src/work/peter/hierarchygraph.h
author marci
Thu, 30 Sep 2004 17:32:00 +0000
changeset 931 9227ecd7b0bc
parent 880 9d0bfd35b97c
child 986 e997802b855c
permissions -rw-r--r--
SubGraphWrapper code example, converter from dimacs to graphviz dot file.
The second one can be a tool for generating documentation of code examples.
     1 // -*- c++ -*-
     2 #ifndef LEMON_NET_GRAPH_H
     3 #define LEMON_NET_GRAPH_H
     4 
     5 ///\file
     6 ///\brief Declaration of HierarchyGraph.
     7 
     8 #include <lemon/invalid.h>
     9 #include <lemon/maps.h>
    10 
    11 /// The namespace of LEMON
    12 namespace lemon
    13 {
    14 
    15   // @defgroup empty_graph The HierarchyGraph class
    16   // @{
    17 
    18   /// A graph class in that a simple edge can represent a path.
    19 
    20   /// This class provides common features of a graph structure
    21   /// that represents a network. You can handle with it layers. This
    22   /// means that a node in one layer can be a complete network in a nother
    23   /// layer.
    24 
    25   template < class Gact, class Gsub > class HierarchyGraph
    26   {
    27 
    28   public:
    29 
    30     /// The actual layer
    31     Gact actuallayer;
    32 
    33 
    34     /// Map of the subnetworks in the sublayer
    35     /// The appropriate edge nodes are also stored here
    36 
    37     class SubNetwork
    38     {
    39 
    40       struct actedgesubnodestruct
    41       {
    42 	typename Gact::Edge actedge;
    43 	typename Gsub::Node subnode;
    44       };
    45 
    46       int edgenumber;
    47       bool connectable;
    48       Gact *actuallayer;
    49       typename Gact::Node * actuallayernode;
    50       Gsub *subnetwork;
    51       actedgesubnodestruct *assignments;
    52 
    53     public:
    54 
    55       int addAssignment (typename Gact::Edge actedge,
    56 			 typename Gsub::Node subnode)
    57       {
    58 	if (!(actuallayer->valid (actedge)))
    59 	  {
    60 	    cerr << "The given edge is not in the given network!" << endl;
    61 	    return -1;
    62 	  }
    63 	else if ((actuallayer->id (actuallayer->tail (actedge)) !=
    64 		  actuallayer->id (*actuallayernode))
    65 		 && (actuallayer->id (actuallayer->head (actedge)) !=
    66 		     actuallayer->id (*actuallayernode)))
    67 	  {
    68 	    cerr << "The given edge does not connect to the given node!" <<
    69 	      endl;
    70 	    return -1;
    71 	  }
    72 
    73 	if (!(subnetwork->valid (subnode)))
    74 	  {
    75 	    cerr << "The given node is not in the given network!" << endl;
    76 	    return -1;
    77 	  }
    78 
    79 	int i = 0;
    80 	//while in the array there is valid note that is not equvivalent with the one that would be noted increase i
    81 	while ((i < edgenumber)
    82 	       && (actuallayer->valid (assignments[i].actedge))
    83 	       && (assignments[i].actedge != actedge))
    84 	  i++;
    85 	if (assignments[i].actedge == actedge)
    86 	  {
    87 	    cout << "Warning: Redefinement of assigment!!!" << endl;
    88 	  }
    89 	if (i == edgenumber)
    90 	  {
    91 	    cout <<
    92 	      "This case can't be!!! (because there should be the guven edge in the array already and the cycle had to stop)"
    93 	      << endl;
    94 	  }
    95 	//if(!(actuallayer->valid(assignments[i].actedge)))   //this condition is necessary if we do not obey redefinition
    96 	{
    97 	  assignments[i].actedge = actedge;
    98 	  assignments[i].subnode = subnode;
    99 	}
   100 
   101 	/// If to all of the edges a subnode is assigned then the subnetwork is connectable (attachable?)
   102 	/// We do not need to check for further attributes, because to notice an assignment we need
   103 	/// all of them to be correctly initialised before.
   104 	if (i == edgenumber - 1)
   105 	  connectable = 1;
   106 
   107 	return 0;
   108       }
   109 
   110       int setSubNetwork (Gsub * sn)
   111       {
   112 	subnetwork = sn;
   113 	return 0;
   114       }
   115 
   116       int setActualLayer (Gact * al)
   117       {
   118 	actuallayer = al;
   119 	return 0;
   120       }
   121 
   122       int setActualLayerNode (typename Gact::Node * aln)
   123       {
   124 	typename Gact::InEdgeIt iei;
   125 	typename Gact::OutEdgeIt oei;
   126 
   127 	actuallayernode = aln;
   128 
   129 	edgenumber = 0;
   130 
   131 	if (actuallayer)
   132 	  {
   133 	    for (iei = actuallayer->first (iei, (*actuallayernode));
   134 		 ((actuallayer->valid (iei))
   135 		  && (actuallayer->head (iei) == (*actuallayernode)));
   136 		 actuallayer->next (iei))
   137 	      {
   138 		cout << actuallayer->id (actuallayer->
   139 					 tail (iei)) << " " << actuallayer->
   140 		  id (actuallayer->head (iei)) << endl;
   141 		edgenumber++;
   142 	      }
   143 	    //cout << "Number of in-edges: " << edgenumber << endl;
   144 	    for (oei = actuallayer->first (oei, (*actuallayernode));
   145 		 ((actuallayer->valid (oei))
   146 		  && (actuallayer->tail (oei) == (*actuallayernode)));
   147 		 actuallayer->next (oei))
   148 	      {
   149 		cout << actuallayer->id (actuallayer->
   150 					 tail (oei)) << " " << actuallayer->
   151 		  id (actuallayer->head (oei)) << endl;
   152 		edgenumber++;
   153 	      }
   154 	    //cout << "Number of in+out-edges: " << edgenumber << endl;
   155 	    assignments = new actedgesubnodestruct[edgenumber];
   156 	    for (int i = 0; i < edgenumber; i++)
   157 	      {
   158 		assignments[i].actedge = INVALID;
   159 		assignments[i].subnode = INVALID;
   160 	      }
   161 	  }
   162 	else
   163 	  {
   164 	    cerr << "There is no actual layer defined yet!" << endl;
   165 	    return -1;
   166 	  }
   167 
   168 	return 0;
   169       }
   170 
   171     SubNetwork ():edgenumber (0), connectable (false), actuallayer (NULL),
   172 	actuallayernode (NULL), subnetwork (NULL),
   173 	assignments (NULL)
   174       {
   175       }
   176 
   177     };
   178 
   179     typename Gact::template NodeMap < SubNetwork > subnetworks;
   180 
   181 
   182     /// Defalult constructor.
   183     /// We don't need any extra lines, because the actuallayer
   184     /// variable has run its constructor, when we have created this class
   185     /// So only the two maps has to be initialised here.
   186   HierarchyGraph ():subnetworks (actuallayer)
   187     {
   188     }
   189 
   190 
   191     ///Copy consructor.
   192   HierarchyGraph (const HierarchyGraph < Gact, Gsub > &HG):actuallayer (HG.actuallayer),
   193       subnetworks
   194       (actuallayer)
   195     {
   196     }
   197 
   198 
   199     /// The base type of the node iterators.
   200 
   201     /// This is the base type of each node iterators,
   202     /// thus each kind of node iterator will convert to this.
   203     /// The Node type of the HierarchyGraph is the Node type of the actual layer.
   204     typedef typename Gact::Node Node;
   205 
   206 
   207     /// This iterator goes through each node.
   208 
   209     /// Its usage is quite simple, for example you can count the number
   210     /// of nodes in graph \c G of type \c Graph like this:
   211     /// \code
   212     ///int count=0;
   213     ///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++;
   214     /// \endcode
   215     /// The NodeIt type of the HierarchyGraph is the NodeIt type of the actual layer.
   216     typedef typename Gact::NodeIt NodeIt;
   217 
   218 
   219     /// The base type of the edge iterators.
   220     /// The Edge type of the HierarchyGraph is the Edge type of the actual layer.
   221     typedef typename Gact::Edge Edge;
   222 
   223 
   224     /// This iterator goes trough the outgoing edges of a node.
   225 
   226     /// This iterator goes trough the \e outgoing edges of a certain node
   227     /// of a graph.
   228     /// Its usage is quite simple, for example you can count the number
   229     /// of outgoing edges of a node \c n
   230     /// in graph \c G of type \c Graph as follows.
   231     /// \code
   232     ///int count=0;
   233     ///for(Graph::OutEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
   234     /// \endcode
   235     /// The OutEdgeIt type of the HierarchyGraph is the OutEdgeIt type of the actual layer.
   236     typedef typename Gact::OutEdgeIt OutEdgeIt;
   237 
   238 
   239     /// This iterator goes trough the incoming edges of a node.
   240 
   241     /// This iterator goes trough the \e incoming edges of a certain node
   242     /// of a graph.
   243     /// Its usage is quite simple, for example you can count the number
   244     /// of outgoing edges of a node \c n
   245     /// in graph \c G of type \c Graph as follows.
   246     /// \code
   247     ///int count=0;
   248     ///for(Graph::InEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
   249     /// \endcode
   250     /// The InEdgeIt type of the HierarchyGraph is the InEdgeIt type of the actual layer.
   251     typedef typename Gact::InEdgeIt InEdgeIt;
   252 
   253 
   254     /// This iterator goes through each edge.
   255 
   256     /// This iterator goes through each edge of a graph.
   257     /// Its usage is quite simple, for example you can count the number
   258     /// of edges in a graph \c G of type \c Graph as follows:
   259     /// \code
   260     ///int count=0;
   261     ///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++;
   262     /// \endcode
   263     /// The EdgeIt type of the HierarchyGraph is the EdgeIt type of the actual layer.
   264     typedef typename Gact::EdgeIt EdgeIt;
   265 
   266 
   267     /// First node of the graph.
   268 
   269     /// \retval i the first node.
   270     /// \return the first node.
   271     typename Gact::NodeIt & first (typename Gact::NodeIt & i) const
   272     {
   273       return actuallayer.first (i);
   274     }
   275 
   276 
   277     /// The first incoming edge.
   278     typename Gact::InEdgeIt & first (typename Gact::InEdgeIt & i,
   279 				     typename Gact::Node) const
   280     {
   281       return actuallayer.first (i);
   282     }
   283 
   284 
   285     /// The first outgoing edge.
   286     typename Gact::OutEdgeIt & first (typename Gact::OutEdgeIt & i,
   287 				      typename Gact::Node) const
   288     {
   289       return actuallayer.first (i);
   290     }
   291 
   292 
   293     //  SymEdgeIt &first(SymEdgeIt &, Node) const { return i;}
   294     /// The first edge of the Graph.
   295     typename Gact::EdgeIt & first (typename Gact::EdgeIt & i) const
   296     {
   297       return actuallayer.first (i);
   298     }
   299 
   300 
   301 //     Node getNext(Node) const {}
   302 //     InEdgeIt getNext(InEdgeIt) const {}
   303 //     OutEdgeIt getNext(OutEdgeIt) const {}
   304 //     //SymEdgeIt getNext(SymEdgeIt) const {}
   305 //     EdgeIt getNext(EdgeIt) const {}
   306 
   307 
   308     /// Go to the next node.
   309     typename Gact::NodeIt & next (typename Gact::NodeIt & i) const
   310     {
   311       return actuallayer.next (i);
   312     }
   313     /// Go to the next incoming edge.
   314     typename Gact::InEdgeIt & next (typename Gact::InEdgeIt & i) const
   315     {
   316       return actuallayer.next (i);
   317     }
   318     /// Go to the next outgoing edge.
   319     typename Gact::OutEdgeIt & next (typename Gact::OutEdgeIt & i) const
   320     {
   321       return actuallayer.next (i);
   322     }
   323     //SymEdgeIt &next(SymEdgeIt &) const {}
   324     /// Go to the next edge.
   325     typename Gact::EdgeIt & next (typename Gact::EdgeIt & i) const
   326     {
   327       return actuallayer.next (i);
   328     }
   329 
   330     ///Gives back the head node of an edge.
   331     typename Gact::Node head (typename Gact::Edge edge) const
   332     {
   333       return actuallayer.head (edge);
   334     }
   335     ///Gives back the tail node of an edge.
   336     typename Gact::Node tail (typename Gact::Edge edge) const
   337     {
   338       return actuallayer.tail (edge);
   339     }
   340 
   341     //   Node aNode(InEdgeIt) const {}
   342     //   Node aNode(OutEdgeIt) const {}
   343     //   Node aNode(SymEdgeIt) const {}
   344 
   345     //   Node bNode(InEdgeIt) const {}
   346     //   Node bNode(OutEdgeIt) const {}
   347     //   Node bNode(SymEdgeIt) const {}
   348 
   349     /// Checks if a node iterator is valid
   350 
   351     ///\todo Maybe, it would be better if iterator converted to
   352     ///bool directly, as Jacint prefers.
   353     bool valid (const typename Gact::Node & node) const
   354     {
   355       return actuallayer.valid (node);
   356     }
   357     /// Checks if an edge iterator is valid
   358 
   359     ///\todo Maybe, it would be better if iterator converted to
   360     ///bool directly, as Jacint prefers.
   361     bool valid (const typename Gact::Edge & edge) const
   362     {
   363       return actuallayer.valid (edge);
   364     }
   365 
   366     ///Gives back the \e id of a node.
   367 
   368     ///\warning Not all graph structures provide this feature.
   369     ///
   370     int id (const typename Gact::Node & node) const
   371     {
   372       return actuallayer.id (node);
   373     }
   374     ///Gives back the \e id of an edge.
   375 
   376     ///\warning Not all graph structures provide this feature.
   377     ///
   378     int id (const typename Gact::Edge & edge) const
   379     {
   380       return actuallayer.id (edge);
   381     }
   382 
   383     //void setInvalid(Node &) const {};
   384     //void setInvalid(Edge &) const {};
   385 
   386     ///Add a new node to the graph.
   387 
   388     /// \return the new node.
   389     ///
   390     typename Gact::Node addNode ()
   391     {
   392       return actuallayer.addNode ();
   393     }
   394     ///Add a new edge to the graph.
   395 
   396     ///Add a new edge to the graph with tail node \c tail
   397     ///and head node \c head.
   398     ///\return the new edge.
   399     typename Gact::Edge addEdge (typename Gact::Node node1,
   400 				 typename Gact::Node node2)
   401     {
   402       return actuallayer.addEdge (node1, node2);
   403     }
   404 
   405     /// Resets the graph.
   406 
   407     /// This function deletes all edges and nodes of the graph.
   408     /// It also frees the memory allocated to store them.
   409     void clear ()
   410     {
   411       actuallayer.clear ();
   412     }
   413 
   414     int nodeNum () const
   415     {
   416       return actuallayer.nodeNum ();
   417     }
   418     int edgeNum () const
   419     {
   420       return actuallayer.edgeNum ();
   421     }
   422 
   423     ///Read/write/reference map of the nodes to type \c T.
   424 
   425     ///Read/write/reference map of the nodes to type \c T.
   426     /// \sa MemoryMap
   427     /// \todo We may need copy constructor
   428     /// \todo We may need conversion from other nodetype
   429     /// \todo We may need operator=
   430     /// \warning Making maps that can handle bool type (NodeMap<bool>)
   431     /// needs extra attention!
   432 
   433     template < class T > class NodeMap
   434     {
   435     public:
   436       typedef T ValueType;
   437       typedef Node KeyType;
   438 
   439       NodeMap (const HierarchyGraph &)
   440       {
   441       }
   442       NodeMap (const HierarchyGraph &, T)
   443       {
   444       }
   445 
   446       template < typename TT > NodeMap (const NodeMap < TT > &)
   447       {
   448       }
   449 
   450       /// Sets the value of a node.
   451 
   452       /// Sets the value associated with node \c i to the value \c t.
   453       ///
   454       void set (Node, T)
   455       {
   456       }
   457       // Gets the value of a node.
   458       //T get(Node i) const {return *(T*)0;}  //FIXME: Is it necessary?
   459       T & operator[](Node)
   460       {
   461 	return *(T *) 0;
   462       }
   463       const T & operator[] (Node) const
   464       {
   465 	return *(T *) 0;
   466       }
   467 
   468       /// Updates the map if the graph has been changed
   469 
   470       /// \todo Do we need this?
   471       ///
   472       void update ()
   473       {
   474       }
   475       void update (T a)
   476       {
   477       }				//FIXME: Is it necessary
   478     };
   479 
   480     ///Read/write/reference map of the edges to type \c T.
   481 
   482     ///Read/write/reference map of the edges to type \c T.
   483     ///It behaves exactly in the same way as \ref NodeMap.
   484     /// \sa NodeMap
   485     /// \sa MemoryMap
   486     /// \todo We may need copy constructor
   487     /// \todo We may need conversion from other edgetype
   488     /// \todo We may need operator=
   489     template < class T > class EdgeMap
   490     {
   491     public:
   492       typedef T ValueType;
   493       typedef Edge KeyType;
   494 
   495       EdgeMap (const HierarchyGraph &)
   496       {
   497       }
   498       EdgeMap (const HierarchyGraph &, T)
   499       {
   500       }
   501 
   502       ///\todo It can copy between different types.
   503       ///
   504       template < typename TT > EdgeMap (const EdgeMap < TT > &)
   505       {
   506       }
   507 
   508       void set (Edge, T)
   509       {
   510       }
   511       //T get(Edge) const {return *(T*)0;}
   512       T & operator[](Edge)
   513       {
   514 	return *(T *) 0;
   515       }
   516       const T & operator[] (Edge) const
   517       {
   518 	return *(T *) 0;
   519       }
   520 
   521       void update ()
   522       {
   523       }
   524       void update (T a)
   525       {
   526       }				//FIXME: Is it necessary
   527     };
   528   };
   529 
   530   /// An empty erasable graph class.
   531 
   532   /// This class provides all the common features of an \e erasable graph
   533   /// structure,
   534   /// however completely without implementations and real data structures
   535   /// behind the interface.
   536   /// All graph algorithms should compile with this class, but it will not
   537   /// run properly, of course.
   538   ///
   539   /// \todo This blabla could be replaced by a sepatate description about
   540   /// s.
   541   ///
   542   /// It can be used for checking the interface compatibility,
   543   /// or it can serve as a skeleton of a new graph structure.
   544   ///
   545   /// Also, you will find here the full documentation of a certain graph
   546   /// feature, the documentation of a real graph imlementation
   547   /// like @ref ListGraph or
   548   /// @ref SmartGraph will just refer to this structure.
   549 template < typename Gact, typename Gsub > class ErasableHierarchyGraph:public HierarchyGraph < Gact,
   550     Gsub
   551     >
   552   {
   553   public:
   554     /// Deletes a node.
   555     void erase (typename Gact::Node n)
   556     {
   557       actuallayer.erase (n);
   558     }
   559     /// Deletes an edge.
   560     void erase (typename Gact::Edge e)
   561     {
   562       actuallayer.erase (e);
   563     }
   564 
   565     /// Defalult constructor.
   566     ErasableHierarchyGraph ()
   567     {
   568     }
   569     ///Copy consructor.
   570     ErasableHierarchyGraph (const HierarchyGraph < Gact, Gsub > &EPG)
   571     {
   572     }
   573   };
   574 
   575 
   576   // @}
   577 
   578 }				//namespace lemon
   579 
   580 
   581 #endif // LEMON_SKELETON_GRAPH_H