.g. in \ref addRow() whenever
   358     ///  it makes sense.
   359     ///  \code
   360     ///  e<=s
   361     ///  e<=f
   362     ///  s<=e<=t
   363     ///  e>=t
   364     ///  \endcode
   365     ///\warning The validity of a constraint is checked only at run time, so
   366     ///e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will compile, but will throw a
   367     ///\ref LogicError exception.
   368     class Constr
   369     {
   370     public:
   371       typedef LpSolverBase::Expr Expr;
   372       typedef Expr::Key Key;
   373       typedef Expr::Value Value;
   374       
   375 //       static const Value INF;
   376 //       static const Value NaN;
   377 
   378     protected:
   379       Expr _expr;
   380       Value _lb,_ub;
   381     public:
   382       ///\e
   383       Constr() : _expr(), _lb(NaN), _ub(NaN) {}
   384       ///\e
   385       Constr(Value lb,const Expr &e,Value ub) :
   386 	_expr(e), _lb(lb), _ub(ub) {}
   387       ///\e
   388       Constr(const Expr &e,Value ub) : 
   389 	_expr(e), _lb(NaN), _ub(ub) {}
   390       ///\e
   391       Constr(Value lb,const Expr &e) :
   392 	_expr(e), _lb(lb), _ub(NaN) {}
   393       ///\e
   394       Constr(const Expr &e) : 
   395 	_expr(e), _lb(NaN), _ub(NaN) {}
   396       ///\e
   397       void clear() 
   398       {
   399 	_expr.clear();
   400 	_lb=_ub=NaN;
   401       }
   402 
   403       ///Reference to the linear expression 
   404       Expr &expr() { return _expr; }
   405       ///Cont reference to the linear expression 
   406       const Expr &expr() const { return _expr; }
   407       ///Reference to the lower bound.
   408 
   409       ///\return
   410       ///- \ref INF "INF": the constraint is lower unbounded.
   411       ///- \ref NaN "NaN": lower bound has not been set.
   412       ///- finite number: the lower bound
   413       Value &lowerBound() { return _lb; }
   414       ///The const version of \ref lowerBound()
   415       const Value &lowerBound() const { return _lb; }
   416       ///Reference to the upper bound.
   417 
   418       ///\return
   419       ///- \ref INF "INF": the constraint is upper unbounded.
   420       ///- \ref NaN "NaN": upper bound has not been set.
   421       ///- finite number: the upper bound
   422       Value &upperBound() { return _ub; }
   423       ///The const version of \ref upperBound()
   424       const Value &upperBound() const { return _ub; }
   425       ///Is the constraint lower bounded?
   426       bool lowerBounded() const { 
   427 	using namespace std;
   428 	return finite(_lb);
   429       }
   430       ///Is the constraint upper bounded?
   431       bool upperBounded() const {
   432 	using namespace std;
   433 	return finite(_ub);
   434       }
   435     };
   436     
   437     ///Linear expression of rows
   438     
   439     ///This data structure represents a column of the matrix,
   440     ///thas is it strores a linear expression of the dual variables
   441     ///(\ref Row "Row"s).
   442     ///
   443     ///There are several ways to access and modify the contents of this
   444     ///container.
   445     ///- Its it fully compatible with \c std::map<Row,double>, so for expamle
   446     ///if \c e is an DualExpr and \c v
   447     ///and \c w are of type \ref Row, then you can
   448     ///read and modify the coefficients like
   449     ///these.
   450     ///\code
   451     ///e[v]=5;
   452     ///e[v]+=12;
   453     ///e.erase(v);
   454     ///\endcode
   455     ///or you can also iterate through its elements.
   456     ///\code
   457     ///double s=0;
   458     ///for(LpSolverBase::DualExpr::iterator i=e.begin();i!=e.end();++i)
   459     ///  s+=i->second;
   460     ///\endcode
   461     ///(This code computes the sum of all coefficients).
   462     ///- Numbers (<tt>double</tt>'s)
   463     ///and variables (\ref Row "Row"s) directly convert to an
   464     ///\ref DualExpr and the usual linear operations are defined so  
   465     ///\code
   466     ///v+w
   467     ///2*v-3.12*(v-w/2)
   468     ///v*2.1+(3*v+(v*12+w)*3)/2
   469     ///\endcode
   470     ///are valid \ref DualExpr "DualExpr"essions.
   471     ///The usual assignment operations are also defined.
   472     ///\code
   473     ///e=v+w;
   474     ///e+=2*v-3.12*(v-w/2);
   475     ///e*=3.4;
   476     ///e/=5;
   477     ///\endcode
   478     ///
   479     ///\sa Expr
   480     ///
   481     class DualExpr : public std::map<Row,Value>
   482     {
   483     public:
   484       typedef LpSolverBase::Row Key; 
   485       typedef LpSolverBase::Value Value;
   486       
   487     protected:
   488       typedef std::map<Row,Value> Base;
   489       
   490     public:
   491       typedef True IsLinExpression;
   492       ///\e
   493       DualExpr() : Base() { }
   494       ///\e
   495       DualExpr(const Key &v) {
   496 	Base::insert(std::make_pair(v, 1));
   497       }
   498       ///\e
   499       void set(const Key &v,const Value &c) {
   500 	Base::insert(std::make_pair(v, c));
   501       }
   502       
   503       ///Removes the components with zero coefficient.
   504       void simplify() {
   505 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   506 	  Base::iterator j=i;
   507 	  ++j;
   508 	  if ((*i).second==0) Base::erase(i);
   509 	  j=i;
   510 	}
   511       }
   512 
   513       ///Removes the coefficients closer to zero than \c tolerance.
   514       void simplify(double &tolerance) {
   515 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   516 	  Base::iterator j=i;
   517 	  ++j;
   518 	  if (std::fabs((*i).second)<tolerance) Base::erase(i);
   519 	  j=i;
   520 	}
   521       }
   522 
   523 
   524       ///Sets all coefficients to 0.
   525       void clear() {
   526 	Base::clear();
   527       }
   528 
   529       ///\e
   530       DualExpr &operator+=(const DualExpr &e) {
   531 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   532 	  (*this)[j->first]+=j->second;
   533 	return *this;
   534       }
   535       ///\e
   536       DualExpr &operator-=(const DualExpr &e) {
   537 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   538 	  (*this)[j->first]-=j->second;
   539 	return *this;
   540       }
   541       ///\e
   542       DualExpr &operator*=(const Value &c) {
   543 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   544 	  j->second*=c;
   545 	return *this;
   546       }
   547       ///\e
   548       DualExpr &operator/=(const Value &c) {
   549 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   550 	  j->second/=c;
   551 	return *this;
   552       }
   553     };
   554     
   555 
   556   protected:
   557     _FixId rows;
   558     _FixId cols;
   559 
   560     //Abstract virtual functions
   561     virtual LpSolverBase &_newLp() = 0;
   562     virtual LpSolverBase &_copyLp(){
   563       ///\todo This should be implemented here, too,  when we have problem retrieving routines. It can be overriden.
   564 
   565       //Starting:
   566       LpSolverBase & newlp(_newLp());
   567       return newlp;
   568       //return *(LpSolverBase*)0;
   569     };
   570 
   571     virtual int _addCol() = 0;
   572     virtual int _addRow() = 0;
   573     virtual void _eraseCol(int col) = 0;
   574     virtual void _eraseRow(int row) = 0;
   575     virtual void _setRowCoeffs(int i, 
   576 			       int length,
   577                                int  const * indices, 
   578                                Value  const * values ) = 0;
   579     virtual void _setColCoeffs(int i, 
   580 			       int length,
   581                                int  const * indices, 
   582                                Value  const * values ) = 0;
   583     virtual void _setCoeff(int row, int col, Value value) = 0;
   584     virtual void _setColLowerBound(int i, Value value) = 0;
   585     virtual void _setColUpperBound(int i, Value value) = 0;
   586 //     virtual void _setRowLowerBound(int i, Value value) = 0;
   587 //     virtual void _setRowUpperBound(int i, Value value) = 0;
   588     virtual void _setRowBounds(int i, Value lower, Value upper) = 0;
   589     virtual void _setObjCoeff(int i, Value obj_coef) = 0;
   590     virtual void _clearObj()=0;
   591 //     virtual void _setObj(int length,
   592 //                          int  const * indices, 
   593 //                          Value  const * values ) = 0;
   594     virtual SolveExitStatus _solve() = 0;
   595     virtual Value _getPrimal(int i) = 0;
   596     virtual Value _getDual(int i) = 0;
   597     virtual Value _getPrimalValue() = 0;
   598     virtual SolutionStatus _getPrimalStatus() = 0;
   599     virtual SolutionStatus _getDualStatus() = 0;
   600     ///\todo This could be implemented here, too, using _getPrimalStatus() and
   601     ///_getDualStatus()
   602     virtual ProblemTypes _getProblemType() = 0;
   603 
   604     virtual void _setMax() = 0;
   605     virtual void _setMin() = 0;
   606     
   607     //Own protected stuff
   608     
   609     //Constant component of the objective function
   610     Value obj_const_comp;
   611     
   612 
   613 
   614     
   615   public:
   616 
   617     ///\e
   618     LpSolverBase() : obj_const_comp(0) {}
   619 
   620     ///\e
   621     virtual ~LpSolverBase() {}
   622 
   623     ///Creates a new LP problem
   624     LpSolverBase &newLp() {return _newLp();}
   625     ///Makes a copy of the LP problem
   626     LpSolverBase &copyLp() {return _copyLp();}
   627     
   628     ///\name Build up and modify the LP
   629 
   630     ///@{
   631 
   632     ///Add a new empty column (i.e a new variable) to the LP
   633     Col addCol() { Col c; c.id=cols.insert(_addCol()); return c;}
   634 
   635     ///\brief Adds several new columns
   636     ///(i.e a variables) at once
   637     ///
   638     ///This magic function takes a container as its argument
   639     ///and fills its elements
   640     ///with new columns (i.e. variables)
   641     ///\param t can be
   642     ///- a standard STL compatible iterable container with
   643     ///\ref Col as its \c values_type
   644     ///like
   645     ///\code
   646     ///std::vector<LpSolverBase::Col>
   647     ///std::list<LpSolverBase::Col>
   648     ///\endcode
   649     ///- a standard STL compatible iterable container with
   650     ///\ref Col as its \c mapped_type
   651     ///like
   652     ///\code
   653     ///std::map<AnyType,LpSolverBase::Col>
   654     ///\endcode
   655     ///- an iterable lemon \ref concept::WriteMap "write map" like 
   656     ///\code
   657     ///ListGraph::NodeMap<LpSolverBase::Col>
   658     ///ListGraph::EdgeMap<LpSolverBase::Col>
   659     ///\endcode
   660     ///\return The number of the created column.
   661 #ifdef DOXYGEN
   662     template<class T>
   663     int addColSet(T &t) { return 0;} 
   664 #else
   665     template<class T>
   666     typename enable_if<typename T::value_type::LpSolverCol,int>::type
   667     addColSet(T &t,dummy<0> = 0) {
   668       int s=0;
   669       for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
   670       return s;
   671     }
   672     template<class T>
   673     typename enable_if<typename T::value_type::second_type::LpSolverCol,
   674 		       int>::type
   675     addColSet(T &t,dummy<1> = 1) { 
   676       int s=0;
   677       for(typename T::iterator i=t.begin();i!=t.end();++i) {
   678 	i->second=addCol();
   679 	s++;
   680       }
   681       return s;
   682     }
   683     template<class T>
   684     typename enable_if<typename T::ValueSet::value_type::LpSolverCol,
   685 		       int>::type
   686     addColSet(T &t,dummy<2> = 2) { 
   687       ///\bug <tt>return addColSet(t.valueSet());</tt> should also work.
   688       int s=0;
   689       for(typename T::ValueSet::iterator i=t.valueSet().begin();
   690 	  i!=t.valueSet().end();
   691 	  ++i)
   692 	{
   693 	  *i=addCol();
   694 	  s++;
   695 	}
   696       return s;
   697     }
   698 #endif
   699 
   700     ///Set a column (i.e a dual constraint) of the LP
   701 
   702     ///\param c is the column to be modified
   703     ///\param e is a dual linear expression (see \ref DualExpr)
   704     ///\bug This is a temporary function. The interface will change to
   705     ///a better one.
   706     void setCol(Col c,const DualExpr &e) {
   707       std::vector<int> indices;
   708       std::vector<Value> values;
   709       indices.push_back(0);
   710       values.push_back(0);
   711       for(DualExpr::const_iterator i=e.begin(); i!=e.end(); ++i)
   712 	if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
   713 	  indices.push_back(rows.floatingId((*i).first.id));
   714 	  values.push_back((*i).second);
   715 	}
   716       _setColCoeffs(cols.floatingId(c.id),indices.size()-1,
   717 		    &indices[0],&values[0]);
   718     }
   719 
   720     ///Add a new column to the LP
   721 
   722     ///\param e is a dual linear expression (see \ref DualExpr)
   723     ///\param obj is the corresponding component of the objective
   724     ///function. It is 0 by default.
   725     ///\return The created column.
   726     ///\bug This is a temportary function. The interface will change to
   727     ///a better one.
   728     Col addCol(const DualExpr &e, Value obj=0) {
   729       Col c=addCol();
   730       setCol(c,e);
   731       objCoeff(c,obj);
   732       return c;
   733     }
   734 
   735     ///Add a new empty row (i.e a new constraint) to the LP
   736 
   737     ///This function adds a new empty row (i.e a new constraint) to the LP.
   738     ///\return The created row
   739     Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;}
   740 
   741     ///\brief Add several new rows
   742     ///(i.e a constraints) at once
   743     ///
   744     ///This magic function takes a container as its argument
   745     ///and fills its elements
   746     ///with new row (i.e. variables)
   747     ///\param t can be
   748     ///- a standard STL compatible iterable container with
   749     ///\ref Row as its \c values_type
   750     ///like
   751     ///\code
   752     ///std::vector<LpSolverBase::Row>
   753     ///std::list<LpSolverBase::Row>
   754     ///\endcode
   755     ///- a standard STL compatible iterable container with
   756     ///\ref Row as its \c mapped_type
   757     ///like
   758     ///\code
   759     ///std::map<AnyType,LpSolverBase::Row>
   760     ///\endcode
   761     ///- an iterable lemon \ref concept::WriteMap "write map" like 
   762     ///\code
   763     ///ListGraph::NodeMap<LpSolverBase::Row>
   764     ///ListGraph::EdgeMap<LpSolverBase::Row>
   765     ///\endcode
   766     ///\return The number of rows created.
   767 #ifdef DOXYGEN
   768     template<class T>
   769     int addRowSet(T &t) { return 0;} 
   770 #else
   771     template<class T>
   772     typename enable_if<typename T::value_type::LpSolverRow,int>::type
   773     addRowSet(T &t,dummy<0> = 0) {
   774       int s=0;
   775       for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;}
   776       return s;
   777     }
   778     template<class T>
   779     typename enable_if<typename T::value_type::second_type::LpSolverRow,
   780 		       int>::type
   781     addRowSet(T &t,dummy<1> = 1) { 
   782       int s=0;
   783       for(typename T::iterator i=t.begin();i!=t.end();++i) {
   784 	i->second=addRow();
   785 	s++;
   786       }
   787       return s;
   788     }
   789     template<class T>
   790     typename enable_if<typename T::ValueSet::value_type::LpSolverRow,
   791 		       int>::type
   792     addRowSet(T &t,dummy<2> = 2) { 
   793       ///\bug <tt>return addRowSet(t.valueSet());</tt> should also work.
   794       int s=0;
   795       for(typename T::ValueSet::iterator i=t.valueSet().begin();
   796 	  i!=t.valueSet().end();
   797 	  ++i)
   798 	{
   799 	  *i=addRow();
   800 	  s++;
   801 	}
   802       return s;
   803     }
   804 #endif
   805 
   806     ///Set a row (i.e a constraint) of the LP
   807 
   808     ///\param r is the row to be modified
   809     ///\param l is lower bound (-\ref INF means no bound)
   810     ///\param e is a linear expression (see \ref Expr)
   811     ///\param u is the upper bound (\ref INF means no bound)
   812     ///\bug This is a temportary function. The interface will change to
   813     ///a better one.
   814     ///\todo Option to control whether a constraint with a single variable is
   815     ///added or not.
   816     void setRow(Row r, Value l,const Expr &e, Value u) {
   817       std::vector<int> indices;
   818       std::vector<Value> values;
   819       indices.push_back(0);
   820       values.push_back(0);
   821       for(Expr::const_iterator i=e.begin(); i!=e.end(); ++i)
   822 	if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
   823 	  indices.push_back(cols.floatingId((*i).first.id));
   824 	  values.push_back((*i).second);
   825 	}
   826       _setRowCoeffs(rows.floatingId(r.id),indices.size()-1,
   827 		    &indices[0],&values[0]);
   828 //       _setRowLowerBound(rows.floatingId(r.id),l-e.constComp());
   829 //       _setRowUpperBound(rows.floatingId(r.id),u-e.constComp());
   830        _setRowBounds(rows.floatingId(r.id),l-e.constComp(),u-e.constComp());
   831     }
   832 
   833     ///Set a row (i.e a constraint) of the LP
   834 
   835     ///\param r is the row to be modified
   836     ///\param c is a linear expression (see \ref Constr)
   837     void setRow(Row r, const Constr &c) {
   838       setRow(r,
   839 	     c.lowerBounded()?c.lowerBound():-INF,
   840 	     c.expr(),
   841 	     c.upperBounded()?c.upperBound():INF);
   842     }
   843 
   844     ///Add a new row (i.e a new constraint) to the LP
   845 
   846     ///\param l is the lower bound (-\ref INF means no bound)
   847     ///\param e is a linear expression (see \ref Expr)
   848     ///\param u is the upper bound (\ref INF means no bound)
   849     ///\return The created row.
   850     ///\bug This is a temportary function. The interface will change to
   851     ///a better one.
   852     Row addRow(Value l,const Expr &e, Value u) {
   853       Row r=addRow();
   854       setRow(r,l,e,u);
   855       return r;
   856     }
   857 
   858     ///Add a new row (i.e a new constraint) to the LP
   859 
   860     ///\param c is a linear expression (see \ref Constr)
   861     ///\return The created row.
   862     Row addRow(const Constr &c) {
   863       Row r=addRow();
   864       setRow(r,c);
   865       return r;
   866     }
   867     ///Erase a coloumn (i.e a variable) from the LP
   868 
   869     ///\param c is the coloumn to be deleted
   870     ///\todo Please check this
   871     void eraseCol(Col c) {
   872       _eraseCol(cols.floatingId(c.id));
   873       cols.erase(c.id);
   874     }
   875     ///Erase a  row (i.e a constraint) from the LP
   876 
   877     ///\param r is the row to be deleted
   878     ///\todo Please check this
   879     void eraseRow(Row r) {
   880       _eraseRow(rows.floatingId(r.id));
   881       rows.erase(r.id);
   882     }
   883 
   884     ///Set an element of the coefficient matrix of the LP
   885 
   886     ///\param r is the row of the element to be modified
   887     ///\param c is the coloumn of the element to be modified
   888     ///\param val is the new value of the coefficient
   889     void setCoeff(Row r, Col c, Value val){
   890       _setCoeff(rows.floatingId(r.id),cols.floatingId(c.id), val);
   891     }
   892 
   893     /// Set the lower bound of a column (i.e a variable)
   894 
   895     /// The upper bound of a variable (column) has to be given by an 
   896     /// extended number of type Value, i.e. a finite number of type 
   897     /// Value or -\ref INF.
   898     void colLowerBound(Col c, Value value) {
   899       _setColLowerBound(cols.floatingId(c.id),value);
   900     }
   901     /// Set the upper bound of a column (i.e a variable)
   902 
   903     /// The upper bound of a variable (column) has to be given by an 
   904     /// extended number of type Value, i.e. a finite number of type 
   905     /// Value or \ref INF.
   906     void colUpperBound(Col c, Value value) {
   907       _setColUpperBound(cols.floatingId(c.id),value);
   908     };
   909     /// Set the lower and the upper bounds of a column (i.e a variable)
   910 
   911     /// The lower and the upper bounds of
   912     /// a variable (column) have to be given by an 
   913     /// extended number of type Value, i.e. a finite number of type 
   914     /// Value, -\ref INF or \ref INF.
   915     void colBounds(Col c, Value lower, Value upper) {
   916       _setColLowerBound(cols.floatingId(c.id),lower);
   917       _setColUpperBound(cols.floatingId(c.id),upper);
   918     }
   919     
   920 //     /// Set the lower bound of a row (i.e a constraint)
   921 
   922 //     /// The lower bound of a linear expression (row) has to be given by an 
   923 //     /// extended number of type Value, i.e. a finite number of type 
   924 //     /// Value or -\ref INF.
   925 //     void rowLowerBound(Row r, Value value) {
   926 //       _setRowLowerBound(rows.floatingId(r.id),value);
   927 //     };
   928 //     /// Set the upper bound of a row (i.e a constraint)
   929 
   930 //     /// The upper bound of a linear expression (row) has to be given by an 
   931 //     /// extended number of type Value, i.e. a finite number of type 
   932 //     /// Value or \ref INF.
   933 //     void rowUpperBound(Row r, Value value) {
   934 //       _setRowUpperBound(rows.floatingId(r.id),value);
   935 //     };
   936 
   937     /// Set the lower and the upper bounds of a row (i.e a constraint)
   938 
   939     /// The lower and the upper bounds of
   940     /// a constraint (row) have to be given by an 
   941     /// extended number of type Value, i.e. a finite number of type 
   942     /// Value, -\ref INF or \ref INF.
   943     void rowBounds(Row c, Value lower, Value upper) {
   944       _setRowBounds(rows.floatingId(c.id),lower, upper);
   945       // _setRowUpperBound(rows.floatingId(c.id),upper);
   946     }
   947     
   948     ///Set an element of the objective function
   949     void objCoeff(Col c, Value v) {_setObjCoeff(cols.floatingId(c.id),v); };
   950     ///Set the objective function
   951     
   952     ///\param e is a linear expression of type \ref Expr.
   953     ///\bug The previous objective function is not cleared!
   954     void setObj(Expr e) {
   955       _clearObj();
   956       for (Expr::iterator i=e.begin(); i!=e.end(); ++i)
   957 	objCoeff((*i).first,(*i).second);
   958       obj_const_comp=e.constComp();
   959     }
   960 
   961     ///Maximize
   962     void max() { _setMax(); }
   963     ///Minimize
   964     void min() { _setMin(); }
   965 
   966     
   967     ///@}
   968 
   969 
   970     ///\name Solve the LP
   971 
   972     ///@{
   973 
   974     ///\e Solve the LP problem at hand
   975     ///
   976     ///\return The result of the optimization procedure. Possible values and their meanings can be found in the documentation of \ref SolveExitStatus.
   977     ///
   978     ///\todo Which method is used to solve the problem
   979     SolveExitStatus solve() { return _solve(); }
   980     
   981     ///@}
   982     
   983     ///\name Obtain the solution
   984 
   985     ///@{
   986 
   987     /// The status of the primal problem (the original LP problem)
   988     SolutionStatus primalStatus() {
   989       return _getPrimalStatus();
   990     }
   991 
   992     /// The status of the dual (of the original LP) problem 
   993     SolutionStatus dualStatus() {
   994       return _getDualStatus();
   995     }
   996 
   997     ///The type of the original LP problem
   998     ProblemTypes problemType() {
   999       return _getProblemType();
  1000     }
  1001 
  1002     ///\e
  1003     Value primal(Col c) { return _getPrimal(cols.floatingId(c.id)); }
  1004 
  1005     ///\e
  1006     Value dual(Row r) { return _getDual(rows.floatingId(r.id)); }
  1007 
  1008     ///\e
  1009 
  1010     ///\return
  1011     ///- \ref INF or -\ref INF means either infeasibility or unboundedness
  1012     /// of the primal problem, depending on whether we minimize or maximize.
  1013     ///- \ref NaN if no primal solution is found.
  1014     ///- The (finite) objective value if an optimal solution is found.
  1015     Value primalValue() { return _getPrimalValue()+obj_const_comp;}
  1016     ///@}
  1017     
  1018   };  
  1019 
  1020   ///\e
  1021   
  1022   ///\relates LpSolverBase::Expr
  1023   ///
  1024   inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a,
  1025 				      const LpSolverBase::Expr &b) 
  1026   {
  1027     LpSolverBase::Expr tmp(a);
  1028     tmp+=b;
  1029     return tmp;
  1030   }
  1031   ///\e
  1032   
  1033   ///\relates LpSolverBase::Expr
  1034   ///
  1035   inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a,
  1036 				      const LpSolverBase::Expr &b) 
  1037   {
  1038     LpSolverBase::Expr tmp(a);
  1039     tmp-=b;
  1040     return tmp;
  1041   }
  1042   ///\e
  1043   
  1044   ///\relates LpSolverBase::Expr
  1045   ///
  1046   inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a,
  1047 				      const LpSolverBase::Value &b) 
  1048   {
  1049     LpSolverBase::Expr tmp(a);
  1050     tmp*=b;
  1051     return tmp;
  1052   }
  1053   
  1054   ///\e
  1055   
  1056   ///\relates LpSolverBase::Expr
  1057   ///
  1058   inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a,
  1059 				      const LpSolverBase::Expr &b) 
  1060   {
  1061     LpSolverBase::Expr tmp(b);
  1062     tmp*=a;
  1063     return tmp;
  1064   }
  1065   ///\e
  1066   
  1067   ///\relates LpSolverBase::Expr
  1068   ///
  1069   inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a,
  1070 				      const LpSolverBase::Value &b) 
  1071   {
  1072     LpSolverBase::Expr tmp(a);
  1073     tmp/=b;
  1074     return tmp;
  1075   }
  1076   
  1077   ///\e
  1078   
  1079   ///\relates LpSolverBase::Constr
  1080   ///
  1081   inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
  1082 					 const LpSolverBase::Expr &f) 
  1083   {
  1084     return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0);
  1085   }
  1086 
  1087   ///\e
  1088   
  1089   ///\relates LpSolverBase::Constr
  1090   ///
  1091   inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e,
  1092 					 const LpSolverBase::Expr &f) 
  1093   {
  1094     return LpSolverBase::Constr(e,f);
  1095   }
  1096 
  1097   ///\e
  1098   
  1099   ///\relates LpSolverBase::Constr
  1100   ///
  1101   inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
  1102 					 const LpSolverBase::Value &f) 
  1103   {
  1104     return LpSolverBase::Constr(e,f);
  1105   }
  1106 
  1107   ///\e
  1108   
  1109   ///\relates LpSolverBase::Constr
  1110   ///
  1111   inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
  1112 					 const LpSolverBase::Expr &f) 
  1113   {
  1114     return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0);
  1115   }
  1116 
  1117 
  1118   ///\e
  1119   
  1120   ///\relates LpSolverBase::Constr
  1121   ///
  1122   inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e,
  1123 					 const LpSolverBase::Expr &f) 
  1124   {
  1125     return LpSolverBase::Constr(f,e);
  1126   }
  1127 
  1128 
  1129   ///\e
  1130   
  1131   ///\relates LpSolverBase::Constr
  1132   ///
  1133   inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
  1134 					 const LpSolverBase::Value &f) 
  1135   {
  1136     return LpSolverBase::Constr(f,e);
  1137   }
  1138 
  1139   ///\e
  1140   
  1141   ///\relates LpSolverBase::Constr
  1142   ///
  1143   inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
  1144 					 const LpSolverBase::Expr &f) 
  1145   {
  1146     return LpSolverBase::Constr(0,e-f,0);
  1147   }
  1148 
  1149   ///\e
  1150   
  1151   ///\relates LpSolverBase::Constr
  1152   ///
  1153   inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n,
  1154 					 const LpSolverBase::Constr&c) 
  1155   {
  1156     LpSolverBase::Constr tmp(c);
  1157     ///\todo Create an own exception type.
  1158     if(!isnan(tmp.lowerBound())) throw LogicError();
  1159     else tmp.lowerBound()=n;
  1160     return tmp;
  1161   }
  1162   ///\e
  1163   
  1164   ///\relates LpSolverBase::Constr
  1165   ///
  1166   inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c,
  1167 					 const LpSolverBase::Value &n)
  1168   {
  1169     LpSolverBase::Constr tmp(c);
  1170     ///\todo Create an own exception type.
  1171     if(!isnan(tmp.upperBound())) throw LogicError();
  1172     else tmp.upperBound()=n;
  1173     return tmp;
  1174   }
  1175 
  1176   ///\e
  1177   
  1178   ///\relates LpSolverBase::Constr
  1179   ///
  1180   inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n,
  1181 					 const LpSolverBase::Constr&c) 
  1182   {
  1183     LpSolverBase::Constr tmp(c);
  1184     ///\todo Create an own exception type.
  1185     if(!isnan(tmp.upperBound())) throw LogicError();
  1186     else tmp.upperBound()=n;
  1187     return tmp;
  1188   }
  1189   ///\e
  1190   
  1191   ///\relates LpSolverBase::Constr
  1192   ///
  1193   inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c,
  1194 					 const LpSolverBase::Value &n)
  1195   {
  1196     LpSolverBase::Constr tmp(c);
  1197     ///\todo Create an own exception type.
  1198     if(!isnan(tmp.lowerBound())) throw LogicError();
  1199     else tmp.lowerBound()=n;
  1200     return tmp;
  1201   }
  1202 
  1203   ///\e
  1204   
  1205   ///\relates LpSolverBase::DualExpr
  1206   ///
  1207   inline LpSolverBase::DualExpr operator+(const LpSolverBase::DualExpr &a,
  1208 				      const LpSolverBase::DualExpr &b) 
  1209   {
  1210     LpSolverBase::DualExpr tmp(a);
  1211     tmp+=b;
  1212     return tmp;
  1213   }
  1214   ///\e
  1215   
  1216   ///\relates LpSolverBase::DualExpr
  1217   ///
  1218   inline LpSolverBase::DualExpr operator-(const LpSolverBase::DualExpr &a,
  1219 				      const LpSolverBase::DualExpr &b) 
  1220   {
  1221     LpSolverBase::DualExpr tmp(a);
  1222     tmp-=b;
  1223     return tmp;
  1224   }
  1225   ///\e
  1226   
  1227   ///\relates LpSolverBase::DualExpr
  1228   ///
  1229   inline LpSolverBase::DualExpr operator*(const LpSolverBase::DualExpr &a,
  1230 				      const LpSolverBase::Value &b) 
  1231   {
  1232     LpSolverBase::DualExpr tmp(a);
  1233     tmp*=b;
  1234     return tmp;
  1235   }
  1236   
  1237   ///\e
  1238   
  1239   ///\relates LpSolverBase::DualExpr
  1240   ///
  1241   inline LpSolverBase::DualExpr operator*(const LpSolverBase::Value &a,
  1242 				      const LpSolverBase::DualExpr &b) 
  1243   {
  1244     LpSolverBase::DualExpr tmp(b);
  1245     tmp*=a;
  1246     return tmp;
  1247   }
  1248   ///\e
  1249   
  1250   ///\relates LpSolverBase::DualExpr
  1251   ///
  1252   inline LpSolverBase::DualExpr operator/(const LpSolverBase::DualExpr &a,
  1253 				      const LpSolverBase::Value &b) 
  1254   {
  1255     LpSolverBase::DualExpr tmp(a);
  1256     tmp/=b;
  1257     return tmp;
  1258   }
  1259   
  1260 
  1261 } //namespace lemon
  1262 
  1263 #endif //LEMON_LP_BASE_H