3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef HYPERCUBE_GRAPH_H
20 #define HYPERCUBE_GRAPH_H
24 #include <lemon/bits/invalid.h>
25 #include <lemon/bits/utility.h>
26 #include <lemon/error.h>
28 #include <lemon/bits/graph_extender.h>
32 ///\brief HyperCubeGraph class.
36 /// \brief Base graph for HyperCubeGraph.
38 /// Base graph for hyper-cube graph. It describes some member functions
39 /// which can be used in the HyperCubeGraph.
41 /// \warning Always use the HyperCubeGraph instead of this.
42 /// \see HyperCubeGraph
43 class HyperCubeGraphBase {
47 typedef HyperCubeGraphBase Graph;
54 HyperCubeGraphBase() {}
58 /// \brief Creates a hypercube graph with the given size.
60 /// Creates a hypercube graph with the given size.
61 void construct(int dim) {
69 typedef True NodeNumTag;
70 typedef True EdgeNumTag;
73 int nodeNum() const { return _nodeNum; }
75 int edgeNum() const { return _nodeNum * _dim; }
81 int maxNodeId() const { return nodeNum() - 1; }
86 int maxEdgeId() const { return edgeNum() - 1; }
88 /// \brief Gives back the source node of an edge.
90 /// Gives back the source node of an edge.
91 Node source(Edge e) const {
95 /// \brief Gives back the target node of an edge.
97 /// Gives back the target node of an edge.
98 Node target(Edge e) const {
99 return (e.id / _dim) ^ ( 1 << (e.id % _dim));
104 /// The ID of a valid Node is a nonnegative integer not greater than
105 /// \ref maxNodeId(). The range of the ID's is not surely continuous
106 /// and the greatest node ID can be actually less then \ref maxNodeId().
108 /// The ID of the \ref INVALID node is -1.
109 ///\return The ID of the node \c v.
111 static int id(Node v) { return v.id; }
114 /// The ID of a valid Edge is a nonnegative integer not greater than
115 /// \ref maxEdgeId(). The range of the ID's is not surely continuous
116 /// and the greatest edge ID can be actually less then \ref maxEdgeId().
118 /// The ID of the \ref INVALID edge is -1.
119 ///\return The ID of the edge \c e.
120 static int id(Edge e) { return e.id; }
122 static Node nodeFromId(int id) { return Node(id);}
124 static Edge edgeFromId(int id) { return Edge(id);}
127 friend class HyperCubeGraphBase;
131 Node(int _id) { id = _id;}
134 Node (Invalid) { id = -1; }
135 bool operator==(const Node node) const {return id == node.id;}
136 bool operator!=(const Node node) const {return id != node.id;}
137 bool operator<(const Node node) const {return id < node.id;}
141 friend class HyperCubeGraphBase;
146 Edge(int _id) : id(_id) {}
150 Edge (Invalid) { id = -1; }
151 bool operator==(const Edge edge) const {return id == edge.id;}
152 bool operator!=(const Edge edge) const {return id != edge.id;}
153 bool operator<(const Edge edge) const {return id < edge.id;}
156 void first(Node& node) const {
157 node.id = nodeNum() - 1;
160 static void next(Node& node) {
164 void first(Edge& edge) const {
165 edge.id = edgeNum() - 1;
168 static void next(Edge& edge) {
172 void firstOut(Edge& edge, const Node& node) const {
173 edge.id = node.id * _dim;
176 void nextOut(Edge& edge) const {
178 if (edge.id % _dim == 0) edge.id = -1;
181 void firstIn(Edge& edge, const Node& node) const {
182 edge.id = (node.id ^ 1) * _dim;
185 void nextIn(Edge& edge) const {
186 int cnt = edge.id % _dim;
187 if ((cnt + 1) % _dim == 0) {
190 edge.id = ((edge.id / _dim) ^ ((1 << cnt) * 3)) * _dim + cnt + 1;
194 /// \brief Gives back the number of the dimensions.
196 /// Gives back the number of the dimensions.
197 int dimension() const {
201 /// \brief Returns true if the n'th bit of the node is one.
203 /// Returns true if the n'th bit of the node is one.
204 bool projection(Node node, int n) const {
205 return (bool)(node.id & (1 << n));
208 /// \brief The dimension id of the edge.
210 /// It returns the dimension id of the edge. It can
211 /// be in the ${0, 1, dim-1}$ intervall.
212 int dimension(Edge edge) const {
213 return edge.id % _dim;
216 /// \brief Gives back the index of the node.
218 /// Gives back the index of the node. The lower bits of the
219 /// integer describe the node.
220 int index(Node node) const {
224 /// \brief Gives back the node by its index.
226 /// Gives back the node by its index.
227 Node operator()(int index) const {
236 typedef GraphExtender<HyperCubeGraphBase> ExtendedHyperCubeGraphBase;
240 /// \brief HyperCube graph class
242 /// This class implements a special graph type. The nodes of the
243 /// graph can be indiced with integers with at most \c dim binary length.
244 /// Two nodes are connected in the graph if the indices differ only
245 /// on one position in the binary form.
247 /// \note The type of the \c ids is chosen to \c int because efficiency
248 /// reasons. This way the maximal dimension of this implementation
251 /// The graph type is fully conform to the \ref concept::StaticGraph
252 /// concept but it does not conform to the \ref concept::UGraph.
254 /// \see HyperCubeGraphBase
255 /// \author Balazs Dezso
256 class HyperCubeGraph : public ExtendedHyperCubeGraphBase {
259 /// \brief Construct a graph with \c dim dimension.
261 /// Construct a graph with \c dim dimension.
262 HyperCubeGraph(int dim) { construct(dim); }
264 /// \brief Linear combination map.
266 /// It makes possible to give back a linear combination
267 /// for each node. This function works like the \c std::accumulate
268 /// so it accumulates the \c bf binary function with the \c fv
269 /// first value. The map accumulates only on that dimensions where
270 /// the node's index is one. The accumulated values should be
271 /// given by the \c begin and \c end iterators and this range's length
272 /// should be the dimension number of the graph.
275 /// const int DIM = 3;
276 /// HyperCubeGraph graph(DIM);
277 /// xy<double> base[DIM];
278 /// for (int k = 0; k < DIM; ++k) {
279 /// base[k].x = rand() / (RAND_MAX + 1.0);
280 /// base[k].y = rand() / (RAND_MAX + 1.0);
282 /// HyperCubeGraph::HyperMap<xy<double> >
283 /// pos(graph, base, base + DIM, xy<double>(0.0, 0.0));
286 /// \see HyperCubeGraph
287 template <typename T, typename BF = std::plus<T> >
295 /// \brief Constructor for HyperMap.
297 /// Construct a HyperMap for the given graph. The accumulated values
298 /// should be given by the \c begin and \c end iterators and this
299 /// range's length should be the dimension number of the graph.
301 /// This function accumulates the \c bf binary function with
302 /// the \c fv first value. The map accumulates only on that dimensions
303 /// where the node's index is one.
304 template <typename It>
305 HyperMap(const Graph& graph, It begin, It end,
306 T fv = 0.0, const BF& bf = BF())
307 : _graph(graph), _values(begin, end), _first_value(fv), _bin_func(bf) {
308 LEMON_ASSERT(_values.size() == graph.dimension(),
309 "Wrong size of dimension");
312 /// \brief Gives back the partial accumulated value.
314 /// Gives back the partial accumulated value.
315 Value operator[](Key k) const {
316 Value val = _first_value;
317 int id = _graph.index(k);
321 val = _bin_func(_values[n], _first_value);
331 std::vector<T> _values;