src/lemon/preflow.h
author marci
Thu, 30 Sep 2004 17:32:00 +0000
changeset 931 9227ecd7b0bc
parent 920 2d6c8075d9d0
child 946 c94ef40a22ce
permissions -rw-r--r--
SubGraphWrapper code example, converter from dimacs to graphviz dot file.
The second one can be a tool for generating documentation of code examples.
     1 /* -*- C++ -*-
     2  * src/lemon/preflow.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_PREFLOW_H
    18 #define LEMON_PREFLOW_H
    19 
    20 #include <vector>
    21 #include <queue>
    22 
    23 #include <lemon/invalid.h>
    24 #include <lemon/maps.h>
    25 
    26 /// \file
    27 /// \ingroup flowalgs
    28 /// Implementation of the preflow algorithm.
    29 
    30 namespace lemon {
    31 
    32   /// \addtogroup flowalgs
    33   /// @{                                                   
    34 
    35   ///%Preflow algorithms class.
    36 
    37   ///This class provides an implementation of the \e preflow \e
    38   ///algorithm producing a flow of maximum value in a directed
    39   ///graph. The preflow algorithms are the fastest max flow algorithms
    40   ///up to now. The \e source node, the \e target node, the \e
    41   ///capacity of the edges and the \e starting \e flow value of the
    42   ///edges should be passed to the algorithm through the
    43   ///constructor. It is possible to change these quantities using the
    44   ///functions \ref setSource, \ref setTarget, \ref setCap and \ref
    45   ///setFlow.
    46   ///
    47   ///After running \ref lemon::Preflow::phase1() "phase1()"
    48   ///or \ref lemon::Preflow::run() "run()", the maximal flow
    49   ///value can be obtained by calling \ref flowValue(). The minimum
    50   ///value cut can be written into a <tt>bool</tt> node map by
    51   ///calling \ref minCut(). (\ref minMinCut() and \ref maxMinCut() writes
    52   ///the inclusionwise minimum and maximum of the minimum value cuts,
    53   ///resp.)
    54   ///
    55   ///\param Graph The directed graph type the algorithm runs on.
    56   ///\param Num The number type of the capacities and the flow values.
    57   ///\param CapMap The capacity map type.
    58   ///\param FlowMap The flow map type.
    59   ///
    60   ///\author Jacint Szabo 
    61   template <typename Graph, typename Num,
    62 	    typename CapMap=typename Graph::template EdgeMap<Num>,
    63             typename FlowMap=typename Graph::template EdgeMap<Num> >
    64   class Preflow {
    65   protected:
    66     typedef typename Graph::Node Node;
    67     typedef typename Graph::NodeIt NodeIt;
    68     typedef typename Graph::EdgeIt EdgeIt;
    69     typedef typename Graph::OutEdgeIt OutEdgeIt;
    70     typedef typename Graph::InEdgeIt InEdgeIt;
    71 
    72     typedef typename Graph::template NodeMap<Node> NNMap;
    73     typedef typename std::vector<Node> VecNode;
    74 
    75     const Graph* g;
    76     Node s;
    77     Node t;
    78     const CapMap* capacity;
    79     FlowMap* flow;
    80     int n;      //the number of nodes of G
    81     
    82     typename Graph::template NodeMap<int> level;  
    83     typename Graph::template NodeMap<Num> excess;
    84 
    85     // constants used for heuristics
    86     static const int H0=20;
    87     static const int H1=1;
    88 
    89     public:
    90 
    91     ///Indicates the property of the starting flow map.
    92 
    93     ///Indicates the property of the starting flow map. The meanings are as follows:
    94     ///- \c ZERO_FLOW: constant zero flow
    95     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
    96     ///the sum of the out-flows in every node except the \e source and
    97     ///the \e target.
    98     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
    99     ///least the sum of the out-flows in every node except the \e source.
   100     ///- \c NO_FLOW: indicates an unspecified edge map. \c flow will be 
   101     ///set to the constant zero flow in the beginning of
   102     ///the algorithm in this case.
   103     ///
   104     enum FlowEnum{
   105       NO_FLOW,
   106       ZERO_FLOW,
   107       GEN_FLOW,
   108       PRE_FLOW
   109     };
   110 
   111     ///Indicates the state of the preflow algorithm.
   112 
   113     ///Indicates the state of the preflow algorithm. The meanings are as follows:
   114     ///- \c AFTER_NOTHING: before running the algorithm or at an unspecified state.
   115     ///- \c AFTER_PREFLOW_PHASE_1: right after running \c phase1
   116     ///- \c AFTER_PREFLOW_PHASE_2: after running \ref phase2()
   117     ///
   118     enum StatusEnum {
   119       AFTER_NOTHING,
   120       AFTER_PREFLOW_PHASE_1,      
   121       AFTER_PREFLOW_PHASE_2
   122     };
   123     
   124     protected: 
   125       FlowEnum flow_prop;
   126     StatusEnum status; // Do not needle this flag only if necessary.
   127     
   128   public: 
   129     ///The constructor of the class.
   130 
   131     ///The constructor of the class. 
   132     ///\param _G The directed graph the algorithm runs on. 
   133     ///\param _s The source node.
   134     ///\param _t The target node.
   135     ///\param _capacity The capacity of the edges. 
   136     ///\param _flow The flow of the edges. 
   137     ///Except the graph, all of these parameters can be reset by
   138     ///calling \ref setSource, \ref setTarget, \ref setCap and \ref
   139     ///setFlow, resp.
   140       Preflow(const Graph& _G, Node _s, Node _t, 
   141 	      const CapMap& _capacity, FlowMap& _flow) :
   142 	g(&_G), s(_s), t(_t), capacity(&_capacity),
   143 	flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), 
   144 	flow_prop(NO_FLOW), status(AFTER_NOTHING) { }
   145 
   146 
   147                                                                               
   148     ///Runs the preflow algorithm.  
   149 
   150     ///Runs the preflow algorithm.
   151     ///
   152     void run() {
   153       phase1(flow_prop);
   154       phase2();
   155     }
   156     
   157     ///Runs the preflow algorithm.  
   158     
   159     ///Runs the preflow algorithm. 
   160     ///\pre The starting flow map must be
   161     /// - a constant zero flow if \c fp is \c ZERO_FLOW,
   162     /// - an arbitrary flow if \c fp is \c GEN_FLOW,
   163     /// - an arbitrary preflow if \c fp is \c PRE_FLOW,
   164     /// - any map if \c fp is NO_FLOW.
   165     ///If the starting flow map is a flow or a preflow then 
   166     ///the algorithm terminates faster.
   167     void run(FlowEnum fp) {
   168       flow_prop=fp;
   169       run();
   170     }
   171       
   172     ///Runs the first phase of the preflow algorithm.
   173 
   174     ///The preflow algorithm consists of two phases, this method runs
   175     ///the first phase. After the first phase the maximum flow value
   176     ///and a minimum value cut can already be computed, though a
   177     ///maximum flow is not yet obtained. So after calling this method
   178     ///\ref flowValue returns the value of a maximum flow and \ref
   179     ///minCut returns a minimum cut.     
   180     ///\warning \ref minMinCut and \ref maxMinCut do not give minimum
   181     ///value cuts unless calling \ref phase2.  
   182     ///\pre The starting flow must be 
   183     ///- a constant zero flow if \c fp is \c ZERO_FLOW, 
   184     ///- an arbitary flow if \c fp is \c GEN_FLOW, 
   185     ///- an arbitary preflow if \c fp is \c PRE_FLOW, 
   186     ///- any map if \c fp is NO_FLOW.
   187     void phase1(FlowEnum fp)
   188     {
   189       flow_prop=fp;
   190       phase1();
   191     }
   192 
   193     
   194     ///Runs the first phase of the preflow algorithm.
   195 
   196     ///The preflow algorithm consists of two phases, this method runs
   197     ///the first phase. After the first phase the maximum flow value
   198     ///and a minimum value cut can already be computed, though a
   199     ///maximum flow is not yet obtained. So after calling this method
   200     ///\ref flowValue returns the value of a maximum flow and \ref
   201     ///minCut returns a minimum cut.
   202     ///\warning \ref minCut(), \ref minMinCut() and \ref maxMinCut() do not
   203     ///give minimum value cuts unless calling \ref phase2().
   204     void phase1()
   205     {
   206       int heur0=(int)(H0*n);  //time while running 'bound decrease'
   207       int heur1=(int)(H1*n);  //time while running 'highest label'
   208       int heur=heur1;         //starting time interval (#of relabels)
   209       int numrelabel=0;
   210 
   211       bool what_heur=1;
   212       //It is 0 in case 'bound decrease' and 1 in case 'highest label'
   213 
   214       bool end=false;
   215       //Needed for 'bound decrease', true means no active 
   216       //nodes are above bound b.
   217 
   218       int k=n-2;  //bound on the highest level under n containing a node
   219       int b=k;    //bound on the highest level under n of an active node
   220 
   221       VecNode first(n, INVALID);
   222       NNMap next(*g, INVALID);
   223 
   224       NNMap left(*g, INVALID);
   225       NNMap right(*g, INVALID);
   226       VecNode level_list(n,INVALID);
   227       //List of the nodes in level i<n, set to n.
   228 
   229       preflowPreproc(first, next, level_list, left, right);
   230 
   231       //Push/relabel on the highest level active nodes.
   232       while ( true ) {
   233 	if ( b == 0 ) {
   234 	  if ( !what_heur && !end && k > 0 ) {
   235 	    b=k;
   236 	    end=true;
   237 	  } else break;
   238 	}
   239 
   240 	if ( first[b]==INVALID ) --b;
   241 	else {
   242 	  end=false;
   243 	  Node w=first[b];
   244 	  first[b]=next[w];
   245 	  int newlevel=push(w, next, first);
   246 	  if ( excess[w] > 0 ) relabel(w, newlevel, first, next, level_list, 
   247 				       left, right, b, k, what_heur);
   248 
   249 	  ++numrelabel;
   250 	  if ( numrelabel >= heur ) {
   251 	    numrelabel=0;
   252 	    if ( what_heur ) {
   253 	      what_heur=0;
   254 	      heur=heur0;
   255 	      end=false;
   256 	    } else {
   257 	      what_heur=1;
   258 	      heur=heur1;
   259 	      b=k;
   260 	    }
   261 	  }
   262 	}
   263       }
   264       flow_prop=PRE_FLOW;
   265       status=AFTER_PREFLOW_PHASE_1;
   266     }
   267     // Heuristics:
   268     //   2 phase
   269     //   gap
   270     //   list 'level_list' on the nodes on level i implemented by hand
   271     //   stack 'active' on the active nodes on level i      
   272     //   runs heuristic 'highest label' for H1*n relabels
   273     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
   274     //   Parameters H0 and H1 are initialized to 20 and 1.
   275 
   276 
   277     ///Runs the second phase of the preflow algorithm.
   278 
   279     ///The preflow algorithm consists of two phases, this method runs
   280     ///the second phase. After calling \ref phase1 and then \ref
   281     ///phase2, \ref flow contains a maximum flow, \ref flowValue
   282     ///returns the value of a maximum flow, \ref minCut returns a
   283     ///minimum cut, while the methods \ref minMinCut and \ref
   284     ///maxMinCut return the inclusionwise minimum and maximum cuts of
   285     ///minimum value, resp.  \pre \ref phase1 must be called before.
   286     void phase2()
   287     {
   288 
   289       int k=n-2;  //bound on the highest level under n containing a node
   290       int b=k;    //bound on the highest level under n of an active node
   291 
   292     
   293       VecNode first(n, INVALID);
   294       NNMap next(*g, INVALID); 
   295       level.set(s,0);
   296       std::queue<Node> bfs_queue;
   297       bfs_queue.push(s);
   298 
   299       while ( !bfs_queue.empty() ) {
   300 
   301 	Node v=bfs_queue.front();
   302 	bfs_queue.pop();
   303 	int l=level[v]+1;
   304 
   305 	for(InEdgeIt e(*g,v); e!=INVALID; ++e) {
   306 	  if ( (*capacity)[e] <= (*flow)[e] ) continue;
   307 	  Node u=g->tail(e);
   308 	  if ( level[u] >= n ) {
   309 	    bfs_queue.push(u);
   310 	    level.set(u, l);
   311 	    if ( excess[u] > 0 ) {
   312 	      next.set(u,first[l]);
   313 	      first[l]=u;
   314 	    }
   315 	  }
   316 	}
   317 
   318 	for(OutEdgeIt e(*g,v); e!=INVALID; ++e) {
   319 	  if ( 0 >= (*flow)[e] ) continue;
   320 	  Node u=g->head(e);
   321 	  if ( level[u] >= n ) {
   322 	    bfs_queue.push(u);
   323 	    level.set(u, l);
   324 	    if ( excess[u] > 0 ) {
   325 	      next.set(u,first[l]);
   326 	      first[l]=u;
   327 	    }
   328 	  }
   329 	}
   330       }
   331       b=n-2;
   332 
   333       while ( true ) {
   334 
   335 	if ( b == 0 ) break;
   336 	if ( first[b]==INVALID ) --b;
   337 	else {
   338 	  Node w=first[b];
   339 	  first[b]=next[w];
   340 	  int newlevel=push(w,next, first);
   341 	  
   342 	  //relabel
   343 	  if ( excess[w] > 0 ) {
   344 	    level.set(w,++newlevel);
   345 	    next.set(w,first[newlevel]);
   346 	    first[newlevel]=w;
   347 	    b=newlevel;
   348 	  }
   349 	} 
   350       } // while(true)
   351       flow_prop=GEN_FLOW;
   352       status=AFTER_PREFLOW_PHASE_2;
   353     }
   354 
   355     /// Returns the value of the maximum flow.
   356 
   357     /// Returns the value of the maximum flow by returning the excess
   358     /// of the target node \c t. This value equals to the value of
   359     /// the maximum flow already after running \ref phase1.
   360     Num flowValue() const {
   361       return excess[t];
   362     }
   363 
   364 
   365     ///Returns a minimum value cut.
   366 
   367     ///Sets \c M to the characteristic vector of a minimum value
   368     ///cut. This method can be called both after running \ref
   369     ///phase1 and \ref phase2. It is much faster after
   370     ///\ref phase1.  \pre M should be a bool-valued node-map. \pre
   371     ///If \ref minCut() is called after \ref phase2() then M should
   372     ///be initialized to false.
   373     template<typename _CutMap>
   374     void minCut(_CutMap& M) const {
   375       switch ( status ) {
   376 	case AFTER_PREFLOW_PHASE_1:
   377 	for(NodeIt v(*g); v!=INVALID; ++v) {
   378 	  if (level[v] < n) {
   379 	    M.set(v, false);
   380 	  } else {
   381 	    M.set(v, true);
   382 	  }
   383 	}
   384 	break;
   385 	case AFTER_PREFLOW_PHASE_2:
   386 	minMinCut(M);
   387 	break;
   388 	case AFTER_NOTHING:
   389 	break;
   390       }
   391     }
   392 
   393     ///Returns the inclusionwise minimum of the minimum value cuts.
   394 
   395     ///Sets \c M to the characteristic vector of the minimum value cut
   396     ///which is inclusionwise minimum. It is computed by processing a
   397     ///bfs from the source node \c s in the residual graph.  \pre M
   398     ///should be a node map of bools initialized to false.  \pre \ref
   399     ///phase2 should already be run.
   400     template<typename _CutMap>
   401     void minMinCut(_CutMap& M) const {
   402 
   403       std::queue<Node> queue;
   404       M.set(s,true);
   405       queue.push(s);
   406       
   407       while (!queue.empty()) {
   408 	Node w=queue.front();
   409 	queue.pop();
   410 	
   411 	for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) {
   412 	  Node v=g->head(e);
   413 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
   414 	    queue.push(v);
   415 	    M.set(v, true);
   416 	  }
   417 	}
   418 	
   419 	for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) {
   420 	  Node v=g->tail(e);
   421 	  if (!M[v] && (*flow)[e] > 0 ) {
   422 	    queue.push(v);
   423 	    M.set(v, true);
   424 	  }
   425 	}
   426       }
   427     }
   428     
   429     ///Returns the inclusionwise maximum of the minimum value cuts.
   430 
   431     ///Sets \c M to the characteristic vector of the minimum value cut
   432     ///which is inclusionwise maximum. It is computed by processing a
   433     ///backward bfs from the target node \c t in the residual graph.
   434     ///\pre \ref phase2() or run() should already be run.
   435     template<typename _CutMap>
   436     void maxMinCut(_CutMap& M) const {
   437 
   438       for(NodeIt v(*g) ; v!=INVALID; ++v) M.set(v, true);
   439 
   440       std::queue<Node> queue;
   441 
   442       M.set(t,false);
   443       queue.push(t);
   444 
   445       while (!queue.empty()) {
   446         Node w=queue.front();
   447 	queue.pop();
   448 
   449 	for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) {
   450 	  Node v=g->tail(e);
   451 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
   452 	    queue.push(v);
   453 	    M.set(v, false);
   454 	  }
   455 	}
   456 
   457 	for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) {
   458 	  Node v=g->head(e);
   459 	  if (M[v] && (*flow)[e] > 0 ) {
   460 	    queue.push(v);
   461 	    M.set(v, false);
   462 	  }
   463 	}
   464       }
   465     }
   466 
   467     ///Sets the source node to \c _s.
   468 
   469     ///Sets the source node to \c _s.
   470     /// 
   471     void setSource(Node _s) { 
   472       s=_s; 
   473       if ( flow_prop != ZERO_FLOW ) flow_prop=NO_FLOW;
   474       status=AFTER_NOTHING; 
   475     }
   476 
   477     ///Sets the target node to \c _t.
   478 
   479     ///Sets the target node to \c _t.
   480     ///
   481     void setTarget(Node _t) { 
   482       t=_t; 
   483       if ( flow_prop == GEN_FLOW ) flow_prop=PRE_FLOW;
   484       status=AFTER_NOTHING; 
   485     }
   486 
   487     /// Sets the edge map of the capacities to _cap.
   488 
   489     /// Sets the edge map of the capacities to _cap.
   490     /// 
   491     void setCap(const CapMap& _cap) { 
   492       capacity=&_cap; 
   493       status=AFTER_NOTHING; 
   494     }
   495 
   496     /// Sets the edge map of the flows to _flow.
   497 
   498     /// Sets the edge map of the flows to _flow.
   499     /// 
   500     void setFlow(FlowMap& _flow) { 
   501       flow=&_flow; 
   502       flow_prop=NO_FLOW;
   503       status=AFTER_NOTHING; 
   504     }
   505 
   506 
   507   private:
   508 
   509     int push(Node w, NNMap& next, VecNode& first) {
   510 
   511       int lev=level[w];
   512       Num exc=excess[w];
   513       int newlevel=n;       //bound on the next level of w
   514 
   515       for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) {
   516 	if ( (*flow)[e] >= (*capacity)[e] ) continue;
   517 	Node v=g->head(e);
   518 
   519 	if( lev > level[v] ) { //Push is allowed now
   520 	  
   521 	  if ( excess[v]<=0 && v!=t && v!=s ) {
   522 	    next.set(v,first[level[v]]);
   523 	    first[level[v]]=v;
   524 	  }
   525 
   526 	  Num cap=(*capacity)[e];
   527 	  Num flo=(*flow)[e];
   528 	  Num remcap=cap-flo;
   529 	  
   530 	  if ( remcap >= exc ) { //A nonsaturating push.
   531 	    
   532 	    flow->set(e, flo+exc);
   533 	    excess.set(v, excess[v]+exc);
   534 	    exc=0;
   535 	    break;
   536 
   537 	  } else { //A saturating push.
   538 	    flow->set(e, cap);
   539 	    excess.set(v, excess[v]+remcap);
   540 	    exc-=remcap;
   541 	  }
   542 	} else if ( newlevel > level[v] ) newlevel = level[v];
   543       } //for out edges wv
   544 
   545       if ( exc > 0 ) {
   546 	for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) {
   547 	  
   548 	  if( (*flow)[e] <= 0 ) continue;
   549 	  Node v=g->tail(e);
   550 
   551 	  if( lev > level[v] ) { //Push is allowed now
   552 
   553 	    if ( excess[v]<=0 && v!=t && v!=s ) {
   554 	      next.set(v,first[level[v]]);
   555 	      first[level[v]]=v;
   556 	    }
   557 
   558 	    Num flo=(*flow)[e];
   559 
   560 	    if ( flo >= exc ) { //A nonsaturating push.
   561 
   562 	      flow->set(e, flo-exc);
   563 	      excess.set(v, excess[v]+exc);
   564 	      exc=0;
   565 	      break;
   566 	    } else {  //A saturating push.
   567 
   568 	      excess.set(v, excess[v]+flo);
   569 	      exc-=flo;
   570 	      flow->set(e,0);
   571 	    }
   572 	  } else if ( newlevel > level[v] ) newlevel = level[v];
   573 	} //for in edges vw
   574 
   575       } // if w still has excess after the out edge for cycle
   576 
   577       excess.set(w, exc);
   578       
   579       return newlevel;
   580     }
   581     
   582     
   583     
   584     void preflowPreproc(VecNode& first, NNMap& next, 
   585 			VecNode& level_list, NNMap& left, NNMap& right)
   586     {
   587       for(NodeIt v(*g); v!=INVALID; ++v) level.set(v,n);
   588       std::queue<Node> bfs_queue;
   589       
   590       if ( flow_prop == GEN_FLOW || flow_prop == PRE_FLOW ) {
   591 	//Reverse_bfs from t in the residual graph,
   592 	//to find the starting level.
   593 	level.set(t,0);
   594 	bfs_queue.push(t);
   595 	
   596 	while ( !bfs_queue.empty() ) {
   597 	  
   598 	  Node v=bfs_queue.front();
   599 	  bfs_queue.pop();
   600 	  int l=level[v]+1;
   601 	  
   602 	  for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) {
   603 	    if ( (*capacity)[e] <= (*flow)[e] ) continue;
   604 	    Node w=g->tail(e);
   605 	    if ( level[w] == n && w != s ) {
   606 	      bfs_queue.push(w);
   607 	      Node z=level_list[l];
   608 	      if ( z!=INVALID ) left.set(z,w);
   609 	      right.set(w,z);
   610 	      level_list[l]=w;
   611 	      level.set(w, l);
   612 	    }
   613 	  }
   614 	  
   615 	  for(OutEdgeIt e(*g,v) ; e!=INVALID; ++e) {
   616 	    if ( 0 >= (*flow)[e] ) continue;
   617 	    Node w=g->head(e);
   618 	    if ( level[w] == n && w != s ) {
   619 	      bfs_queue.push(w);
   620 	      Node z=level_list[l];
   621 	      if ( z!=INVALID ) left.set(z,w);
   622 	      right.set(w,z);
   623 	      level_list[l]=w;
   624 	      level.set(w, l);
   625 	    }
   626 	  }
   627 	} //while
   628       } //if
   629 
   630 
   631       switch (flow_prop) {
   632 	case NO_FLOW:  
   633 	for(EdgeIt e(*g); e!=INVALID; ++e) flow->set(e,0);
   634 	case ZERO_FLOW:
   635 	for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0);
   636 	
   637 	//Reverse_bfs from t, to find the starting level.
   638 	level.set(t,0);
   639 	bfs_queue.push(t);
   640 	
   641 	while ( !bfs_queue.empty() ) {
   642 	  
   643 	  Node v=bfs_queue.front();
   644 	  bfs_queue.pop();
   645 	  int l=level[v]+1;
   646 	  
   647 	  for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) {
   648 	    Node w=g->tail(e);
   649 	    if ( level[w] == n && w != s ) {
   650 	      bfs_queue.push(w);
   651 	      Node z=level_list[l];
   652 	      if ( z!=INVALID ) left.set(z,w);
   653 	      right.set(w,z);
   654 	      level_list[l]=w;
   655 	      level.set(w, l);
   656 	    }
   657 	  }
   658 	}
   659 	
   660 	//the starting flow
   661 	for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) {
   662 	  Num c=(*capacity)[e];
   663 	  if ( c <= 0 ) continue;
   664 	  Node w=g->head(e);
   665 	  if ( level[w] < n ) {
   666 	    if ( excess[w] <= 0 && w!=t ) { //putting into the stack
   667 	      next.set(w,first[level[w]]);
   668 	      first[level[w]]=w;
   669 	    }
   670 	    flow->set(e, c);
   671 	    excess.set(w, excess[w]+c);
   672 	  }
   673 	}
   674 	break;
   675 
   676 	case GEN_FLOW:
   677 	for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0);
   678 	{
   679 	  Num exc=0;
   680 	  for(InEdgeIt e(*g,t) ; e!=INVALID; ++e) exc+=(*flow)[e];
   681 	  for(OutEdgeIt e(*g,t) ; e!=INVALID; ++e) exc-=(*flow)[e];
   682 	  excess.set(t,exc);
   683 	}
   684 
   685 	//the starting flow
   686 	for(OutEdgeIt e(*g,s); e!=INVALID; ++e)	{
   687 	  Num rem=(*capacity)[e]-(*flow)[e];
   688 	  if ( rem <= 0 ) continue;
   689 	  Node w=g->head(e);
   690 	  if ( level[w] < n ) {
   691 	    if ( excess[w] <= 0 && w!=t ) { //putting into the stack
   692 	      next.set(w,first[level[w]]);
   693 	      first[level[w]]=w;
   694 	    }   
   695 	    flow->set(e, (*capacity)[e]);
   696 	    excess.set(w, excess[w]+rem);
   697 	  }
   698 	}
   699 	
   700 	for(InEdgeIt e(*g,s); e!=INVALID; ++e) {
   701 	  if ( (*flow)[e] <= 0 ) continue;
   702 	  Node w=g->tail(e);
   703 	  if ( level[w] < n ) {
   704 	    if ( excess[w] <= 0 && w!=t ) {
   705 	      next.set(w,first[level[w]]);
   706 	      first[level[w]]=w;
   707 	    }  
   708 	    excess.set(w, excess[w]+(*flow)[e]);
   709 	    flow->set(e, 0);
   710 	  }
   711 	}
   712 	break;
   713 
   714 	case PRE_FLOW:	
   715 	//the starting flow
   716 	for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) {
   717 	  Num rem=(*capacity)[e]-(*flow)[e];
   718 	  if ( rem <= 0 ) continue;
   719 	  Node w=g->head(e);
   720 	  if ( level[w] < n ) flow->set(e, (*capacity)[e]);
   721 	}
   722 	
   723 	for(InEdgeIt e(*g,s) ; e!=INVALID; ++e) {
   724 	  if ( (*flow)[e] <= 0 ) continue;
   725 	  Node w=g->tail(e);
   726 	  if ( level[w] < n ) flow->set(e, 0);
   727 	}
   728 	
   729 	//computing the excess
   730 	for(NodeIt w(*g); w!=INVALID; ++w) {
   731 	  Num exc=0;
   732 	  for(InEdgeIt e(*g,w); e!=INVALID; ++e) exc+=(*flow)[e];
   733 	  for(OutEdgeIt e(*g,w); e!=INVALID; ++e) exc-=(*flow)[e];
   734 	  excess.set(w,exc);
   735 	  
   736 	  //putting the active nodes into the stack
   737 	  int lev=level[w];
   738 	    if ( exc > 0 && lev < n && Node(w) != t ) {
   739 	      next.set(w,first[lev]);
   740 	      first[lev]=w;
   741 	    }
   742 	}
   743 	break;
   744       } //switch
   745     } //preflowPreproc
   746 
   747 
   748     void relabel(Node w, int newlevel, VecNode& first, NNMap& next, 
   749 		 VecNode& level_list, NNMap& left,
   750 		 NNMap& right, int& b, int& k, bool what_heur )
   751     {
   752 
   753       int lev=level[w];
   754 
   755       Node right_n=right[w];
   756       Node left_n=left[w];
   757 
   758       //unlacing starts
   759       if ( right_n!=INVALID ) {
   760 	if ( left_n!=INVALID ) {
   761 	  right.set(left_n, right_n);
   762 	  left.set(right_n, left_n);
   763 	} else {
   764 	  level_list[lev]=right_n;
   765 	  left.set(right_n, INVALID);
   766 	}
   767       } else {
   768 	if ( left_n!=INVALID ) {
   769 	  right.set(left_n, INVALID);
   770 	} else {
   771 	  level_list[lev]=INVALID;
   772 	}
   773       }
   774       //unlacing ends
   775 
   776       if ( level_list[lev]==INVALID ) {
   777 
   778 	//gapping starts
   779 	for (int i=lev; i!=k ; ) {
   780 	  Node v=level_list[++i];
   781 	  while ( v!=INVALID ) {
   782 	    level.set(v,n);
   783 	    v=right[v];
   784 	  }
   785 	  level_list[i]=INVALID;
   786 	  if ( !what_heur ) first[i]=INVALID;
   787 	}
   788 
   789 	level.set(w,n);
   790 	b=lev-1;
   791 	k=b;
   792 	//gapping ends
   793 
   794       } else {
   795 
   796 	if ( newlevel == n ) level.set(w,n);
   797 	else {
   798 	  level.set(w,++newlevel);
   799 	  next.set(w,first[newlevel]);
   800 	  first[newlevel]=w;
   801 	  if ( what_heur ) b=newlevel;
   802 	  if ( k < newlevel ) ++k;      //now k=newlevel
   803 	  Node z=level_list[newlevel];
   804 	  if ( z!=INVALID ) left.set(z,w);
   805 	  right.set(w,z);
   806 	  left.set(w,INVALID);
   807 	  level_list[newlevel]=w;
   808 	}
   809       }
   810     } //relabel
   811 
   812   }; 
   813 } //namespace lemon
   814 
   815 #endif //LEMON_PREFLOW_H
   816 
   817 
   818 
   819