lemon/maps.h
author deba
Fri, 31 Mar 2006 11:10:44 +0000
changeset 2025 93fcadf94ab0
parent 1956 a055123339d5
child 2032 18c08f9129e4
permissions -rw-r--r--
Bugfix in the minimum cost arborescence algorithm
Dual solution computation and interface for algorithm
Optimality test on random graph
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_MAPS_H
    20 #define LEMON_MAPS_H
    21 
    22 #include <iterator>
    23 
    24 #include <lemon/bits/utility.h>
    25 #include <lemon/bits/traits.h>
    26 
    27 ///\file
    28 ///\ingroup maps
    29 ///\brief Miscellaneous property maps
    30 ///
    31 ///\todo This file has the same name as the concept file in concept/,
    32 /// and this is not easily detectable in docs...
    33 
    34 #include <map>
    35 
    36 namespace lemon {
    37 
    38   /// \addtogroup maps
    39   /// @{
    40 
    41   /// Base class of maps.
    42 
    43   /// Base class of maps.
    44   /// It provides the necessary <tt>typedef</tt>s required by the map concept.
    45   template<typename K, typename T>
    46   class MapBase {
    47   public:
    48     ///\e
    49     typedef K Key;
    50     ///\e
    51     typedef T Value;
    52   };
    53 
    54   /// Null map. (a.k.a. DoNothingMap)
    55 
    56   /// If you have to provide a map only for its type definitions,
    57   /// or if you have to provide a writable map, but
    58   /// data written to it will sent to <tt>/dev/null</tt>...
    59   template<typename K, typename T>
    60   class NullMap : public MapBase<K, T> {
    61   public:
    62     typedef MapBase<K, T> Parent;
    63     typedef typename Parent::Key Key;
    64     typedef typename Parent::Value Value;
    65     
    66     /// Gives back a default constructed element.
    67     T operator[](const K&) const { return T(); }
    68     /// Absorbs the value.
    69     void set(const K&, const T&) {}
    70   };
    71 
    72   template <typename K, typename V> 
    73   NullMap<K, V> nullMap() {
    74     return NullMap<K, V>();
    75   }
    76 
    77 
    78   /// Constant map.
    79 
    80   /// This is a readable map which assigns a specified value to each key.
    81   /// In other aspects it is equivalent to the \ref NullMap.
    82   /// \todo set could be used to set the value.
    83   template<typename K, typename T>
    84   class ConstMap : public MapBase<K, T> {
    85   private:
    86     T v;
    87   public:
    88 
    89     typedef MapBase<K, T> Parent;
    90     typedef typename Parent::Key Key;
    91     typedef typename Parent::Value Value;
    92 
    93     /// Default constructor
    94 
    95     /// The value of the map will be uninitialized. 
    96     /// (More exactly it will be default constructed.)
    97     ConstMap() {}
    98     ///\e
    99 
   100     /// \param _v The initial value of the map.
   101     ///
   102     ConstMap(const T &_v) : v(_v) {}
   103 
   104     T operator[](const K&) const { return v; }
   105     void set(const K&, const T&) {}
   106 
   107     template<typename T1>
   108     struct rebind {
   109       typedef ConstMap<K, T1> other;
   110     };
   111 
   112     template<typename T1>
   113     ConstMap(const ConstMap<K, T1> &, const T &_v) : v(_v) {}
   114   };
   115 
   116   ///Returns a \ref ConstMap class
   117 
   118   ///This function just returns a \ref ConstMap class.
   119   ///\relates ConstMap
   120   template<typename K, typename V> 
   121   inline ConstMap<K, V> constMap(const V &v) {
   122     return ConstMap<K, V>(v);
   123   }
   124 
   125 
   126   //\todo to document later
   127   template<typename T, T v>
   128   struct Const { };
   129 
   130   //\todo to document later
   131   template<typename K, typename V, V v>
   132   class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
   133   public:
   134     typedef MapBase<K, V> Parent;
   135     typedef typename Parent::Key Key;
   136     typedef typename Parent::Value Value;
   137 
   138     ConstMap() { }
   139     V operator[](const K&) const { return v; }
   140     void set(const K&, const V&) { }
   141   };
   142 
   143   ///Returns a \ref ConstMap class
   144 
   145   ///This function just returns a \ref ConstMap class.
   146   ///\relates ConstMap
   147   template<typename K, typename V, V v> 
   148   inline ConstMap<K, Const<V, v> > constMap() {
   149     return ConstMap<K, Const<V, v> >();
   150   }
   151 
   152   /// \c std::map wrapper
   153 
   154   /// This is essentially a wrapper for \c std::map. With addition that
   155   /// you can specify a default value different from \c Value() .
   156   ///
   157   /// \todo Provide allocator parameter...
   158   template <typename K, typename T, typename Compare = std::less<K> >
   159   class StdMap : public std::map<K, T, Compare> {
   160     typedef std::map<K, T, Compare> parent;
   161     T v;
   162     typedef typename parent::value_type PairType;
   163 
   164   public:
   165     ///\e
   166     typedef K Key;
   167     ///\e
   168     typedef T Value;
   169     ///\e
   170     typedef T& Reference;
   171     ///\e
   172     typedef const T& ConstReference;
   173 
   174 
   175     StdMap() : v() {}
   176     /// Constructor with specified default value
   177     StdMap(const T& _v) : v(_v) {}
   178 
   179     /// \brief Constructs the map from an appropriate std::map.
   180     ///
   181     /// \warning Inefficient: copies the content of \c m !
   182     StdMap(const parent &m) : parent(m) {}
   183     /// \brief Constructs the map from an appropriate std::map, and explicitly
   184     /// specifies a default value.
   185     ///
   186     /// \warning Inefficient: copies the content of \c m !
   187     StdMap(const parent &m, const T& _v) : parent(m), v(_v) {}
   188     
   189     template<typename T1, typename Comp1>
   190     StdMap(const StdMap<Key, T1,Comp1> &m, const T &_v) { 
   191       //FIXME; 
   192     }
   193 
   194     Reference operator[](const Key &k) {
   195       return insert(PairType(k,v)).first -> second;
   196     }
   197 
   198     ConstReference operator[](const Key &k) const {
   199       typename parent::iterator i = lower_bound(k);
   200       if (i == parent::end() || parent::key_comp()(k, (*i).first))
   201 	return v;
   202       return (*i).second;
   203     }
   204     void set(const Key &k, const T &t) {
   205       parent::operator[](k) = t;
   206     }
   207 
   208     /// Changes the default value of the map.
   209     /// \return Returns the previous default value.
   210     ///
   211     /// \warning The value of some keys (which has already been queried, but
   212     /// the value has been unchanged from the default) may change!
   213     T setDefault(const T &_v) { T old=v; v=_v; return old; }
   214 
   215     template<typename T1>
   216     struct rebind {
   217       typedef StdMap<Key, T1,Compare> other;
   218     };
   219   };
   220 
   221   /// @}
   222 
   223   /// \addtogroup map_adaptors
   224   /// @{
   225 
   226   /// \brief Identity mapping.
   227   ///
   228   /// This mapping gives back the given key as value without any
   229   /// modification. 
   230   template <typename T>
   231   class IdentityMap : public MapBase<T, T> {
   232   public:
   233     typedef MapBase<T, T> Parent;
   234     typedef typename Parent::Key Key;
   235     typedef typename Parent::Value Value;
   236 
   237     const T& operator[](const T& t) const {
   238       return t;
   239     }
   240   };
   241 
   242   ///Returns an \ref IdentityMap class
   243 
   244   ///This function just returns an \ref IdentityMap class.
   245   ///\relates IdentityMap
   246   template<typename T>
   247   inline IdentityMap<T> identityMap() {
   248     return IdentityMap<T>();
   249   }
   250   
   251 
   252   ///Convert the \c Value of a map to another type.
   253 
   254   ///This \ref concept::ReadMap "read only map"
   255   ///converts the \c Value of a maps to type \c T.
   256   ///Its \c Key is inherited from \c M.
   257   template <typename M, typename T> 
   258   class ConvertMap : public MapBase<typename M::Key, T> {
   259     const M& m;
   260   public:
   261     typedef MapBase<typename M::Key, T> Parent;
   262     typedef typename Parent::Key Key;
   263     typedef typename Parent::Value Value;
   264 
   265     ///Constructor
   266 
   267     ///Constructor
   268     ///\param _m is the underlying map
   269     ConvertMap(const M &_m) : m(_m) {};
   270 
   271     /// \brief The subscript operator.
   272     ///
   273     /// The subscript operator.
   274     /// \param k The key
   275     /// \return The target of the edge 
   276     Value operator[](const Key& k) const {return m[k];}
   277   };
   278   
   279   ///Returns an \ref ConvertMap class
   280 
   281   ///This function just returns an \ref ConvertMap class.
   282   ///\relates ConvertMap
   283   ///\todo The order of the template parameters are changed.
   284   template<typename T, typename M>
   285   inline ConvertMap<M, T> convertMap(const M &m) {
   286     return ConvertMap<M, T>(m);
   287   }
   288 
   289   ///Sum of two maps
   290 
   291   ///This \ref concept::ReadMap "read only map" returns the sum of the two
   292   ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   293   ///The \c Key and \c Value of M2 must be convertible to those of \c M1.
   294 
   295   template<typename M1, typename M2> 
   296   class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
   297     const M1& m1;
   298     const M2& m2;
   299 
   300   public:
   301     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   302     typedef typename Parent::Key Key;
   303     typedef typename Parent::Value Value;
   304 
   305     ///Constructor
   306     AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   307     Value operator[](Key k) const {return m1[k]+m2[k];}
   308   };
   309   
   310   ///Returns an \ref AddMap class
   311 
   312   ///This function just returns an \ref AddMap class.
   313   ///\todo How to call these type of functions?
   314   ///
   315   ///\relates AddMap
   316   ///\todo Wrong scope in Doxygen when \c \\relates is used
   317   template<typename M1, typename M2> 
   318   inline AddMap<M1, M2> addMap(const M1 &m1,const M2 &m2) {
   319     return AddMap<M1, M2>(m1,m2);
   320   }
   321 
   322   ///Shift a map with a constant.
   323 
   324   ///This \ref concept::ReadMap "read only map" returns the sum of the
   325   ///given map and a constant value.
   326   ///Its \c Key and \c Value is inherited from \c M.
   327   ///
   328   ///Actually,
   329   ///\code
   330   ///  ShiftMap<X> sh(x,v);
   331   ///\endcode
   332   ///is equivalent with
   333   ///\code
   334   ///  ConstMap<X::Key, X::Value> c_tmp(v);
   335   ///  AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
   336   ///\endcode
   337   template<typename M, typename C = typename M::Value> 
   338   class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
   339     const M& m;
   340     C v;
   341   public:
   342     typedef MapBase<typename M::Key, typename M::Value> Parent;
   343     typedef typename Parent::Key Key;
   344     typedef typename Parent::Value Value;
   345 
   346     ///Constructor
   347 
   348     ///Constructor
   349     ///\param _m is the undelying map
   350     ///\param _v is the shift value
   351     ShiftMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
   352     Value operator[](Key k) const {return m[k] + v;}
   353   };
   354   
   355   ///Returns an \ref ShiftMap class
   356 
   357   ///This function just returns an \ref ShiftMap class.
   358   ///\relates ShiftMap
   359   ///\todo A better name is required.
   360   template<typename M, typename C> 
   361   inline ShiftMap<M, C> shiftMap(const M &m,const C &v) {
   362     return ShiftMap<M, C>(m,v);
   363   }
   364 
   365   ///Difference of two maps
   366 
   367   ///This \ref concept::ReadMap "read only map" returns the difference
   368   ///of the values of the two
   369   ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   370   ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   371 
   372   template<typename M1, typename M2> 
   373   class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
   374     const M1& m1;
   375     const M2& m2;
   376   public:
   377     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   378     typedef typename Parent::Key Key;
   379     typedef typename Parent::Value Value;
   380 
   381     ///Constructor
   382     SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   383     Value operator[](Key k) const {return m1[k]-m2[k];}
   384   };
   385   
   386   ///Returns a \ref SubMap class
   387 
   388   ///This function just returns a \ref SubMap class.
   389   ///
   390   ///\relates SubMap
   391   template<typename M1, typename M2> 
   392   inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
   393     return SubMap<M1, M2>(m1, m2);
   394   }
   395 
   396   ///Product of two maps
   397 
   398   ///This \ref concept::ReadMap "read only map" returns the product of the
   399   ///values of the two
   400   ///given
   401   ///maps. Its \c Key and \c Value will be inherited from \c M1.
   402   ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   403 
   404   template<typename M1, typename M2> 
   405   class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
   406     const M1& m1;
   407     const M2& m2;
   408   public:
   409     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   410     typedef typename Parent::Key Key;
   411     typedef typename Parent::Value Value;
   412 
   413     ///Constructor
   414     MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   415     Value operator[](Key k) const {return m1[k]*m2[k];}
   416   };
   417   
   418   ///Returns a \ref MulMap class
   419 
   420   ///This function just returns a \ref MulMap class.
   421   ///\relates MulMap
   422   template<typename M1, typename M2> 
   423   inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
   424     return MulMap<M1, M2>(m1,m2);
   425   }
   426  
   427   ///Scales a maps with a constant.
   428 
   429   ///This \ref concept::ReadMap "read only map" returns the value of the
   430   ///given map multiplied from the left side with a constant value.
   431   ///Its \c Key and \c Value is inherited from \c M.
   432   ///
   433   ///Actually,
   434   ///\code
   435   ///  ScaleMap<X> sc(x,v);
   436   ///\endcode
   437   ///is equivalent with
   438   ///\code
   439   ///  ConstMap<X::Key, X::Value> c_tmp(v);
   440   ///  MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v);
   441   ///\endcode
   442   template<typename M, typename C = typename M::Value> 
   443   class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
   444     const M& m;
   445     C v;
   446   public:
   447     typedef MapBase<typename M::Key, typename M::Value> Parent;
   448     typedef typename Parent::Key Key;
   449     typedef typename Parent::Value Value;
   450 
   451     ///Constructor
   452 
   453     ///Constructor
   454     ///\param _m is the undelying map
   455     ///\param _v is the scaling value
   456     ScaleMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
   457     Value operator[](Key k) const {return v * m[k];}
   458   };
   459   
   460   ///Returns an \ref ScaleMap class
   461 
   462   ///This function just returns an \ref ScaleMap class.
   463   ///\relates ScaleMap
   464   ///\todo A better name is required.
   465   template<typename M, typename C> 
   466   inline ScaleMap<M, C> scaleMap(const M &m,const C &v) {
   467     return ScaleMap<M, C>(m,v);
   468   }
   469 
   470   ///Quotient of two maps
   471 
   472   ///This \ref concept::ReadMap "read only map" returns the quotient of the
   473   ///values of the two
   474   ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   475   ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   476 
   477   template<typename M1, typename M2> 
   478   class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
   479     const M1& m1;
   480     const M2& m2;
   481   public:
   482     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   483     typedef typename Parent::Key Key;
   484     typedef typename Parent::Value Value;
   485 
   486     ///Constructor
   487     DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   488     Value operator[](Key k) const {return m1[k]/m2[k];}
   489   };
   490   
   491   ///Returns a \ref DivMap class
   492 
   493   ///This function just returns a \ref DivMap class.
   494   ///\relates DivMap
   495   template<typename M1, typename M2> 
   496   inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
   497     return DivMap<M1, M2>(m1,m2);
   498   }
   499   
   500   ///Composition of two maps
   501 
   502   ///This \ref concept::ReadMap "read only map" returns the composition of
   503   ///two
   504   ///given maps. That is to say, if \c m1 is of type \c M1 and \c m2 is
   505   ///of \c M2,
   506   ///then for
   507   ///\code
   508   ///  ComposeMap<M1, M2> cm(m1,m2);
   509   ///\endcode
   510   /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>
   511   ///
   512   ///Its \c Key is inherited from \c M2 and its \c Value is from
   513   ///\c M1.
   514   ///The \c M2::Value must be convertible to \c M1::Key.
   515   ///\todo Check the requirements.
   516 
   517   template <typename M1, typename M2> 
   518   class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
   519     const M1& m1;
   520     const M2& m2;
   521   public:
   522     typedef MapBase<typename M2::Key, typename M1::Value> Parent;
   523     typedef typename Parent::Key Key;
   524     typedef typename Parent::Value Value;
   525 
   526     ///Constructor
   527     ComposeMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   528     
   529     typename MapTraits<M1>::ConstReturnValue
   530     operator[](Key k) const {return m1[m2[k]];}
   531   };
   532   ///Returns a \ref ComposeMap class
   533 
   534   ///This function just returns a \ref ComposeMap class.
   535   ///
   536   ///\relates ComposeMap
   537   template <typename M1, typename M2> 
   538   inline ComposeMap<M1, M2> composeMap(const M1 &m1,const M2 &m2) {
   539     return ComposeMap<M1, M2>(m1,m2);
   540   }
   541   
   542   ///Combines of two maps using an STL (binary) functor.
   543 
   544   ///Combines of two maps using an STL (binary) functor.
   545   ///
   546   ///
   547   ///This \ref concept::ReadMap "read only map" takes two maps and a
   548   ///binary functor and returns the composition of
   549   ///the two
   550   ///given maps unsing the functor. 
   551   ///That is to say, if \c m1 and \c m2 is of type \c M1 and \c M2
   552   ///and \c f is of \c F,
   553   ///then for
   554   ///\code
   555   ///  CombineMap<M1, M2,F,V> cm(m1,m2,f);
   556   ///\endcode
   557   /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>
   558   ///
   559   ///Its \c Key is inherited from \c M1 and its \c Value is \c V.
   560   ///The \c M2::Value and \c M1::Value must be convertible to the corresponding
   561   ///input parameter of \c F and the return type of \c F must be convertible
   562   ///to \c V.
   563   ///\todo Check the requirements.
   564 
   565   template<typename M1, typename M2, typename F,
   566 	   typename V = typename F::result_type,
   567 	   typename NC = False> 
   568   class CombineMap : public MapBase<typename M1::Key, V> {
   569     const M1& m1;
   570     const M2& m2;
   571     F f;
   572   public:
   573     typedef MapBase<typename M1::Key, V> Parent;
   574     typedef typename Parent::Key Key;
   575     typedef typename Parent::Value Value;
   576 
   577     ///Constructor
   578     CombineMap(const M1 &_m1,const M2 &_m2,const F &_f)
   579       : m1(_m1), m2(_m2), f(_f) {};
   580     Value operator[](Key k) const {return f(m1[k],m2[k]);}
   581   };
   582   
   583   ///Returns a \ref CombineMap class
   584 
   585   ///This function just returns a \ref CombineMap class.
   586   ///
   587   ///Only the first template parameter (the value type) must be given.
   588   ///
   589   ///For example if \c m1 and \c m2 are both \c double valued maps, then 
   590   ///\code
   591   ///combineMap<double>(m1,m2,std::plus<double>)
   592   ///\endcode
   593   ///is equivalent with
   594   ///\code
   595   ///addMap(m1,m2)
   596   ///\endcode
   597   ///
   598   ///\relates CombineMap
   599   template<typename M1, typename M2, typename F, typename V> 
   600   inline CombineMap<M1, M2, F, V> 
   601   combineMap(const M1& m1,const M2& m2, const F& f) {
   602     return CombineMap<M1, M2, F, V>(m1,m2,f);
   603   }
   604 
   605   template<typename M1, typename M2, typename F> 
   606   inline CombineMap<M1, M2, F, typename F::result_type> 
   607   combineMap(const M1& m1, const M2& m2, const F& f) {
   608     return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
   609   }
   610 
   611   template<typename M1, typename M2, typename K1, typename K2, typename V> 
   612   inline CombineMap<M1, M2, V (*)(K1, K2), V> 
   613   combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
   614     return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
   615   }
   616 
   617   ///Negative value of a map
   618 
   619   ///This \ref concept::ReadMap "read only map" returns the negative
   620   ///value of the
   621   ///value returned by the
   622   ///given map. Its \c Key and \c Value will be inherited from \c M.
   623   ///The unary \c - operator must be defined for \c Value, of course.
   624 
   625   template<typename M> 
   626   class NegMap : public MapBase<typename M::Key, typename M::Value> {
   627     const M& m;
   628   public:
   629     typedef MapBase<typename M::Key, typename M::Value> Parent;
   630     typedef typename Parent::Key Key;
   631     typedef typename Parent::Value Value;
   632 
   633     ///Constructor
   634     NegMap(const M &_m) : m(_m) {};
   635     Value operator[](Key k) const {return -m[k];}
   636   };
   637   
   638   ///Returns a \ref NegMap class
   639 
   640   ///This function just returns a \ref NegMap class.
   641   ///\relates NegMap
   642   template <typename M> 
   643   inline NegMap<M> negMap(const M &m) {
   644     return NegMap<M>(m);
   645   }
   646 
   647 
   648   ///Absolute value of a map
   649 
   650   ///This \ref concept::ReadMap "read only map" returns the absolute value
   651   ///of the
   652   ///value returned by the
   653   ///given map. Its \c Key and \c Value will be inherited
   654   ///from <tt>M</tt>. <tt>Value</tt>
   655   ///must be comparable to <tt>0</tt> and the unary <tt>-</tt>
   656   ///operator must be defined for it, of course.
   657   ///
   658   ///\bug We need a unified way to handle the situation below:
   659   ///\code
   660   ///  struct _UnConvertible {};
   661   ///  template<class A> inline A t_abs(A a) {return _UnConvertible();}
   662   ///  template<> inline int t_abs<>(int n) {return abs(n);}
   663   ///  template<> inline long int t_abs<>(long int n) {return labs(n);}
   664   ///  template<> inline long long int t_abs<>(long long int n) {return ::llabs(n);}
   665   ///  template<> inline float t_abs<>(float n) {return fabsf(n);}
   666   ///  template<> inline double t_abs<>(double n) {return fabs(n);}
   667   ///  template<> inline long double t_abs<>(long double n) {return fabsl(n);}
   668   ///\endcode
   669   
   670 
   671   template<typename M> 
   672   class AbsMap : public MapBase<typename M::Key, typename M::Value> {
   673     const M& m;
   674   public:
   675     typedef MapBase<typename M::Key, typename M::Value> Parent;
   676     typedef typename Parent::Key Key;
   677     typedef typename Parent::Value Value;
   678 
   679     ///Constructor
   680     AbsMap(const M &_m) : m(_m) {};
   681     Value operator[](Key k) const {
   682       Value tmp = m[k]; 
   683       return tmp >= 0 ? tmp : -tmp;
   684     }
   685 
   686   };
   687   
   688   ///Returns a \ref AbsMap class
   689 
   690   ///This function just returns a \ref AbsMap class.
   691   ///\relates AbsMap
   692   template<typename M> 
   693   inline AbsMap<M> absMap(const M &m) {
   694     return AbsMap<M>(m);
   695   }
   696 
   697   ///Converts an STL style functor to a map
   698 
   699   ///This \ref concept::ReadMap "read only map" returns the value
   700   ///of a
   701   ///given map.
   702   ///
   703   ///Template parameters \c K and \c V will become its
   704   ///\c Key and \c Value. They must be given explicitely
   705   ///because a functor does not provide such typedefs.
   706   ///
   707   ///Parameter \c F is the type of the used functor.
   708   
   709 
   710   template<typename F, 
   711 	   typename K = typename F::argument_type, 
   712 	   typename V = typename F::result_type,
   713 	   typename NC = False> 
   714   class FunctorMap : public MapBase<K, V> {
   715     F f;
   716   public:
   717     typedef MapBase<K, V> Parent;
   718     typedef typename Parent::Key Key;
   719     typedef typename Parent::Value Value;
   720 
   721     ///Constructor
   722     FunctorMap(const F &_f) : f(_f) {}
   723 
   724     Value operator[](Key k) const { return f(k);}
   725   };
   726   
   727   ///Returns a \ref FunctorMap class
   728 
   729   ///This function just returns a \ref FunctorMap class.
   730   ///
   731   ///The third template parameter isn't necessary to be given.
   732   ///\relates FunctorMap
   733   template<typename K, typename V, typename F> inline 
   734   FunctorMap<F, K, V> functorMap(const F &f) {
   735     return FunctorMap<F, K, V>(f);
   736   }
   737 
   738   template <typename F> inline 
   739   FunctorMap<F, typename F::argument_type, typename F::result_type> 
   740   functorMap(const F &f) {
   741     return FunctorMap<F, typename F::argument_type, 
   742       typename F::result_type>(f);
   743   }
   744 
   745   template <typename K, typename V> inline 
   746   FunctorMap<V (*)(K), K, V> functorMap(V (*f)(K)) {
   747     return FunctorMap<V (*)(K), K, V>(f);
   748   }
   749 
   750 
   751   ///Converts a map to an STL style (unary) functor
   752 
   753   ///This class Converts a map to an STL style (unary) functor.
   754   ///that is it provides an <tt>operator()</tt> to read its values.
   755   ///
   756   ///For the sake of convenience it also works as
   757   ///a ususal \ref concept::ReadMap "readable map",
   758   ///i.e. <tt>operator[]</tt> and the \c Key and \c Value typedefs also exist.
   759 
   760   template <typename M> 
   761   class MapFunctor : public MapBase<typename M::Key, typename M::Value> {
   762     const M& m;
   763   public:
   764     typedef MapBase<typename M::Key, typename M::Value> Parent;
   765     typedef typename Parent::Key Key;
   766     typedef typename Parent::Value Value;
   767 
   768     ///\e
   769     typedef typename M::Key argument_type;
   770     ///\e
   771     typedef typename M::Value result_type;
   772 
   773     ///Constructor
   774     MapFunctor(const M &_m) : m(_m) {};
   775     ///Returns a value of the map
   776     Value operator()(Key k) const {return m[k];}
   777     ///\e
   778     Value operator[](Key k) const {return m[k];}
   779   };
   780   
   781   ///Returns a \ref MapFunctor class
   782 
   783   ///This function just returns a \ref MapFunctor class.
   784   ///\relates MapFunctor
   785   template<typename M> 
   786   inline MapFunctor<M> mapFunctor(const M &m) {
   787     return MapFunctor<M>(m);
   788   }
   789 
   790 
   791   ///Applies all map setting operations to two maps
   792 
   793   ///This map has two \ref concept::WriteMap "writable map"
   794   ///parameters and each write request will be passed to both of them.
   795   ///If \c M1 is also \ref concept::ReadMap "readable",
   796   ///then the read operations will return the
   797   ///corresponding values of \c M1.
   798   ///
   799   ///The \c Key and \c Value will be inherited from \c M1.
   800   ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
   801 
   802   template<typename  M1, typename M2> 
   803   class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
   804     const M1& m1;
   805     const M2& m2;
   806   public:
   807     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   808     typedef typename Parent::Key Key;
   809     typedef typename Parent::Value Value;
   810 
   811     ///Constructor
   812     ForkMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   813     Value operator[](Key k) const {return m1[k];}
   814     //    void set(Key k, const Value &v) {m1.set(k,v); m2.set(k,v);}
   815   };
   816   
   817   ///Returns an \ref ForkMap class
   818 
   819   ///This function just returns an \ref ForkMap class.
   820   ///\todo How to call these type of functions?
   821   ///
   822   ///\relates ForkMap
   823   ///\todo Wrong scope in Doxygen when \c \\relates is used
   824   template <typename M1, typename M2> 
   825   inline ForkMap<M1, M2> forkMap(const M1 &m1,const M2 &m2) {
   826     return ForkMap<M1, M2>(m1,m2);
   827   }
   828 
   829 
   830   
   831   /* ************* BOOL MAPS ******************* */
   832   
   833   ///Logical 'not' of a map
   834   
   835   ///This bool \ref concept::ReadMap "read only map" returns the 
   836   ///logical negation of
   837   ///value returned by the
   838   ///given map. Its \c Key and will be inherited from \c M,
   839   ///its Value is <tt>bool</tt>.
   840 
   841   template <typename M> 
   842   class NotMap : public MapBase<typename M::Key, bool> {
   843     const M& m;
   844   public:
   845     typedef MapBase<typename M::Key, bool> Parent;
   846     typedef typename Parent::Key Key;
   847     typedef typename Parent::Value Value;
   848 
   849     /// Constructor
   850     NotMap(const M &_m) : m(_m) {};
   851     Value operator[](Key k) const {return !m[k];}
   852   };
   853   
   854   ///Returns a \ref NotMap class
   855   
   856   ///This function just returns a \ref NotMap class.
   857   ///\relates NotMap
   858   template <typename M> 
   859   inline NotMap<M> notMap(const M &m) {
   860     return NotMap<M>(m);
   861   }
   862 
   863   /// \brief Writable bool map for store each true assigned elements.
   864   ///
   865   /// Writable bool map for store each true assigned elements. It will
   866   /// copies all the true setted keys to the given iterator.
   867   ///
   868   /// \note The container of the iterator should contain for each element.
   869   template <typename _Iterator>
   870   class StoreBoolMap {
   871   public:
   872     typedef _Iterator Iterator;
   873 
   874     typedef typename std::iterator_traits<Iterator>::value_type Key;
   875     typedef bool Value;
   876 
   877     /// Constructor
   878     StoreBoolMap(Iterator it) : _begin(it), _end(it) {}
   879 
   880     /// Gives back the given first setted iterator.
   881     Iterator begin() const {
   882       return _begin;
   883     }
   884  
   885     /// Gives back the iterator after the last setted.
   886     Iterator end() const {
   887       return _end;
   888     }
   889 
   890     /// Setter function of the map
   891     void set(const Key& key, Value value) {
   892       if (value) {
   893 	*_end++ = key;
   894       }
   895     }
   896     
   897   private:
   898     Iterator _begin, _end;
   899   };
   900 
   901   /// \brief Writable bool map for store each true assigned elements in 
   902   /// a back insertable container.
   903   ///
   904   /// Writable bool map for store each true assigned elements in a back 
   905   /// insertable container. It will push back all the true setted keys into
   906   /// the container.
   907   template <typename Container>
   908   class BackInserterBoolMap {
   909   public:
   910     typedef typename Container::value_type Key;
   911     typedef bool Value;
   912 
   913     /// Constructor
   914     BackInserterBoolMap(Container& _container) : container(_container) {}
   915 
   916     /// Setter function of the map
   917     void set(const Key& key, Value value) {
   918       if (value) {
   919 	container.push_back(key);
   920       }
   921     }
   922     
   923   private:
   924     Container& container;    
   925   };
   926 
   927   /// \brief Writable bool map for store each true assigned elements in 
   928   /// a front insertable container.
   929   ///
   930   /// Writable bool map for store each true assigned elements in a front 
   931   /// insertable container. It will push front all the true setted keys into
   932   /// the container.
   933   template <typename Container>
   934   class FrontInserterBoolMap {
   935   public:
   936     typedef typename Container::value_type Key;
   937     typedef bool Value;
   938 
   939     /// Constructor
   940     FrontInserterBoolMap(Container& _container) : container(_container) {}
   941 
   942     /// Setter function of the map
   943     void set(const Key& key, Value value) {
   944       if (value) {
   945 	container.push_front(key);
   946       }
   947     }
   948     
   949   private:
   950     Container& container;    
   951   };
   952 
   953   /// \brief Writable bool map for store each true assigned elements in 
   954   /// an insertable container.
   955   ///
   956   /// Writable bool map for store each true assigned elements in an 
   957   /// insertable container. It will insert all the true setted keys into
   958   /// the container.
   959   template <typename Container>
   960   class InserterBoolMap {
   961   public:
   962     typedef typename Container::value_type Key;
   963     typedef bool Value;
   964 
   965     /// Constructor
   966     InserterBoolMap(Container& _container) : container(_container) {}
   967 
   968     /// Setter function of the map
   969     void set(const Key& key, Value value) {
   970       if (value) {
   971 	container.insert(key);
   972       }
   973     }
   974     
   975   private:
   976     Container& container;    
   977   };
   978 
   979   /// \brief Fill the true setted elements with a given value.
   980   ///
   981   /// Writable bool map for fill the true setted elements with a given value.
   982   /// The value can be setted 
   983   /// the container.
   984   template <typename Map>
   985   class FillBoolMap {
   986   public:
   987     typedef typename Map::Key Key;
   988     typedef bool Value;
   989 
   990     /// Constructor
   991     FillBoolMap(Map& _map, const typename Map::Value& _fill) 
   992       : map(_map), fill(_fill) {}
   993 
   994     /// Constructor
   995     FillBoolMap(Map& _map) 
   996       : map(_map), fill() {}
   997 
   998     /// Gives back the current fill value
   999     typename Map::Value fillValue() const {
  1000       return fill;
  1001     } 
  1002 
  1003     /// Sets the current fill value
  1004     void fillValue(const typename Map::Value& _fill) {
  1005       fill = _fill;
  1006     } 
  1007 
  1008     /// Setter function of the map
  1009     void set(const Key& key, Value value) {
  1010       if (value) {
  1011 	map.set(key, fill);
  1012       }
  1013     }
  1014     
  1015   private:
  1016     Map& map;
  1017     typename Map::Value fill;
  1018   };
  1019 
  1020 
  1021   /// \brief Writable bool map which stores for each true assigned elements  
  1022   /// the setting order number.
  1023   ///
  1024   /// Writable bool map which stores for each true assigned elements  
  1025   /// the setting order number.
  1026   template <typename Map>
  1027   class SettingOrderBoolMap {
  1028   public:
  1029     typedef typename Map::Key Key;
  1030     typedef bool Value;
  1031 
  1032     /// Constructor
  1033     SettingOrderBoolMap(Map& _map) 
  1034       : map(_map), counter(0) {}
  1035 
  1036     /// Number of setted keys.
  1037     int num() const {
  1038       return counter;
  1039     }
  1040 
  1041     /// Setter function of the map
  1042     void set(const Key& key, Value value) {
  1043       if (value) {
  1044 	map.set(key, counter++);
  1045       }
  1046     }
  1047     
  1048   private:
  1049     Map& map;
  1050     int counter;
  1051   };
  1052 
  1053   /// @}
  1054 }
  1055 
  1056 #endif // LEMON_MAPS_H