src/work/deba/list_graph.h
author marci
Thu, 30 Sep 2004 17:32:00 +0000
changeset 931 9227ecd7b0bc
parent 880 9d0bfd35b97c
child 986 e997802b855c
permissions -rw-r--r--
SubGraphWrapper code example, converter from dimacs to graphviz dot file.
The second one can be a tool for generating documentation of code examples.
     1 // -*- mode:C++ -*-
     2 
     3 #ifndef LEMON_LIST_GRAPH_H
     4 #define LEMON_LIST_GRAPH_H
     5 
     6 ///\ingroup graphs
     7 ///\file
     8 ///\brief ListGraph, SymListGraph, NodeSet and EdgeSet classes.
     9 
    10 #include <vector>
    11 #include <climits>
    12 
    13 #include "invalid.h"
    14 
    15 #include "array_map_factory.h"
    16 #include "map_registry.h"
    17 
    18 #include "map_defines.h"
    19 
    20 namespace lemon {
    21 
    22 /// \addtogroup graphs
    23 /// @{
    24 
    25   ///A list graph class.
    26 
    27   ///This is a simple and fast erasable graph implementation.
    28   ///
    29   ///It conforms to the graph interface documented under
    30   ///the description of \ref Graph.
    31   ///\sa \ref Graph.
    32   class ListGraph {
    33 
    34     //Nodes are double linked.
    35     //The free nodes are only single linked using the "next" field.
    36     struct NodeT 
    37     {
    38       int first_in,first_out;
    39       int prev, next;
    40       //      NodeT() {}
    41     };
    42     //Edges are double linked.
    43     //The free edges are only single linked using the "next_in" field.
    44     struct EdgeT 
    45     {
    46       int head, tail;
    47       int prev_in, prev_out;
    48       int next_in, next_out;
    49       //FIXME: is this necessary?
    50       //      EdgeT() : next_in(-1), next_out(-1) prev_in(-1), prev_out(-1) {}  
    51     };
    52 
    53     std::vector<NodeT> nodes;
    54     //The first node
    55     int first_node;
    56     //The first free node
    57     int first_free_node;
    58     std::vector<EdgeT> edges;
    59     //The first free edge
    60     int first_free_edge;
    61     
    62   protected:
    63     
    64   public:
    65     
    66     class Node;
    67     class Edge;
    68 
    69     typedef ListGraph Graph;
    70 
    71   public:
    72 
    73     class NodeIt;
    74     class EdgeIt;
    75     class OutEdgeIt;
    76     class InEdgeIt;
    77     
    78     CREATE_MAP_REGISTRIES;
    79     CREATE_MAPS(ArrayMapFactory);
    80   public:
    81 
    82     ListGraph() : nodes(), first_node(-1),
    83 		  first_free_node(-1), edges(), first_free_edge(-1) {}
    84     ListGraph(const ListGraph &_g) : nodes(_g.nodes), first_node(_g.first_node),
    85 				     first_free_node(_g.first_free_node),
    86 				     edges(_g.edges),
    87 				     first_free_edge(_g.first_free_edge) {}
    88     
    89 
    90     int nodeNum() const { return nodes.size(); }  //FIXME: What is this?
    91     int edgeNum() const { return edges.size(); }  //FIXME: What is this?
    92 
    93     ///Set the expected number of edges
    94 
    95     ///With this function, it is possible to set the expected number of edges.
    96     ///The use of this fasten the building of the graph and makes
    97     ///it possible to avoid the superfluous memory allocation.
    98     void reserveEdge(int n) { edges.reserve(n); };
    99     
   100     ///\bug This function does something different than
   101     ///its name would suggests...
   102     int maxNodeId() const { return nodes.size(); }  //FIXME: What is this?
   103     ///\bug This function does something different than
   104     ///its name would suggests...
   105     int maxEdgeId() const { return edges.size(); }  //FIXME: What is this?
   106 
   107     Node tail(Edge e) const { return edges[e.n].tail; }
   108     Node head(Edge e) const { return edges[e.n].head; }
   109 
   110     Node aNode(OutEdgeIt e) const { return edges[e.n].tail; }
   111     Node aNode(InEdgeIt e) const { return edges[e.n].head; }
   112 
   113     Node bNode(OutEdgeIt e) const { return edges[e.n].head; }
   114     Node bNode(InEdgeIt e) const { return edges[e.n].tail; }
   115 
   116     NodeIt& first(NodeIt& v) const { 
   117       v=NodeIt(*this); return v; }
   118     EdgeIt& first(EdgeIt& e) const { 
   119       e=EdgeIt(*this); return e; }
   120     OutEdgeIt& first(OutEdgeIt& e, const Node v) const { 
   121       e=OutEdgeIt(*this,v); return e; }
   122     InEdgeIt& first(InEdgeIt& e, const Node v) const { 
   123       e=InEdgeIt(*this,v); return e; }
   124 
   125 //     template< typename It >
   126 //     It first() const { It e; first(e); return e; }
   127 
   128 //     template< typename It >
   129 //     It first(Node v) const { It e; first(e,v); return e; }
   130 
   131     bool valid(Edge e) const { return e.n!=-1; }
   132     bool valid(Node n) const { return n.n!=-1; }
   133     
   134     void setInvalid(Edge &e) { e.n=-1; }
   135     void setInvalid(Node &n) { n.n=-1; }
   136     
   137     template <typename It> It getNext(It it) const
   138     { It tmp(it); return next(tmp); }
   139 
   140     NodeIt& next(NodeIt& it) const { 
   141       it.n=nodes[it.n].next; 
   142       return it; 
   143     }
   144     OutEdgeIt& next(OutEdgeIt& it) const
   145     { it.n=edges[it.n].next_out; return it; }
   146     InEdgeIt& next(InEdgeIt& it) const
   147     { it.n=edges[it.n].next_in; return it; }
   148     EdgeIt& next(EdgeIt& it) const {
   149       if(edges[it.n].next_in!=-1) { 
   150 	it.n=edges[it.n].next_in;
   151       }
   152       else {
   153 	int n;
   154 	for(n=nodes[edges[it.n].head].next;
   155 	    n!=-1 && nodes[n].first_in == -1;
   156 	    n = nodes[n].next) ;
   157 	it.n = (n==-1)?-1:nodes[n].first_in;
   158       }
   159       return it;
   160     }
   161 
   162     int id(Node v) const { return v.n; }
   163     int id(Edge e) const { return e.n; }
   164 
   165     /// Adds a new node to the graph.
   166 
   167     /// \todo It adds the nodes in a reversed order.
   168     /// (i.e. the lastly added node becomes the first.)
   169     Node addNode() {
   170       int n;
   171       
   172       if(first_free_node==-1)
   173 	{
   174 	  n = nodes.size();
   175 	  nodes.push_back(NodeT());
   176 	}
   177       else {
   178 	n = first_free_node;
   179 	first_free_node = nodes[n].next;
   180       }
   181       
   182       nodes[n].next = first_node;
   183       if(first_node != -1) nodes[first_node].prev = n;
   184       first_node = n;
   185       nodes[n].prev = -1;
   186       
   187       nodes[n].first_in = nodes[n].first_out = -1;
   188       
   189       Node nn; nn.n=n;
   190 
   191       //Update dynamic maps
   192       node_maps.add(nn);
   193 
   194       return nn;
   195     }
   196     
   197     Edge addEdge(Node u, Node v) {
   198       int n;
   199       
   200       if(first_free_edge==-1)
   201 	{
   202 	  n = edges.size();
   203 	  edges.push_back(EdgeT());
   204 	}
   205       else {
   206 	n = first_free_edge;
   207 	first_free_edge = edges[n].next_in;
   208       }
   209       
   210       edges[n].tail = u.n; edges[n].head = v.n;
   211 
   212       edges[n].next_out = nodes[u.n].first_out;
   213       if(nodes[u.n].first_out != -1) edges[nodes[u.n].first_out].prev_out = n;
   214       edges[n].next_in = nodes[v.n].first_in;
   215       if(nodes[v.n].first_in != -1) edges[nodes[v.n].first_in].prev_in = n;
   216       edges[n].prev_in = edges[n].prev_out = -1;
   217 	
   218       nodes[u.n].first_out = nodes[v.n].first_in = n;
   219 
   220       Edge e; e.n=n;
   221 
   222       //Update dynamic maps
   223       edge_maps.add(e);
   224 
   225       return e;
   226     }
   227 
   228   private:
   229     void eraseEdge(int n) {
   230       
   231       if(edges[n].next_in!=-1)
   232 	edges[edges[n].next_in].prev_in = edges[n].prev_in;
   233       if(edges[n].prev_in!=-1)
   234 	edges[edges[n].prev_in].next_in = edges[n].next_in;
   235       else nodes[edges[n].head].first_in = edges[n].next_in;
   236       
   237       if(edges[n].next_out!=-1)
   238 	edges[edges[n].next_out].prev_out = edges[n].prev_out;
   239       if(edges[n].prev_out!=-1)
   240 	edges[edges[n].prev_out].next_out = edges[n].next_out;
   241       else nodes[edges[n].tail].first_out = edges[n].next_out;
   242       
   243       edges[n].next_in = first_free_edge;
   244       first_free_edge = n;      
   245 
   246       //Update dynamic maps
   247       Edge e; e.n=n;
   248     }
   249       
   250   public:
   251 
   252     void erase(Node nn) {
   253       int n=nn.n;
   254       
   255       int m;
   256       while((m=nodes[n].first_in)!=-1) eraseEdge(m);
   257       while((m=nodes[n].first_out)!=-1) eraseEdge(m);
   258 
   259       if(nodes[n].next != -1) nodes[nodes[n].next].prev = nodes[n].prev;
   260       if(nodes[n].prev != -1) nodes[nodes[n].prev].next = nodes[n].next;
   261       else first_node = nodes[n].next;
   262       
   263       nodes[n].next = first_free_node;
   264       first_free_node = n;
   265 
   266       //Update dynamic maps
   267       node_maps.erase(nn);
   268      }
   269     
   270     void erase(Edge e) { 
   271       edge_maps.erase(e);
   272       eraseEdge(e.n); 
   273     }
   274 
   275     ///\bug Dynamic maps must be updated!
   276     ///
   277     void clear() {
   278       nodes.clear();edges.clear();
   279       first_node=first_free_node=first_free_edge=-1;
   280     }
   281 
   282     class Node {
   283       friend class ListGraph;
   284       template <typename T> friend class NodeMap;
   285        
   286       friend class Edge;
   287       friend class OutEdgeIt;
   288       friend class InEdgeIt;
   289       friend class SymEdge;
   290 
   291     protected:
   292       int n;
   293       friend int ListGraph::id(Node v) const; 
   294       Node(int nn) {n=nn;}
   295     public:
   296       Node() {}
   297       Node (Invalid) { n=-1; }
   298       bool operator==(const Node i) const {return n==i.n;}
   299       bool operator!=(const Node i) const {return n!=i.n;}
   300       bool operator<(const Node i) const {return n<i.n;}
   301     };
   302     
   303     class NodeIt : public Node {
   304       friend class ListGraph;
   305     public:
   306       NodeIt() : Node() { }
   307       NodeIt(Invalid i) : Node(i) { }
   308       NodeIt(const ListGraph& G) : Node(G.first_node) { }
   309       ///\todo Undocumented conversion Node -\> NodeIt.
   310       NodeIt(const ListGraph& G, const Node &n) : Node(n) { }
   311     };
   312 
   313     class Edge {
   314       friend class ListGraph;
   315       template <typename T> friend class EdgeMap;
   316 
   317       //template <typename T> friend class SymListGraph::SymEdgeMap;      
   318       //friend Edge SymListGraph::opposite(Edge) const;
   319       
   320       friend class Node;
   321       friend class NodeIt;
   322     protected:
   323       int n;
   324       friend int ListGraph::id(Edge e) const;
   325 
   326       Edge(int nn) {n=nn;}
   327     public:
   328       Edge() { }
   329       Edge (Invalid) { n=-1; }
   330       bool operator==(const Edge i) const {return n==i.n;}
   331       bool operator!=(const Edge i) const {return n!=i.n;}
   332       bool operator<(const Edge i) const {return n<i.n;}
   333       ///\bug This is a workaround until somebody tells me how to
   334       ///make class \c SymListGraph::SymEdgeMap friend of Edge
   335       int &idref() {return n;}
   336       const int &idref() const {return n;}
   337     };
   338     
   339     class EdgeIt : public Edge {
   340       friend class ListGraph;
   341     public:
   342       EdgeIt(const ListGraph& G) : Edge() {
   343       	int m;
   344 	for(m=G.first_node;
   345 	    m!=-1 && G.nodes[m].first_in == -1; m = G.nodes[m].next);
   346 	n = (m==-1)?-1:G.nodes[m].first_in;
   347       }
   348       EdgeIt (Invalid i) : Edge(i) { }
   349       EdgeIt() : Edge() { }
   350       ///\bug This is a workaround until somebody tells me how to
   351       ///make class \c SymListGraph::SymEdgeMap friend of Edge
   352       int &idref() {return n;}
   353     };
   354     
   355     class OutEdgeIt : public Edge {
   356       friend class ListGraph;
   357     public: 
   358       OutEdgeIt() : Edge() { }
   359       OutEdgeIt (Invalid i) : Edge(i) { }
   360 
   361       OutEdgeIt(const ListGraph& G,const Node v)
   362 	: Edge(G.nodes[v.n].first_out) {}
   363     };
   364     
   365     class InEdgeIt : public Edge {
   366       friend class ListGraph;
   367     public: 
   368       InEdgeIt() : Edge() { }
   369       InEdgeIt (Invalid i) : Edge(i) { }
   370       InEdgeIt(const ListGraph& G,Node v) :Edge(G.nodes[v.n].first_in) {}
   371     };
   372 
   373   };
   374 
   375   ///Graph for bidirectional edges.
   376 
   377   ///The purpose of this graph structure is to handle graphs
   378   ///having bidirectional edges. Here the function \c addEdge(u,v) adds a pair
   379   ///of oppositely directed edges.
   380   ///There is a new edge map type called
   381   ///\ref SymListGraph::SymEdgeMap "SymEdgeMap"
   382   ///that complements this
   383   ///feature by
   384   ///storing shared values for the edge pairs. The usual
   385   ///\ref Graph::EdgeMap "EdgeMap"
   386   ///can be used
   387   ///as well.
   388   ///
   389   ///The oppositely directed edge can also be obtained easily
   390   ///using \ref opposite.
   391   ///
   392   ///Here erase(Edge) deletes a pair of edges.
   393   ///
   394   ///\todo this date structure need some reconsiderations. Maybe it
   395   ///should be implemented independently from ListGraph.
   396 
   397 }
   398 
   399 #endif //LEMON_LIST_GRAPH_H