lemon/concept/ugraph.h
author deba
Fri, 12 May 2006 15:29:42 +0000
changeset 2081 94a7deb46c07
parent 1993 2115143eceea
child 2111 ea1fa1bc3f6d
permissions -rw-r--r--
New demo file for computing disjoint paths

Doc review
Correcting misformatting in adaptors
Adding header to demos
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 ///\ingroup graph_concepts
    20 ///\file
    21 ///\brief Undirected graphs and components of.
    22 
    23 
    24 #ifndef LEMON_CONCEPT_UGRAPH_H
    25 #define LEMON_CONCEPT_UGRAPH_H
    26 
    27 #include <lemon/concept/graph_component.h>
    28 #include <lemon/concept/graph.h>
    29 #include <lemon/bits/utility.h>
    30 
    31 namespace lemon {
    32   namespace concept {
    33 
    34 //     /// Skeleton class which describes an edge with direction in \ref
    35 //     /// UGraph "undirected graph".
    36     template <typename UGraph>
    37     class UGraphEdge : public UGraph::UEdge {
    38       typedef typename UGraph::UEdge UEdge;
    39       typedef typename UGraph::Node Node;
    40     public:
    41 
    42       /// \e
    43       UGraphEdge() {}
    44 
    45       /// \e
    46       UGraphEdge(const UGraphEdge& e) : UGraph::UEdge(e) {}
    47 
    48       /// \e
    49       UGraphEdge(Invalid) {}
    50 
    51       /// \brief Directed edge from undirected edge and a source node.
    52       ///
    53       /// Constructs a directed edge from undirected edge and a source node.
    54       ///
    55       /// \note You have to specify the graph for this constructor.
    56       UGraphEdge(const UGraph &g,
    57 		     UEdge u_edge, Node n) {
    58 	ignore_unused_variable_warning(u_edge);
    59 	ignore_unused_variable_warning(g);
    60 	ignore_unused_variable_warning(n);
    61       }
    62 
    63       /// \e
    64       UGraphEdge& operator=(UGraphEdge) { return *this; }
    65 
    66       /// \e
    67       bool operator==(UGraphEdge) const { return true; }
    68       /// \e
    69       bool operator!=(UGraphEdge) const { return false; }
    70 
    71       /// \e
    72       bool operator<(UGraphEdge) const { return false; }
    73 
    74       template <typename Edge>
    75       struct Constraints {
    76 	void constraints() {
    77 	  const_constraints();
    78 	}
    79 	void const_constraints() const {
    80 	  /// \bug This should be is_base_and_derived ...
    81 	  UEdge ue = e;
    82 	  ue = e;
    83 
    84 	  Edge e_with_source(graph,ue,n);
    85 	  ignore_unused_variable_warning(e_with_source);
    86 	}
    87 	Edge e;
    88 	UEdge ue;
    89 	UGraph graph;
    90 	Node n;
    91       };
    92     };
    93     
    94 
    95     struct BaseIterableUGraphConcept {
    96 
    97       template <typename Graph>
    98       struct Constraints {
    99 
   100 	typedef typename Graph::UEdge UEdge;
   101 	typedef typename Graph::Edge Edge;
   102 	typedef typename Graph::Node Node;
   103 
   104 	void constraints() {
   105 	  checkConcept<BaseIterableGraphComponent, Graph>();
   106 	  checkConcept<GraphItem<>, UEdge>();
   107 	  //checkConcept<UGraphEdge<Graph>, Edge>();
   108 
   109 	  graph.first(ue);
   110 	  graph.next(ue);
   111 
   112 	  const_constraints();
   113 	}
   114 	void const_constraints() {
   115 	  Node n;
   116 	  n = graph.target(ue);
   117 	  n = graph.source(ue);
   118 	  n = graph.oppositeNode(n0, ue);
   119 
   120 	  bool b;
   121 	  b = graph.direction(e);
   122 	  Edge e = graph.direct(UEdge(), true);
   123 	  e = graph.direct(UEdge(), n);
   124  
   125 	  ignore_unused_variable_warning(b);
   126 	}
   127 
   128 	Graph graph;
   129 	Edge e;
   130 	Node n0;
   131 	UEdge ue;
   132       };
   133 
   134     };
   135 
   136 
   137     struct IterableUGraphConcept {
   138 
   139       template <typename Graph>
   140       struct Constraints {
   141 	void constraints() {
   142 	  /// \todo we don't need the iterable component to be base iterable
   143 	  /// Don't we really???
   144 	  //checkConcept< BaseIterableUGraphConcept, Graph > ();
   145 
   146 	  checkConcept<IterableGraphComponent, Graph> ();
   147 
   148 	  typedef typename Graph::UEdge UEdge;
   149 	  typedef typename Graph::UEdgeIt UEdgeIt;
   150 	  typedef typename Graph::IncEdgeIt IncEdgeIt;
   151 
   152 	  checkConcept<GraphIterator<Graph, UEdge>, UEdgeIt>();
   153 	  checkConcept<GraphIncIterator<Graph, UEdge>, IncEdgeIt>();
   154 	}
   155       };
   156 
   157     };
   158 
   159     struct MappableUGraphConcept {
   160 
   161       template <typename Graph>
   162       struct Constraints {
   163 
   164 	struct Dummy {
   165 	  int value;
   166 	  Dummy() : value(0) {}
   167 	  Dummy(int _v) : value(_v) {}
   168 	};
   169 
   170 	void constraints() {
   171 	  checkConcept<MappableGraphComponent, Graph>();
   172 
   173 	  typedef typename Graph::template UEdgeMap<int> IntMap;
   174 	  checkConcept<GraphMap<Graph, typename Graph::UEdge, int>,
   175 	    IntMap >();
   176 
   177 	  typedef typename Graph::template UEdgeMap<bool> BoolMap;
   178 	  checkConcept<GraphMap<Graph, typename Graph::UEdge, bool>,
   179 	    BoolMap >();
   180 
   181 	  typedef typename Graph::template UEdgeMap<Dummy> DummyMap;
   182 	  checkConcept<GraphMap<Graph, typename Graph::UEdge, Dummy>,
   183 	    DummyMap >();
   184 	}
   185       };
   186 
   187     };
   188 
   189     struct ExtendableUGraphConcept {
   190 
   191       template <typename Graph>
   192       struct Constraints {
   193 	void constraints() {
   194 	  node_a = graph.addNode();
   195 	  uedge = graph.addEdge(node_a, node_b);
   196 	}
   197 	typename Graph::Node node_a, node_b;
   198 	typename Graph::UEdge uedge;
   199 	Graph graph;
   200       };
   201 
   202     };
   203 
   204     struct ErasableUGraphConcept {
   205 
   206       template <typename Graph>
   207       struct Constraints {
   208 	void constraints() {
   209 	  graph.erase(n);
   210 	  graph.erase(e);
   211 	}
   212 	Graph graph;
   213 	typename Graph::Node n;
   214 	typename Graph::UEdge e;
   215       };
   216 
   217     };
   218 
   219     /// \addtogroup graph_concepts
   220     /// @{
   221 
   222 
   223     /// Class describing the concept of Undirected Graphs.
   224 
   225     /// This class describes the common interface of all Undirected
   226     /// Graphs.
   227     ///
   228     /// As all concept describing classes it provides only interface
   229     /// without any sensible implementation. So any algorithm for
   230     /// undirected graph should compile with this class, but it will not
   231     /// run properly, of couse.
   232     ///
   233     /// In LEMON undirected graphs also fulfill the concept of directed
   234     /// graphs (\ref lemon::concept::StaticGraph "Graph Concept"). For
   235     /// explanation of this and more see also the page \ref ugraphs,
   236     /// a tutorial about undirected graphs.
   237     ///
   238     /// You can assume that all undirected graph can be handled
   239     /// as a static directed graph. This way it is fully conform
   240     /// to the StaticGraph concept.
   241 
   242     class UGraph {
   243     public:
   244       ///\e
   245 
   246       ///\todo undocumented
   247       ///
   248       typedef True UndirectedTag;
   249 
   250       /// \brief The base type of node iterators, 
   251       /// or in other words, the trivial node iterator.
   252       ///
   253       /// This is the base type of each node iterator,
   254       /// thus each kind of node iterator converts to this.
   255       /// More precisely each kind of node iterator should be inherited 
   256       /// from the trivial node iterator.
   257       class Node {
   258       public:
   259         /// Default constructor
   260 
   261         /// @warning The default constructor sets the iterator
   262         /// to an undefined value.
   263         Node() { }
   264         /// Copy constructor.
   265 
   266         /// Copy constructor.
   267         ///
   268         Node(const Node&) { }
   269 
   270         /// Invalid constructor \& conversion.
   271 
   272         /// This constructor initializes the iterator to be invalid.
   273         /// \sa Invalid for more details.
   274         Node(Invalid) { }
   275         /// Equality operator
   276 
   277         /// Two iterators are equal if and only if they point to the
   278         /// same object or both are invalid.
   279         bool operator==(Node) const { return true; }
   280 
   281         /// Inequality operator
   282         
   283         /// \sa operator==(Node n)
   284         ///
   285         bool operator!=(Node) const { return true; }
   286 
   287 	/// Artificial ordering operator.
   288 	
   289 	/// To allow the use of graph descriptors as key type in std::map or
   290 	/// similar associative container we require this.
   291 	///
   292 	/// \note This operator only have to define some strict ordering of
   293 	/// the items; this order has nothing to do with the iteration
   294 	/// ordering of the items.
   295 	///
   296 	/// \bug This is a technical requirement. Do we really need this?
   297 	bool operator<(Node) const { return false; }
   298 
   299       };
   300     
   301       /// This iterator goes through each node.
   302 
   303       /// This iterator goes through each node.
   304       /// Its usage is quite simple, for example you can count the number
   305       /// of nodes in graph \c g of type \c Graph like this:
   306       ///\code
   307       /// int count=0;
   308       /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
   309       ///\endcode
   310       class NodeIt : public Node {
   311       public:
   312         /// Default constructor
   313 
   314         /// @warning The default constructor sets the iterator
   315         /// to an undefined value.
   316         NodeIt() { }
   317         /// Copy constructor.
   318         
   319         /// Copy constructor.
   320         ///
   321         NodeIt(const NodeIt& n) : Node(n) { }
   322         /// Invalid constructor \& conversion.
   323 
   324         /// Initialize the iterator to be invalid.
   325         /// \sa Invalid for more details.
   326         NodeIt(Invalid) { }
   327         /// Sets the iterator to the first node.
   328 
   329         /// Sets the iterator to the first node of \c g.
   330         ///
   331         NodeIt(const UGraph&) { }
   332         /// Node -> NodeIt conversion.
   333 
   334         /// Sets the iterator to the node of \c the graph pointed by 
   335 	/// the trivial iterator.
   336         /// This feature necessitates that each time we 
   337         /// iterate the edge-set, the iteration order is the same.
   338         NodeIt(const UGraph&, const Node&) { }
   339         /// Next node.
   340 
   341         /// Assign the iterator to the next node.
   342         ///
   343         NodeIt& operator++() { return *this; }
   344       };
   345     
   346     
   347       /// The base type of the undirected edge iterators.
   348 
   349       /// The base type of the undirected edge iterators.
   350       ///
   351       class UEdge {
   352       public:
   353         /// Default constructor
   354 
   355         /// @warning The default constructor sets the iterator
   356         /// to an undefined value.
   357         UEdge() { }
   358         /// Copy constructor.
   359 
   360         /// Copy constructor.
   361         ///
   362         UEdge(const UEdge&) { }
   363         /// Initialize the iterator to be invalid.
   364 
   365         /// Initialize the iterator to be invalid.
   366         ///
   367         UEdge(Invalid) { }
   368         /// Equality operator
   369 
   370         /// Two iterators are equal if and only if they point to the
   371         /// same object or both are invalid.
   372         bool operator==(UEdge) const { return true; }
   373         /// Inequality operator
   374 
   375         /// \sa operator==(UEdge n)
   376         ///
   377         bool operator!=(UEdge) const { return true; }
   378 
   379 	/// Artificial ordering operator.
   380 	
   381 	/// To allow the use of graph descriptors as key type in std::map or
   382 	/// similar associative container we require this.
   383 	///
   384 	/// \note This operator only have to define some strict ordering of
   385 	/// the items; this order has nothing to do with the iteration
   386 	/// ordering of the items.
   387 	///
   388 	/// \bug This is a technical requirement. Do we really need this?
   389 	bool operator<(UEdge) const { return false; }
   390       };
   391 
   392       /// This iterator goes through each undirected edge.
   393 
   394       /// This iterator goes through each undirected edge of a graph.
   395       /// Its usage is quite simple, for example you can count the number
   396       /// of undirected edges in a graph \c g of type \c Graph as follows:
   397       ///\code
   398       /// int count=0;
   399       /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
   400       ///\endcode
   401       class UEdgeIt : public UEdge {
   402       public:
   403         /// Default constructor
   404 
   405         /// @warning The default constructor sets the iterator
   406         /// to an undefined value.
   407         UEdgeIt() { }
   408         /// Copy constructor.
   409 
   410         /// Copy constructor.
   411         ///
   412         UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
   413         /// Initialize the iterator to be invalid.
   414 
   415         /// Initialize the iterator to be invalid.
   416         ///
   417         UEdgeIt(Invalid) { }
   418         /// This constructor sets the iterator to the first undirected edge.
   419     
   420         /// This constructor sets the iterator to the first undirected edge.
   421         UEdgeIt(const UGraph&) { }
   422         /// UEdge -> UEdgeIt conversion
   423 
   424         /// Sets the iterator to the value of the trivial iterator.
   425         /// This feature necessitates that each time we
   426         /// iterate the undirected edge-set, the iteration order is the 
   427 	/// same.
   428         UEdgeIt(const UGraph&, const UEdge&) { } 
   429         /// Next undirected edge
   430         
   431         /// Assign the iterator to the next undirected edge.
   432         UEdgeIt& operator++() { return *this; }
   433       };
   434 
   435       /// \brief This iterator goes trough the incident undirected 
   436       /// edges of a node.
   437       ///
   438       /// This iterator goes trough the incident undirected edges
   439       /// of a certain node of a graph. You should assume that the 
   440       /// loop edges will be iterated twice.
   441       /// 
   442       /// Its usage is quite simple, for example you can compute the
   443       /// degree (i.e. count the number of incident edges of a node \c n
   444       /// in graph \c g of type \c Graph as follows. 
   445       ///
   446       ///\code
   447       /// int count=0;
   448       /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   449       ///\endcode
   450       class IncEdgeIt : public UEdge {
   451       public:
   452         /// Default constructor
   453 
   454         /// @warning The default constructor sets the iterator
   455         /// to an undefined value.
   456         IncEdgeIt() { }
   457         /// Copy constructor.
   458 
   459         /// Copy constructor.
   460         ///
   461         IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
   462         /// Initialize the iterator to be invalid.
   463 
   464         /// Initialize the iterator to be invalid.
   465         ///
   466         IncEdgeIt(Invalid) { }
   467         /// This constructor sets the iterator to first incident edge.
   468     
   469         /// This constructor set the iterator to the first incident edge of
   470         /// the node.
   471         IncEdgeIt(const UGraph&, const Node&) { }
   472         /// UEdge -> IncEdgeIt conversion
   473 
   474         /// Sets the iterator to the value of the trivial iterator \c e.
   475         /// This feature necessitates that each time we 
   476         /// iterate the edge-set, the iteration order is the same.
   477         IncEdgeIt(const UGraph&, const UEdge&) { }
   478         /// Next incident edge
   479 
   480         /// Assign the iterator to the next incident edge
   481 	/// of the corresponding node.
   482         IncEdgeIt& operator++() { return *this; }
   483       };
   484 
   485       /// The directed edge type.
   486 
   487       /// The directed edge type. It can be converted to the
   488       /// undirected edge.
   489       class Edge : public UEdge {
   490       public:
   491         /// Default constructor
   492 
   493         /// @warning The default constructor sets the iterator
   494         /// to an undefined value.
   495         Edge() { }
   496         /// Copy constructor.
   497 
   498         /// Copy constructor.
   499         ///
   500         Edge(const Edge& e) : UEdge(e) { }
   501         /// Initialize the iterator to be invalid.
   502 
   503         /// Initialize the iterator to be invalid.
   504         ///
   505         Edge(Invalid) { }
   506         /// Equality operator
   507 
   508         /// Two iterators are equal if and only if they point to the
   509         /// same object or both are invalid.
   510         bool operator==(Edge) const { return true; }
   511         /// Inequality operator
   512 
   513         /// \sa operator==(Edge n)
   514         ///
   515         bool operator!=(Edge) const { return true; }
   516 
   517 	/// Artificial ordering operator.
   518 	
   519 	/// To allow the use of graph descriptors as key type in std::map or
   520 	/// similar associative container we require this.
   521 	///
   522 	/// \note This operator only have to define some strict ordering of
   523 	/// the items; this order has nothing to do with the iteration
   524 	/// ordering of the items.
   525 	///
   526 	/// \bug This is a technical requirement. Do we really need this?
   527 	bool operator<(Edge) const { return false; }
   528 	
   529       }; 
   530       /// This iterator goes through each directed edge.
   531 
   532       /// This iterator goes through each edge of a graph.
   533       /// Its usage is quite simple, for example you can count the number
   534       /// of edges in a graph \c g of type \c Graph as follows:
   535       ///\code
   536       /// int count=0;
   537       /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
   538       ///\endcode
   539       class EdgeIt : public Edge {
   540       public:
   541         /// Default constructor
   542 
   543         /// @warning The default constructor sets the iterator
   544         /// to an undefined value.
   545         EdgeIt() { }
   546         /// Copy constructor.
   547 
   548         /// Copy constructor.
   549         ///
   550         EdgeIt(const EdgeIt& e) : Edge(e) { }
   551         /// Initialize the iterator to be invalid.
   552 
   553         /// Initialize the iterator to be invalid.
   554         ///
   555         EdgeIt(Invalid) { }
   556         /// This constructor sets the iterator to the first edge.
   557     
   558         /// This constructor sets the iterator to the first edge of \c g.
   559         ///@param g the graph
   560         EdgeIt(const UGraph &g) { ignore_unused_variable_warning(g); }
   561         /// Edge -> EdgeIt conversion
   562 
   563         /// Sets the iterator to the value of the trivial iterator \c e.
   564         /// This feature necessitates that each time we 
   565         /// iterate the edge-set, the iteration order is the same.
   566         EdgeIt(const UGraph&, const Edge&) { } 
   567         ///Next edge
   568         
   569         /// Assign the iterator to the next edge.
   570         EdgeIt& operator++() { return *this; }
   571       };
   572    
   573       /// This iterator goes trough the outgoing directed edges of a node.
   574 
   575       /// This iterator goes trough the \e outgoing edges of a certain node
   576       /// of a graph.
   577       /// Its usage is quite simple, for example you can count the number
   578       /// of outgoing edges of a node \c n
   579       /// in graph \c g of type \c Graph as follows.
   580       ///\code
   581       /// int count=0;
   582       /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   583       ///\endcode
   584     
   585       class OutEdgeIt : public Edge {
   586       public:
   587         /// Default constructor
   588 
   589         /// @warning The default constructor sets the iterator
   590         /// to an undefined value.
   591         OutEdgeIt() { }
   592         /// Copy constructor.
   593 
   594         /// Copy constructor.
   595         ///
   596         OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
   597         /// Initialize the iterator to be invalid.
   598 
   599         /// Initialize the iterator to be invalid.
   600         ///
   601         OutEdgeIt(Invalid) { }
   602         /// This constructor sets the iterator to the first outgoing edge.
   603     
   604         /// This constructor sets the iterator to the first outgoing edge of
   605         /// the node.
   606         ///@param n the node
   607         ///@param g the graph
   608         OutEdgeIt(const UGraph& n, const Node& g) {
   609 	  ignore_unused_variable_warning(n);
   610 	  ignore_unused_variable_warning(g);
   611 	}
   612         /// Edge -> OutEdgeIt conversion
   613 
   614         /// Sets the iterator to the value of the trivial iterator.
   615 	/// This feature necessitates that each time we 
   616         /// iterate the edge-set, the iteration order is the same.
   617         OutEdgeIt(const UGraph&, const Edge&) { }
   618         ///Next outgoing edge
   619         
   620         /// Assign the iterator to the next 
   621         /// outgoing edge of the corresponding node.
   622         OutEdgeIt& operator++() { return *this; }
   623       };
   624 
   625       /// This iterator goes trough the incoming directed edges of a node.
   626 
   627       /// This iterator goes trough the \e incoming edges of a certain node
   628       /// of a graph.
   629       /// Its usage is quite simple, for example you can count the number
   630       /// of outgoing edges of a node \c n
   631       /// in graph \c g of type \c Graph as follows.
   632       ///\code
   633       /// int count=0;
   634       /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   635       ///\endcode
   636 
   637       class InEdgeIt : public Edge {
   638       public:
   639         /// Default constructor
   640 
   641         /// @warning The default constructor sets the iterator
   642         /// to an undefined value.
   643         InEdgeIt() { }
   644         /// Copy constructor.
   645 
   646         /// Copy constructor.
   647         ///
   648         InEdgeIt(const InEdgeIt& e) : Edge(e) { }
   649         /// Initialize the iterator to be invalid.
   650 
   651         /// Initialize the iterator to be invalid.
   652         ///
   653         InEdgeIt(Invalid) { }
   654         /// This constructor sets the iterator to first incoming edge.
   655     
   656         /// This constructor set the iterator to the first incoming edge of
   657         /// the node.
   658         ///@param n the node
   659         ///@param g the graph
   660         InEdgeIt(const UGraph& g, const Node& n) { 
   661 	  ignore_unused_variable_warning(n);
   662 	  ignore_unused_variable_warning(g);
   663 	}
   664         /// Edge -> InEdgeIt conversion
   665 
   666         /// Sets the iterator to the value of the trivial iterator \c e.
   667         /// This feature necessitates that each time we 
   668         /// iterate the edge-set, the iteration order is the same.
   669         InEdgeIt(const UGraph&, const Edge&) { }
   670         /// Next incoming edge
   671 
   672         /// Assign the iterator to the next inedge of the corresponding node.
   673         ///
   674         InEdgeIt& operator++() { return *this; }
   675       };
   676 
   677       /// \brief Read write map of the nodes to type \c T.
   678       /// 
   679       /// ReadWrite map of the nodes to type \c T.
   680       /// \sa Reference
   681       /// \warning Making maps that can handle bool type (NodeMap<bool>)
   682       /// needs some extra attention!
   683       /// \todo Wrong documentation
   684       template<class T> 
   685       class NodeMap : public ReadWriteMap< Node, T >
   686       {
   687       public:
   688 
   689         ///\e
   690         NodeMap(const UGraph&) { }
   691         ///\e
   692         NodeMap(const UGraph&, T) { }
   693 
   694         ///Copy constructor
   695         NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   696         ///Assignment operator
   697         NodeMap& operator=(const NodeMap&) { return *this; }
   698         // \todo fix this concept
   699       };
   700 
   701       /// \brief Read write map of the directed edges to type \c T.
   702       ///
   703       /// Reference map of the directed edges to type \c T.
   704       /// \sa Reference
   705       /// \warning Making maps that can handle bool type (EdgeMap<bool>)
   706       /// needs some extra attention!
   707       /// \todo Wrong documentation
   708       template<class T> 
   709       class EdgeMap : public ReadWriteMap<Edge,T>
   710       {
   711       public:
   712 
   713         ///\e
   714         EdgeMap(const UGraph&) { }
   715         ///\e
   716         EdgeMap(const UGraph&, T) { }
   717         ///Copy constructor
   718         EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
   719         ///Assignment operator
   720         EdgeMap& operator=(const EdgeMap&) { return *this; }
   721         // \todo fix this concept    
   722       };
   723 
   724       /// Read write map of the undirected edges to type \c T.
   725 
   726       /// Reference map of the edges to type \c T.
   727       /// \sa Reference
   728       /// \warning Making maps that can handle bool type (UEdgeMap<bool>)
   729       /// needs some extra attention!
   730       /// \todo Wrong documentation
   731       template<class T> 
   732       class UEdgeMap : public ReadWriteMap<UEdge,T>
   733       {
   734       public:
   735 
   736         ///\e
   737         UEdgeMap(const UGraph&) { }
   738         ///\e
   739         UEdgeMap(const UGraph&, T) { }
   740         ///Copy constructor
   741         UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
   742         ///Assignment operator
   743         UEdgeMap &operator=(const UEdgeMap&) { return *this; }
   744         // \todo fix this concept    
   745       };
   746 
   747       /// \brief Direct the given undirected edge.
   748       ///
   749       /// Direct the given undirected edge. The returned edge source
   750       /// will be the given edge.
   751       Edge direct(const UEdge&, const Node&) const {
   752 	return INVALID;
   753       }
   754 
   755       /// \brief Direct the given undirected edge.
   756       ///
   757       /// Direct the given undirected edge. The returned edge source
   758       /// will be the source of the undirected edge if the given bool
   759       /// is true.
   760       Edge direct(const UEdge&, bool) const {
   761 	return INVALID;
   762       }
   763 
   764       /// \brief Returns true if the edge has default orientation.
   765       ///
   766       /// Returns whether the given directed edge is same orientation as
   767       /// the corresponding undirected edge.
   768       bool direction(Edge) const { return true; }
   769 
   770       /// \brief Returns the opposite directed edge.
   771       ///
   772       /// Returns the opposite directed edge.
   773       Edge oppositeEdge(Edge) const { return INVALID; }
   774 
   775       /// \brief Opposite node on an edge
   776       ///
   777       /// \return the opposite of the given Node on the given Edge
   778       Node oppositeNode(Node, UEdge) const { return INVALID; }
   779 
   780       /// \brief First node of the undirected edge.
   781       ///
   782       /// \return the first node of the given UEdge.
   783       ///
   784       /// Naturally uectected edges don't have direction and thus
   785       /// don't have source and target node. But we use these two methods
   786       /// to query the two endnodes of the edge. The direction of the edge
   787       /// which arises this way is called the inherent direction of the
   788       /// undirected edge, and is used to define the "default" direction
   789       /// of the directed versions of the edges.
   790       /// \sa direction
   791       Node source(UEdge) const { return INVALID; }
   792 
   793       /// \brief Second node of the undirected edge.
   794       Node target(UEdge) const { return INVALID; }
   795 
   796       /// \brief Source node of the directed edge.
   797       Node source(Edge) const { return INVALID; }
   798 
   799       /// \brief Target node of the directed edge.
   800       Node target(Edge) const { return INVALID; }
   801 
   802 //       /// \brief First node of the graph
   803 //       ///
   804 //       /// \note This method is part of so called \ref
   805 //       /// developpers_interface "Developpers' interface", so it shouldn't
   806 //       /// be used in an end-user program.
   807       void first(Node&) const {}
   808 //       /// \brief Next node of the graph
   809 //       ///
   810 //       /// \note This method is part of so called \ref
   811 //       /// developpers_interface "Developpers' interface", so it shouldn't
   812 //       /// be used in an end-user program.
   813       void next(Node&) const {}
   814 
   815 //       /// \brief First undirected edge of the graph
   816 //       ///
   817 //       /// \note This method is part of so called \ref
   818 //       /// developpers_interface "Developpers' interface", so it shouldn't
   819 //       /// be used in an end-user program.
   820       void first(UEdge&) const {}
   821 //       /// \brief Next undirected edge of the graph
   822 //       ///
   823 //       /// \note This method is part of so called \ref
   824 //       /// developpers_interface "Developpers' interface", so it shouldn't
   825 //       /// be used in an end-user program.
   826       void next(UEdge&) const {}
   827 
   828 //       /// \brief First directed edge of the graph
   829 //       ///
   830 //       /// \note This method is part of so called \ref
   831 //       /// developpers_interface "Developpers' interface", so it shouldn't
   832 //       /// be used in an end-user program.
   833       void first(Edge&) const {}
   834 //       /// \brief Next directed edge of the graph
   835 //       ///
   836 //       /// \note This method is part of so called \ref
   837 //       /// developpers_interface "Developpers' interface", so it shouldn't
   838 //       /// be used in an end-user program.
   839       void next(Edge&) const {}
   840 
   841 //       /// \brief First outgoing edge from a given node
   842 //       ///
   843 //       /// \note This method is part of so called \ref
   844 //       /// developpers_interface "Developpers' interface", so it shouldn't
   845 //       /// be used in an end-user program.
   846       void firstOut(Edge&, Node) const {}
   847 //       /// \brief Next outgoing edge to a node
   848 //       ///
   849 //       /// \note This method is part of so called \ref
   850 //       /// developpers_interface "Developpers' interface", so it shouldn't
   851 //       /// be used in an end-user program.
   852       void nextOut(Edge&) const {}
   853 
   854 //       /// \brief First incoming edge to a given node
   855 //       ///
   856 //       /// \note This method is part of so called \ref
   857 //       /// developpers_interface "Developpers' interface", so it shouldn't
   858 //       /// be used in an end-user program.
   859       void firstIn(Edge&, Node) const {}
   860 //       /// \brief Next incoming edge to a node
   861 //       ///
   862 //       /// \note This method is part of so called \ref
   863 //       /// developpers_interface "Developpers' interface", so it shouldn't
   864 //       /// be used in an end-user program.
   865       void nextIn(Edge&) const {}
   866 
   867 
   868       void firstInc(UEdge &, bool &, const Node &) const {}
   869 
   870       void nextInc(UEdge &, bool &) const {}
   871 
   872       /// \brief Base node of the iterator
   873       ///
   874       /// Returns the base node (the source in this case) of the iterator
   875       Node baseNode(OutEdgeIt e) const {
   876 	return source(e);
   877       }
   878       /// \brief Running node of the iterator
   879       ///
   880       /// Returns the running node (the target in this case) of the
   881       /// iterator
   882       Node runningNode(OutEdgeIt e) const {
   883 	return target(e);
   884       }
   885 
   886       /// \brief Base node of the iterator
   887       ///
   888       /// Returns the base node (the target in this case) of the iterator
   889       Node baseNode(InEdgeIt e) const {
   890 	return target(e);
   891       }
   892       /// \brief Running node of the iterator
   893       ///
   894       /// Returns the running node (the source in this case) of the
   895       /// iterator
   896       Node runningNode(InEdgeIt e) const {
   897 	return source(e);
   898       }
   899 
   900       /// \brief Base node of the iterator
   901       ///
   902       /// Returns the base node of the iterator
   903       Node baseNode(IncEdgeIt) const {
   904 	return INVALID;
   905       }
   906       
   907       /// \brief Running node of the iterator
   908       ///
   909       /// Returns the running node of the iterator
   910       Node runningNode(IncEdgeIt) const {
   911 	return INVALID;
   912       }
   913 
   914       template <typename Graph>
   915       struct Constraints {
   916 	void constraints() {
   917 	  checkConcept<BaseIterableUGraphConcept, Graph>();
   918 	  checkConcept<IterableUGraphConcept, Graph>();
   919 	  checkConcept<MappableUGraphConcept, Graph>();
   920 	}
   921       };
   922 
   923     };
   924 
   925     /// \brief An empty non-static undirected graph class.
   926     ///    
   927     /// This class provides everything that \ref UGraph does.
   928     /// Additionally it enables building graphs from scratch.
   929     class ExtendableUGraph : public UGraph {
   930     public:
   931       
   932       /// \brief Add a new node to the graph.
   933       ///
   934       /// Add a new node to the graph.
   935       /// \return the new node.
   936       Node addNode();
   937 
   938       /// \brief Add a new undirected edge to the graph.
   939       ///
   940       /// Add a new undirected edge to the graph.
   941       /// \return the new edge.
   942       UEdge addEdge(const Node& from, const Node& to);
   943 
   944       /// \brief Resets the graph.
   945       ///
   946       /// This function deletes all undirected edges and nodes of the graph.
   947       /// It also frees the memory allocated to store them.
   948       void clear() { }
   949 
   950       template <typename Graph>
   951       struct Constraints {
   952 	void constraints() {
   953 	  checkConcept<BaseIterableUGraphConcept, Graph>();
   954 	  checkConcept<IterableUGraphConcept, Graph>();
   955 	  checkConcept<MappableUGraphConcept, Graph>();
   956 
   957 	  checkConcept<UGraph, Graph>();
   958 	  checkConcept<ExtendableUGraphConcept, Graph>();
   959 	  checkConcept<ClearableGraphComponent, Graph>();
   960 	}
   961       };
   962 
   963     };
   964 
   965     /// \brief An empty erasable undirected graph class.
   966     ///
   967     /// This class is an extension of \ref ExtendableUGraph. It makes it
   968     /// possible to erase undirected edges or nodes.
   969     class ErasableUGraph : public ExtendableUGraph {
   970     public:
   971 
   972       /// \brief Deletes a node.
   973       ///
   974       /// Deletes a node.
   975       ///
   976       void erase(Node) { }
   977       /// \brief Deletes an undirected edge.
   978       ///
   979       /// Deletes an undirected edge.
   980       ///
   981       void erase(UEdge) { }
   982 
   983       template <typename Graph>
   984       struct Constraints {
   985 	void constraints() {
   986 	  checkConcept<ExtendableUGraph, Graph>();
   987 	  checkConcept<ErasableUGraphConcept, Graph>();
   988 	}
   989       };
   990 
   991     };
   992 
   993     /// @}
   994 
   995   }
   996 
   997 }
   998 
   999 #endif