src/hugo/dijkstra.h
author deba
Fri, 07 May 2004 08:18:30 +0000
changeset 571 9632ea8be6ca
parent 542 69bde1d90c04
child 584 1d4855f5312e
permissions -rw-r--r--
(none)
     1 // -*- C++ -*-
     2 #ifndef HUGO_DIJKSTRA_H
     3 #define HUGO_DIJKSTRA_H
     4 
     5 ///\ingroup galgs
     6 ///\file
     7 ///\brief Dijkstra algorithm.
     8 
     9 #include <hugo/bin_heap.h>
    10 #include <hugo/invalid.h>
    11 
    12 namespace hugo {
    13 
    14 /// \addtogroup galgs
    15 /// @{
    16 
    17   ///%Dijkstra algorithm class.
    18 
    19   ///This class provides an efficient implementation of %Dijkstra algorithm.
    20   ///The edge lengths are passed to the algorithm using a
    21   ///\ref ReadMapSkeleton "readable map",
    22   ///so it is easy to change it to any kind of length.
    23   ///
    24   ///The type of the length is determined by the \c ValueType of the length map.
    25   ///
    26   ///It is also possible to change the underlying priority heap.
    27   ///
    28   ///\param Graph The graph type the algorithm runs on.
    29   ///\param LengthMap This read-only
    30   ///EdgeMap
    31   ///determines the
    32   ///lengths of the edges. It is read once for each edge, so the map
    33   ///may involve in relatively time consuming process to compute the edge
    34   ///length if it is necessary. The default map type is
    35   ///\ref GraphSkeleton::EdgeMap "Graph::EdgeMap<int>"
    36   ///\param Heap The heap type used by the %Dijkstra
    37   ///algorithm. The default
    38   ///is using \ref BinHeap "binary heap".
    39   ///
    40   ///\author Jacint Szabo
    41   ///\todo We need a LengthMap typedef
    42 #ifdef DOXYGEN
    43   template <typename Graph,
    44 	    typename LengthMap,
    45 	    typename Heap>
    46 #else
    47   template <typename Graph,
    48 	    typename LengthMap=typename Graph::template EdgeMap<int>,
    49 	    template <class,class,class,class> class Heap = BinHeap >
    50 #endif
    51   class Dijkstra{
    52   public:
    53     typedef typename Graph::Node Node;
    54     typedef typename Graph::NodeIt NodeIt;
    55     typedef typename Graph::Edge Edge;
    56     typedef typename Graph::OutEdgeIt OutEdgeIt;
    57     
    58     typedef typename LengthMap::ValueType ValueType;
    59     typedef typename Graph::template NodeMap<Edge> PredMap;
    60     typedef typename Graph::template NodeMap<Node> PredNodeMap;
    61     typedef typename Graph::template NodeMap<ValueType> DistMap;
    62 
    63   private:
    64     const Graph& G;
    65     const LengthMap& length;
    66     PredMap predecessor;
    67     PredNodeMap pred_node;
    68     DistMap distance;
    69     
    70   public :
    71     
    72     Dijkstra(const Graph& _G, const LengthMap& _length) :
    73       G(_G), length(_length), predecessor(_G), pred_node(_G), distance(_G) { }
    74     
    75     void run(Node s);
    76     
    77     ///The distance of a node from the root.
    78 
    79     ///Returns the distance of a node from the root.
    80     ///\pre \ref run() must be called before using this function.
    81     ///\warning If node \c v in unreachable from the root the return value
    82     ///of this funcion is undefined.
    83     ValueType dist(Node v) const { return distance[v]; }
    84 
    85     ///Returns the previous edge of the shortest path tree.
    86 
    87     ///For a node \c v it returns the previous edge of the shortest path tree,
    88     ///i.e. it returns the last edge from a shortest path from the root to \c
    89     ///v. It is INVALID if \c v is unreachable from the root or if \c v=s. The
    90     ///shortest path tree used here is equal to the shortest path tree used in
    91     ///\ref predNode(Node v).  \pre \ref run() must be called before using
    92     ///this function.
    93     Edge pred(Node v) const { return predecessor[v]; }
    94 
    95     ///Returns the previous node of the shortest path tree.
    96 
    97     ///For a node \c v it returns the previous node of the shortest path tree,
    98     ///i.e. it returns the last but one node from a shortest path from the
    99     ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
   100     ///\c v=s. The shortest path tree used here is equal to the shortest path
   101     ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
   102     ///using this function.
   103     Node predNode(Node v) const { return pred_node[v]; }
   104     
   105     ///Returns a reference to the NodeMap of distances.
   106 
   107     ///Returns a reference to the NodeMap of distances. \pre \ref run() must
   108     ///be called before using this function.
   109     const DistMap &distMap() const { return distance;}
   110  
   111     ///Returns a reference to the shortest path tree map.
   112 
   113     ///Returns a reference to the NodeMap of the edges of the
   114     ///shortest path tree.
   115     ///\pre \ref run() must be called before using this function.
   116     const PredMap &predMap() const { return predecessor;}
   117  
   118     ///Returns a reference to the map of nodes of shortest paths.
   119 
   120     ///Returns a reference to the NodeMap of the last but one nodes of the
   121     ///shortest path tree.
   122     ///\pre \ref run() must be called before using this function.
   123     const PredNodeMap &predNodeMap() const { return pred_node;}
   124 
   125     ///Checks if a node is reachable from the root.
   126 
   127     ///Returns \c true if \c v is reachable from the root.
   128     ///\warning the root node is reported to be unreached!
   129     ///\todo Is this what we want?
   130     ///\pre \ref run() must be called before using this function.
   131     ///
   132     bool reached(Node v) { return G.valid(predecessor[v]); }
   133     
   134   };
   135   
   136 
   137   // **********************************************************************
   138   //  IMPLEMENTATIONS
   139   // **********************************************************************
   140 
   141   ///Runs %Dijkstra algorithm from node the root.
   142 
   143   ///This method runs the %Dijkstra algorithm from a root node \c s
   144   ///in order to
   145   ///compute the
   146   ///shortest path to each node. The algorithm computes
   147   ///- The shortest path tree.
   148   ///- The distance of each node from the root.
   149   template <typename Graph, typename LengthMap,
   150 	    template<class,class,class,class> class Heap >
   151   void Dijkstra<Graph,LengthMap,Heap>::run(Node s) {
   152     
   153     NodeIt u;
   154     for ( G.first(u) ; G.valid(u) ; G.next(u) ) {
   155       predecessor.set(u,INVALID);
   156       pred_node.set(u,INVALID);
   157     }
   158     
   159     typename Graph::template NodeMap<int> heap_map(G,-1);
   160     
   161     typedef Heap<Node, ValueType, typename Graph::template NodeMap<int>,
   162       std::less<ValueType> > 
   163       HeapType;
   164     
   165     HeapType heap(heap_map);
   166     
   167     heap.push(s,0); 
   168     
   169       while ( !heap.empty() ) {
   170 	
   171 	Node v=heap.top(); 
   172 	ValueType oldvalue=heap[v];
   173 	heap.pop();
   174 	distance.set(v, oldvalue);
   175 	
   176 	{ //FIXME this bracket is for e to be local
   177 	  OutEdgeIt e;
   178 	for(G.first(e, v);
   179 	    G.valid(e); G.next(e)) {
   180 	  Node w=G.bNode(e); 
   181 	  
   182 	  switch(heap.state(w)) {
   183 	  case HeapType::PRE_HEAP:
   184 	    heap.push(w,oldvalue+length[e]); 
   185 	    predecessor.set(w,e);
   186 	    pred_node.set(w,v);
   187 	    break;
   188 	  case HeapType::IN_HEAP:
   189 	    if ( oldvalue+length[e] < heap[w] ) {
   190 	      heap.decrease(w, oldvalue+length[e]); 
   191 	      predecessor.set(w,e);
   192 	      pred_node.set(w,v);
   193 	    }
   194 	    break;
   195 	  case HeapType::POST_HEAP:
   196 	    break;
   197 	  }
   198 	}
   199       } //FIXME tis bracket
   200       }
   201   }
   202 
   203 /// @}
   204   
   205 } //END OF NAMESPACE HUGO
   206 
   207 #endif
   208 
   209