src/work/jacint/max_flow.h
author ladanyi
Fri, 11 Feb 2005 14:56:40 +0000
changeset 1145 99c1aa395a58
parent 921 818510fa3d99
permissions -rw-r--r--
more docs
     1 // -*- C++ -*-
     2 #ifndef LEMON_MAX_FLOW_H
     3 #define LEMON_MAX_FLOW_H
     4 
     5 #include <vector>
     6 #include <queue>
     7 #include <stack>
     8 
     9 #include <lemon/graph_wrapper.h>
    10 #include <bfs_dfs.h>
    11 #include <lemon/invalid.h>
    12 #include <lemon/maps.h>
    13 #include <lemon/for_each_macros.h>
    14 
    15 /// \file
    16 /// \brief Maximum flow algorithms.
    17 /// \ingroup galgs
    18 
    19 namespace lemon {
    20 
    21   /// \addtogroup galgs
    22   /// @{                                                                                                                                        
    23   ///Maximum flow algorithms class.
    24 
    25   ///This class provides various algorithms for finding a flow of
    26   ///maximum value in a directed graph. The \e source node, the \e
    27   ///target node, the \e capacity of the edges and the \e starting \e
    28   ///flow value of the edges should be passed to the algorithm through the
    29   ///constructor. It is possible to change these quantities using the
    30   ///functions \ref resetSource, \ref resetTarget, \ref resetCap and
    31   ///\ref resetFlow. Before any subsequent runs of any algorithm of
    32   ///the class \ref resetFlow should be called. 
    33 
    34   ///After running an algorithm of the class, the actual flow value 
    35   ///can be obtained by calling \ref flowValue(). The minimum
    36   ///value cut can be written into a \c node map of \c bools by
    37   ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
    38   ///the inclusionwise minimum and maximum of the minimum value
    39   ///cuts, resp.)                                                                                                                               
    40   ///\param Graph The directed graph type the algorithm runs on.
    41   ///\param Num The number type of the capacities and the flow values.
    42   ///\param CapMap The capacity map type.
    43   ///\param FlowMap The flow map type.                                                                                                           
    44   ///\author Marton Makai, Jacint Szabo 
    45   template <typename Graph, typename Num,
    46 	    typename CapMap=typename Graph::template EdgeMap<Num>,
    47             typename FlowMap=typename Graph::template EdgeMap<Num> >
    48   class MaxFlow {
    49   protected:
    50     typedef typename Graph::Node Node;
    51     typedef typename Graph::NodeIt NodeIt;
    52     typedef typename Graph::EdgeIt EdgeIt;
    53     typedef typename Graph::OutEdgeIt OutEdgeIt;
    54     typedef typename Graph::InEdgeIt InEdgeIt;
    55 
    56     typedef typename std::vector<std::stack<Node> > VecStack;
    57     typedef typename Graph::template NodeMap<Node> NNMap;
    58     typedef typename std::vector<Node> VecNode;
    59 
    60     const Graph* g;
    61     Node s;
    62     Node t;
    63     const CapMap* capacity;
    64     FlowMap* flow;
    65     int n;      //the number of nodes of G
    66     typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;   
    67     //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
    68     typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
    69     typedef typename ResGW::Edge ResGWEdge;
    70     //typedef typename ResGW::template NodeMap<bool> ReachedMap;
    71     typedef typename Graph::template NodeMap<int> ReachedMap;
    72 
    73 
    74     //level works as a bool map in augmenting path algorithms and is
    75     //used by bfs for storing reached information.  In preflow, it
    76     //shows the levels of nodes.     
    77     ReachedMap level;
    78 
    79     //excess is needed only in preflow
    80     typename Graph::template NodeMap<Num> excess;
    81 
    82     //fixme    
    83 //   protected:
    84     //     MaxFlow() { }
    85     //     void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
    86     // 	     FlowMap& _flow)
    87     //       {
    88     // 	g=&_G;
    89     // 	s=_s;
    90     // 	t=_t;
    91     // 	capacity=&_capacity;
    92     // 	flow=&_flow;
    93     // 	n=_G.nodeNum;
    94     // 	level.set (_G); //kellene vmi ilyesmi fv
    95     // 	excess(_G,0); //itt is
    96     //       }
    97 
    98     // constants used for heuristics
    99     static const int H0=20;
   100     static const int H1=1;
   101 
   102   public:
   103 
   104     ///Indicates the property of the starting flow.
   105 
   106     ///Indicates the property of the starting flow. The meanings are as follows:
   107     ///- \c ZERO_FLOW: constant zero flow
   108     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
   109     ///the sum of the out-flows in every node except the \e source and
   110     ///the \e target.
   111     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
   112     ///least the sum of the out-flows in every node except the \e source.
   113     ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be 
   114     ///set to the constant zero flow in the beginning of the algorithm in this case.
   115     enum FlowEnum{
   116       ZERO_FLOW,
   117       GEN_FLOW,
   118       PRE_FLOW,
   119       NO_FLOW
   120     };
   121 
   122     enum StatusEnum {
   123       AFTER_NOTHING,
   124       AFTER_AUGMENTING,
   125       AFTER_FAST_AUGMENTING, 
   126       AFTER_PRE_FLOW_PHASE_1,      
   127       AFTER_PRE_FLOW_PHASE_2
   128     };
   129 
   130     /// Don not needle this flag only if necessary.
   131     StatusEnum status;
   132     int number_of_augmentations;
   133 
   134 
   135     template<typename IntMap>
   136     class TrickyReachedMap {
   137     protected:
   138       IntMap* map;
   139       int* number_of_augmentations;
   140     public:
   141       TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : 
   142 	map(&_map), number_of_augmentations(&_number_of_augmentations) { }
   143       void set(const Node& n, bool b) {
   144 	if (b)
   145 	  map->set(n, *number_of_augmentations);
   146 	else 
   147 	  map->set(n, *number_of_augmentations-1);
   148       }
   149       bool operator[](const Node& n) const { 
   150 	return (*map)[n]==*number_of_augmentations; 
   151       }
   152     };
   153     
   154     ///Constructor
   155 
   156     ///\todo Document, please.
   157     ///
   158     MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
   159 	    FlowMap& _flow) :
   160       g(&_G), s(_s), t(_t), capacity(&_capacity),
   161       flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), 
   162       status(AFTER_NOTHING), number_of_augmentations(0) { }
   163 
   164     ///Runs a maximum flow algorithm.
   165 
   166     ///Runs a preflow algorithm, which is the fastest maximum flow
   167     ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
   168     ///\pre The starting flow must be
   169     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   170     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   171     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   172     /// - any map if \c fe is NO_FLOW.
   173     void run(FlowEnum fe=ZERO_FLOW) {
   174       preflow(fe);
   175     }
   176 
   177                                                                               
   178     ///Runs a preflow algorithm.  
   179 
   180     ///Runs a preflow algorithm. The preflow algorithms provide the
   181     ///fastest way to compute a maximum flow in a directed graph.
   182     ///\pre The starting flow must be
   183     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   184     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   185     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   186     /// - any map if \c fe is NO_FLOW.
   187     ///
   188     ///\todo NO_FLOW should be the default flow.
   189     void preflow(FlowEnum fe) {
   190       preflowPhase1(fe);
   191       preflowPhase2();
   192     }
   193     // Heuristics:
   194     //   2 phase
   195     //   gap
   196     //   list 'level_list' on the nodes on level i implemented by hand
   197     //   stack 'active' on the active nodes on level i                                                                                    
   198     //   runs heuristic 'highest label' for H1*n relabels
   199     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
   200     //   Parameters H0 and H1 are initialized to 20 and 1.
   201 
   202     ///Runs the first phase of the preflow algorithm.
   203 
   204     ///The preflow algorithm consists of two phases, this method runs the
   205     ///first phase. After the first phase the maximum flow value and a
   206     ///minimum value cut can already be computed, though a maximum flow
   207     ///is net yet obtained. So after calling this method \ref flowValue
   208     ///and \ref actMinCut gives proper results.
   209     ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
   210     ///give minimum value cuts unless calling \ref preflowPhase2.
   211     ///\pre The starting flow must be
   212     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   213     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   214     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   215     /// - any map if \c fe is NO_FLOW.
   216     void preflowPhase1(FlowEnum fe);
   217 
   218     ///Runs the second phase of the preflow algorithm.
   219 
   220     ///The preflow algorithm consists of two phases, this method runs
   221     ///the second phase. After calling \ref preflowPhase1 and then
   222     ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
   223     ///\ref minMinCut and \ref maxMinCut give proper results.
   224     ///\pre \ref preflowPhase1 must be called before.
   225     void preflowPhase2();
   226 
   227     /// Starting from a flow, this method searches for an augmenting path
   228     /// according to the Edmonds-Karp algorithm
   229     /// and augments the flow on if any.
   230     /// The return value shows if the augmentation was succesful.
   231     bool augmentOnShortestPath();
   232     bool augmentOnShortestPath2();
   233 
   234     /// Starting from a flow, this method searches for an augmenting blocking
   235     /// flow according to Dinits' algorithm and augments the flow on if any.
   236     /// The blocking flow is computed in a physically constructed
   237     /// residual graph of type \c Mutablegraph.
   238     /// The return value show sif the augmentation was succesful.
   239     template<typename MutableGraph> bool augmentOnBlockingFlow();
   240 
   241     /// The same as \c augmentOnBlockingFlow<MutableGraph> but the
   242     /// residual graph is not constructed physically.
   243     /// The return value shows if the augmentation was succesful.
   244     bool augmentOnBlockingFlow2();
   245 
   246     /// Returns the maximum value of a flow.
   247 
   248     /// Returns the maximum value of a flow, by counting the 
   249     /// over-flow of the target node \ref t.
   250     /// It can be called already after running \ref preflowPhase1.
   251     Num flowValue() const {
   252       Num a=0;
   253       FOR_EACH_INC_LOC(InEdgeIt, e, *g, t) a+=(*flow)[e];
   254       FOR_EACH_INC_LOC(OutEdgeIt, e, *g, t) a-=(*flow)[e];
   255       return a;
   256       //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan   
   257     }
   258 
   259     ///Returns a minimum value cut after calling \ref preflowPhase1.
   260 
   261     ///After the first phase of the preflow algorithm the maximum flow
   262     ///value and a minimum value cut can already be computed. This
   263     ///method can be called after running \ref preflowPhase1 for
   264     ///obtaining a minimum value cut.
   265     /// \warning Gives proper result only right after calling \ref
   266     /// preflowPhase1.
   267     /// \todo We have to make some status variable which shows the
   268     /// actual state
   269     /// of the class. This enables us to determine which methods are valid
   270     /// for MinCut computation
   271     template<typename _CutMap>
   272     void actMinCut(_CutMap& M) const {
   273       NodeIt v;
   274       switch (status) {
   275       case AFTER_PRE_FLOW_PHASE_1:
   276 	for(g->first(v); g->valid(v); g->next(v)) {
   277 	  if (level[v] < n) {
   278 	    M.set(v, false);
   279 	  } else {
   280 	    M.set(v, true);
   281 	  }
   282 	}
   283 	break;
   284       case AFTER_PRE_FLOW_PHASE_2:
   285       case AFTER_NOTHING:
   286 	minMinCut(M);
   287 	break;
   288       case AFTER_AUGMENTING:
   289 	for(g->first(v); g->valid(v); g->next(v)) {
   290 	  if (level[v]) {
   291 	    M.set(v, true);
   292 	  } else {
   293 	    M.set(v, false);
   294 	  }
   295 	}
   296 	break;
   297       case AFTER_FAST_AUGMENTING:
   298 	for(g->first(v); g->valid(v); g->next(v)) {
   299 	  if (level[v]==number_of_augmentations) {
   300 	    M.set(v, true);
   301 	  } else {
   302 	    M.set(v, false);
   303 	  }
   304 	}
   305 	break;
   306       }
   307     }
   308 
   309     ///Returns the inclusionwise minimum of the minimum value cuts.
   310 
   311     ///Sets \c M to the characteristic vector of the minimum value cut
   312     ///which is inclusionwise minimum. It is computed by processing
   313     ///a bfs from the source node \c s in the residual graph.
   314     ///\pre M should be a node map of bools initialized to false.
   315     ///\pre \c flow must be a maximum flow.
   316     template<typename _CutMap>
   317     void minMinCut(_CutMap& M) const {
   318       std::queue<Node> queue;
   319 
   320       M.set(s,true);
   321       queue.push(s);
   322 
   323       while (!queue.empty()) {
   324         Node w=queue.front();
   325 	queue.pop();
   326 
   327 	OutEdgeIt e;
   328 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   329 	  Node v=g->target(e);
   330 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
   331 	    queue.push(v);
   332 	    M.set(v, true);
   333 	  }
   334 	}
   335 
   336 	InEdgeIt f;
   337 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   338 	  Node v=g->source(f);
   339 	  if (!M[v] && (*flow)[f] > 0 ) {
   340 	    queue.push(v);
   341 	    M.set(v, true);
   342 	  }
   343 	}
   344       }
   345     }
   346 
   347     ///Returns the inclusionwise maximum of the minimum value cuts.
   348 
   349     ///Sets \c M to the characteristic vector of the minimum value cut
   350     ///which is inclusionwise maximum. It is computed by processing a
   351     ///backward bfs from the target node \c t in the residual graph.
   352     ///\pre M should be a node map of bools initialized to false.
   353     ///\pre \c flow must be a maximum flow. 
   354     template<typename _CutMap>
   355     void maxMinCut(_CutMap& M) const {
   356 
   357       NodeIt v;
   358       for(g->first(v) ; g->valid(v); g->next(v)) {
   359 	M.set(v, true);
   360       }
   361 
   362       std::queue<Node> queue;
   363 
   364       M.set(t,false);
   365       queue.push(t);
   366 
   367       while (!queue.empty()) {
   368         Node w=queue.front();
   369 	queue.pop();
   370 
   371 	InEdgeIt e;
   372 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   373 	  Node v=g->source(e);
   374 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
   375 	    queue.push(v);
   376 	    M.set(v, false);
   377 	  }
   378 	}
   379 
   380 	OutEdgeIt f;
   381 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   382 	  Node v=g->target(f);
   383 	  if (M[v] && (*flow)[f] > 0 ) {
   384 	    queue.push(v);
   385 	    M.set(v, false);
   386 	  }
   387 	}
   388       }
   389     }
   390 
   391     ///Returns a minimum value cut.
   392 
   393     ///Sets \c M to the characteristic vector of a minimum value cut.
   394     ///\pre M should be a node map of bools initialized to false.
   395     ///\pre \c flow must be a maximum flow.    
   396     template<typename CutMap>
   397     void minCut(CutMap& M) const { minMinCut(M); }
   398 
   399     ///Resets the source node to \c _s.
   400 
   401     ///Resets the source node to \c _s.
   402     /// 
   403     void resetSource(Node _s) { s=_s; status=AFTER_NOTHING; }
   404 
   405     ///Resets the target node to \c _t.
   406 
   407     ///Resets the target node to \c _t.
   408     ///
   409     void resetTarget(Node _t) { t=_t; status=AFTER_NOTHING; }
   410 
   411     /// Resets the edge map of the capacities to _cap.
   412 
   413     /// Resets the edge map of the capacities to _cap.
   414     /// 
   415     void resetCap(const CapMap& _cap) { capacity=&_cap; status=AFTER_NOTHING; }
   416 
   417     /// Resets the edge map of the flows to _flow.
   418 
   419     /// Resets the edge map of the flows to _flow.
   420     /// 
   421     void resetFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; }
   422 
   423 
   424   private:
   425 
   426     int push(Node w, VecStack& active) {
   427 
   428       int lev=level[w];
   429       Num exc=excess[w];
   430       int newlevel=n;       //bound on the next level of w
   431 
   432       OutEdgeIt e;
   433       for(g->first(e,w); g->valid(e); g->next(e)) {
   434 
   435 	if ( (*flow)[e] >= (*capacity)[e] ) continue;
   436 	Node v=g->target(e);
   437 
   438 	if( lev > level[v] ) { //Push is allowed now
   439 
   440 	  if ( excess[v]<=0 && v!=t && v!=s ) {
   441 	    int lev_v=level[v];
   442 	    active[lev_v].push(v);
   443 	  }
   444 
   445 	  Num cap=(*capacity)[e];
   446 	  Num flo=(*flow)[e];
   447 	  Num remcap=cap-flo;
   448 
   449 	  if ( remcap >= exc ) { //A nonsaturating push.
   450 
   451 	    flow->set(e, flo+exc);
   452 	    excess.set(v, excess[v]+exc);
   453 	    exc=0;
   454 	    break;
   455 
   456 	  } else { //A saturating push.
   457 	    flow->set(e, cap);
   458 	    excess.set(v, excess[v]+remcap);
   459 	    exc-=remcap;
   460 	  }
   461 	} else if ( newlevel > level[v] ) newlevel = level[v];
   462       } //for out edges wv
   463 
   464       if ( exc > 0 ) {
   465 	InEdgeIt e;
   466 	for(g->first(e,w); g->valid(e); g->next(e)) {
   467 
   468 	  if( (*flow)[e] <= 0 ) continue;
   469 	  Node v=g->source(e);
   470 
   471 	  if( lev > level[v] ) { //Push is allowed now
   472 
   473 	    if ( excess[v]<=0 && v!=t && v!=s ) {
   474 	      int lev_v=level[v];
   475 	      active[lev_v].push(v);
   476 	    }
   477 
   478 	    Num flo=(*flow)[e];
   479 
   480 	    if ( flo >= exc ) { //A nonsaturating push.
   481 
   482 	      flow->set(e, flo-exc);
   483 	      excess.set(v, excess[v]+exc);
   484 	      exc=0;
   485 	      break;
   486 	    } else {  //A saturating push.
   487 
   488 	      excess.set(v, excess[v]+flo);
   489 	      exc-=flo;
   490 	      flow->set(e,0);
   491 	    }
   492 	  } else if ( newlevel > level[v] ) newlevel = level[v];
   493 	} //for in edges vw
   494 
   495       } // if w still has excess after the out edge for cycle
   496 
   497       excess.set(w, exc);
   498 
   499       return newlevel;
   500     }
   501 
   502 
   503     void preflowPreproc(FlowEnum fe, VecStack& active,
   504 			VecNode& level_list, NNMap& left, NNMap& right)
   505     {
   506       std::queue<Node> bfs_queue;
   507 
   508       switch (fe) {
   509       case NO_FLOW:   //flow is already set to const zero in this case
   510       case ZERO_FLOW:
   511 	{
   512 	  //Reverse_bfs from t, to find the starting level.
   513 	  level.set(t,0);
   514 	  bfs_queue.push(t);
   515 
   516 	  while (!bfs_queue.empty()) {
   517 
   518 	    Node v=bfs_queue.front();
   519 	    bfs_queue.pop();
   520 	    int l=level[v]+1;
   521 
   522 	    InEdgeIt e;
   523 	    for(g->first(e,v); g->valid(e); g->next(e)) {
   524 	      Node w=g->source(e);
   525 	      if ( level[w] == n && w != s ) {
   526 		bfs_queue.push(w);
   527 		Node first=level_list[l];
   528 		if ( g->valid(first) ) left.set(first,w);
   529 		right.set(w,first);
   530 		level_list[l]=w;
   531 		level.set(w, l);
   532 	      }
   533 	    }
   534 	  }
   535 
   536 	  //the starting flow
   537 	  OutEdgeIt e;
   538 	  for(g->first(e,s); g->valid(e); g->next(e))
   539 	    {
   540 	      Num c=(*capacity)[e];
   541 	      if ( c <= 0 ) continue;
   542 	      Node w=g->target(e);
   543 	      if ( level[w] < n ) {
   544 		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   545 		flow->set(e, c);
   546 		excess.set(w, excess[w]+c);
   547 	      }
   548 	    }
   549 	  break;
   550 	}
   551 
   552       case GEN_FLOW:
   553       case PRE_FLOW:
   554 	{
   555 	  //Reverse_bfs from t in the residual graph,
   556 	  //to find the starting level.
   557 	  level.set(t,0);
   558 	  bfs_queue.push(t);
   559 
   560 	  while (!bfs_queue.empty()) {
   561 
   562 	    Node v=bfs_queue.front();
   563 	    bfs_queue.pop();
   564 	    int l=level[v]+1;
   565 
   566 	    InEdgeIt e;
   567 	    for(g->first(e,v); g->valid(e); g->next(e)) {
   568 	      if ( (*capacity)[e] <= (*flow)[e] ) continue;
   569 	      Node w=g->source(e);
   570 	      if ( level[w] == n && w != s ) {
   571 		bfs_queue.push(w);
   572 		Node first=level_list[l];
   573 		if ( g->valid(first) ) left.set(first,w);
   574 		right.set(w,first);
   575 		level_list[l]=w;
   576 		level.set(w, l);
   577 	      }
   578 	    }
   579 
   580 	    OutEdgeIt f;
   581 	    for(g->first(f,v); g->valid(f); g->next(f)) {
   582 	      if ( 0 >= (*flow)[f] ) continue;
   583 	      Node w=g->target(f);
   584 	      if ( level[w] == n && w != s ) {
   585 		bfs_queue.push(w);
   586 		Node first=level_list[l];
   587 		if ( g->valid(first) ) left.set(first,w);
   588 		right.set(w,first);
   589 		level_list[l]=w;
   590 		level.set(w, l);
   591 	      }
   592 	    }
   593 	  }
   594 
   595 
   596 	  //the starting flow
   597 	  OutEdgeIt e;
   598 	  for(g->first(e,s); g->valid(e); g->next(e))
   599 	    {
   600 	      Num rem=(*capacity)[e]-(*flow)[e];
   601 	      if ( rem <= 0 ) continue;
   602 	      Node w=g->target(e);
   603 	      if ( level[w] < n ) {
   604 		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   605 		flow->set(e, (*capacity)[e]);
   606 		excess.set(w, excess[w]+rem);
   607 	      }
   608 	    }
   609 
   610 	  InEdgeIt f;
   611 	  for(g->first(f,s); g->valid(f); g->next(f))
   612 	    {
   613 	      if ( (*flow)[f] <= 0 ) continue;
   614 	      Node w=g->source(f);
   615 	      if ( level[w] < n ) {
   616 		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   617 		excess.set(w, excess[w]+(*flow)[f]);
   618 		flow->set(f, 0);
   619 	      }
   620 	    }
   621 	  break;
   622 	} //case PRE_FLOW
   623       }
   624     } //preflowPreproc
   625 
   626 
   627 
   628     void relabel(Node w, int newlevel, VecStack& active,
   629 		 VecNode& level_list, NNMap& left,
   630 		 NNMap& right, int& b, int& k, bool what_heur )
   631     {
   632 
   633       Num lev=level[w];
   634 
   635       Node right_n=right[w];
   636       Node left_n=left[w];
   637 
   638       //unlacing starts
   639       if ( g->valid(right_n) ) {
   640 	if ( g->valid(left_n) ) {
   641 	  right.set(left_n, right_n);
   642 	  left.set(right_n, left_n);
   643 	} else {
   644 	  level_list[lev]=right_n;
   645 	  left.set(right_n, INVALID);
   646 	}
   647       } else {
   648 	if ( g->valid(left_n) ) {
   649 	  right.set(left_n, INVALID);
   650 	} else {
   651 	  level_list[lev]=INVALID;
   652 	}
   653       }
   654       //unlacing ends
   655 
   656       if ( !g->valid(level_list[lev]) ) {
   657 
   658 	//gapping starts
   659 	for (int i=lev; i!=k ; ) {
   660 	  Node v=level_list[++i];
   661 	  while ( g->valid(v) ) {
   662 	    level.set(v,n);
   663 	    v=right[v];
   664 	  }
   665 	  level_list[i]=INVALID;
   666 	  if ( !what_heur ) {
   667 	    while ( !active[i].empty() ) {
   668 	      active[i].pop();    //FIXME: ezt szebben kene
   669 	    }
   670 	  }
   671 	}
   672 
   673 	level.set(w,n);
   674 	b=lev-1;
   675 	k=b;
   676 	//gapping ends
   677 
   678       } else {
   679 
   680 	if ( newlevel == n ) level.set(w,n);
   681 	else {
   682 	  level.set(w,++newlevel);
   683 	  active[newlevel].push(w);
   684 	  if ( what_heur ) b=newlevel;
   685 	  if ( k < newlevel ) ++k;      //now k=newlevel
   686 	  Node first=level_list[newlevel];
   687 	  if ( g->valid(first) ) left.set(first,w);
   688 	  right.set(w,first);
   689 	  left.set(w,INVALID);
   690 	  level_list[newlevel]=w;
   691 	}
   692       }
   693 
   694     } //relabel
   695 
   696 
   697     template<typename MapGraphWrapper>
   698     class DistanceMap {
   699     protected:
   700       const MapGraphWrapper* g;
   701       typename MapGraphWrapper::template NodeMap<int> dist;
   702     public:
   703       DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { }
   704       void set(const typename MapGraphWrapper::Node& n, int a) {
   705 	dist.set(n, a);
   706       }
   707       int operator[](const typename MapGraphWrapper::Node& n) const { 
   708 	return dist[n]; 
   709       }
   710       //       int get(const typename MapGraphWrapper::Node& n) const {
   711       // 	return dist[n]; }
   712       //       bool get(const typename MapGraphWrapper::Edge& e) const {
   713       // 	return (dist.get(g->source(e))<dist.get(g->target(e))); }
   714       bool operator[](const typename MapGraphWrapper::Edge& e) const {
   715 	return (dist[g->source(e)]<dist[g->target(e)]);
   716       }
   717     };
   718 
   719   };
   720 
   721 
   722   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   723   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase1(FlowEnum fe)
   724   {
   725 
   726     int heur0=(int)(H0*n);  //time while running 'bound decrease'
   727     int heur1=(int)(H1*n);  //time while running 'highest label'
   728     int heur=heur1;         //starting time interval (#of relabels)
   729     int numrelabel=0;
   730 
   731     bool what_heur=1;
   732     //It is 0 in case 'bound decrease' and 1 in case 'highest label'
   733 
   734     bool end=false;
   735     //Needed for 'bound decrease', true means no active nodes are above bound
   736     //b.
   737 
   738     int k=n-2;  //bound on the highest level under n containing a node
   739     int b=k;    //bound on the highest level under n of an active node
   740 
   741     VecStack active(n);
   742 
   743     NNMap left(*g, INVALID);
   744     NNMap right(*g, INVALID);
   745     VecNode level_list(n,INVALID);
   746     //List of the nodes in level i<n, set to n.
   747 
   748     NodeIt v;
   749     for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
   750     //setting each node to level n
   751 
   752     if ( fe == NO_FLOW ) {
   753       EdgeIt e;
   754       for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0);
   755     }
   756 
   757     switch (fe) { //computing the excess
   758     case PRE_FLOW:
   759       {
   760 	NodeIt v;
   761 	for(g->first(v); g->valid(v); g->next(v)) {
   762 	  Num exc=0;
   763 
   764 	  InEdgeIt e;
   765 	  for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];
   766 	  OutEdgeIt f;
   767 	  for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];
   768 
   769 	  excess.set(v,exc);
   770 
   771 	  //putting the active nodes into the stack
   772 	  int lev=level[v];
   773 	  if ( exc > 0 && lev < n && v != t ) active[lev].push(v);
   774 	}
   775 	break;
   776       }
   777     case GEN_FLOW:
   778       {
   779 	NodeIt v;
   780 	for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
   781 
   782 	Num exc=0;
   783 	InEdgeIt e;
   784 	for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
   785 	OutEdgeIt f;
   786 	for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
   787 	excess.set(t,exc);
   788 	break;
   789       }
   790     case ZERO_FLOW:
   791     case NO_FLOW:
   792       {
   793 	NodeIt v;
   794         for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
   795 	break;
   796       }
   797     }
   798 
   799     preflowPreproc(fe, active, level_list, left, right);
   800     //End of preprocessing
   801 
   802 
   803     //Push/relabel on the highest level active nodes.
   804     while ( true ) {
   805       if ( b == 0 ) {
   806 	if ( !what_heur && !end && k > 0 ) {
   807 	  b=k;
   808 	  end=true;
   809 	} else break;
   810       }
   811 
   812       if ( active[b].empty() ) --b;
   813       else {
   814 	end=false;
   815 	Node w=active[b].top();
   816 	active[b].pop();
   817 	int newlevel=push(w,active);
   818 	if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list,
   819 				     left, right, b, k, what_heur);
   820 
   821 	++numrelabel;
   822 	if ( numrelabel >= heur ) {
   823 	  numrelabel=0;
   824 	  if ( what_heur ) {
   825 	    what_heur=0;
   826 	    heur=heur0;
   827 	    end=false;
   828 	  } else {
   829 	    what_heur=1;
   830 	    heur=heur1;
   831 	    b=k;
   832 	  }
   833 	}
   834       }
   835     }
   836 
   837     status=AFTER_PRE_FLOW_PHASE_1;
   838   }
   839 
   840 
   841 
   842   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   843   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase2()
   844   {
   845 
   846     int k=n-2;  //bound on the highest level under n containing a node
   847     int b=k;    //bound on the highest level under n of an active node
   848 
   849     VecStack active(n);
   850     level.set(s,0);
   851     std::queue<Node> bfs_queue;
   852     bfs_queue.push(s);
   853 
   854     while (!bfs_queue.empty()) {
   855 
   856       Node v=bfs_queue.front();
   857       bfs_queue.pop();
   858       int l=level[v]+1;
   859 
   860       InEdgeIt e;
   861       for(g->first(e,v); g->valid(e); g->next(e)) {
   862 	if ( (*capacity)[e] <= (*flow)[e] ) continue;
   863 	Node u=g->source(e);
   864 	if ( level[u] >= n ) {
   865 	  bfs_queue.push(u);
   866 	  level.set(u, l);
   867 	  if ( excess[u] > 0 ) active[l].push(u);
   868 	}
   869       }
   870 
   871       OutEdgeIt f;
   872       for(g->first(f,v); g->valid(f); g->next(f)) {
   873 	if ( 0 >= (*flow)[f] ) continue;
   874 	Node u=g->target(f);
   875 	if ( level[u] >= n ) {
   876 	  bfs_queue.push(u);
   877 	  level.set(u, l);
   878 	  if ( excess[u] > 0 ) active[l].push(u);
   879 	}
   880       }
   881     }
   882     b=n-2;
   883 
   884     while ( true ) {
   885 
   886       if ( b == 0 ) break;
   887 
   888       if ( active[b].empty() ) --b;
   889       else {
   890 	Node w=active[b].top();
   891 	active[b].pop();
   892 	int newlevel=push(w,active);
   893 
   894 	//relabel
   895 	if ( excess[w] > 0 ) {
   896 	  level.set(w,++newlevel);
   897 	  active[newlevel].push(w);
   898 	  b=newlevel;
   899 	}
   900       }  // if stack[b] is nonempty
   901     } // while(true)
   902 
   903     status=AFTER_PRE_FLOW_PHASE_2;
   904   }
   905 
   906 
   907 
   908   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   909   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath()
   910   {
   911     ResGW res_graph(*g, *capacity, *flow);
   912     bool _augment=false;
   913 
   914     //ReachedMap level(res_graph);
   915     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
   916     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
   917     bfs.pushAndSetReached(s);
   918 
   919     typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
   920     pred.set(s, INVALID);
   921 
   922     typename ResGW::template NodeMap<Num> free(res_graph);
   923 
   924     //searching for augmenting path
   925     while ( !bfs.finished() ) {
   926       ResGWOutEdgeIt e=bfs;
   927       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   928 	Node v=res_graph.source(e);
   929 	Node w=res_graph.target(e);
   930 	pred.set(w, e);
   931 	if (res_graph.valid(pred[v])) {
   932 	  free.set(w, std::min(free[v], res_graph.resCap(e)));
   933 	} else {
   934 	  free.set(w, res_graph.resCap(e));
   935 	}
   936 	if (res_graph.target(e)==t) { _augment=true; break; }
   937       }
   938 
   939       ++bfs;
   940     } //end of searching augmenting path
   941 
   942     if (_augment) {
   943       Node n=t;
   944       Num augment_value=free[t];
   945       while (res_graph.valid(pred[n])) {
   946 	ResGWEdge e=pred[n];
   947 	res_graph.augment(e, augment_value);
   948 	n=res_graph.source(e);
   949       }
   950     }
   951 
   952     status=AFTER_AUGMENTING;
   953     return _augment;
   954   }
   955 
   956 
   957   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   958   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath2()
   959   {
   960     ResGW res_graph(*g, *capacity, *flow);
   961     bool _augment=false;
   962 
   963     if (status!=AFTER_FAST_AUGMENTING) {
   964       FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); 
   965       number_of_augmentations=1;
   966     } else {
   967       ++number_of_augmentations;
   968     }
   969     TrickyReachedMap<ReachedMap> 
   970       tricky_reached_map(level, number_of_augmentations);
   971     //ReachedMap level(res_graph);
   972 //    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
   973     BfsIterator<ResGW, TrickyReachedMap<ReachedMap> > 
   974       bfs(res_graph, tricky_reached_map);
   975     bfs.pushAndSetReached(s);
   976 
   977     typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
   978     pred.set(s, INVALID);
   979 
   980     typename ResGW::template NodeMap<Num> free(res_graph);
   981 
   982     //searching for augmenting path
   983     while ( !bfs.finished() ) {
   984       ResGWOutEdgeIt e=bfs;
   985       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   986 	Node v=res_graph.source(e);
   987 	Node w=res_graph.target(e);
   988 	pred.set(w, e);
   989 	if (res_graph.valid(pred[v])) {
   990 	  free.set(w, std::min(free[v], res_graph.resCap(e)));
   991 	} else {
   992 	  free.set(w, res_graph.resCap(e));
   993 	}
   994 	if (res_graph.target(e)==t) { _augment=true; break; }
   995       }
   996 
   997       ++bfs;
   998     } //end of searching augmenting path
   999 
  1000     if (_augment) {
  1001       Node n=t;
  1002       Num augment_value=free[t];
  1003       while (res_graph.valid(pred[n])) {
  1004 	ResGWEdge e=pred[n];
  1005 	res_graph.augment(e, augment_value);
  1006 	n=res_graph.source(e);
  1007       }
  1008     }
  1009 
  1010     status=AFTER_FAST_AUGMENTING;
  1011     return _augment;
  1012   }
  1013 
  1014 
  1015   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
  1016   template<typename MutableGraph>
  1017   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow()
  1018   {
  1019     typedef MutableGraph MG;
  1020     bool _augment=false;
  1021 
  1022     ResGW res_graph(*g, *capacity, *flow);
  1023 
  1024     //bfs for distances on the residual graph
  1025     //ReachedMap level(res_graph);
  1026     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
  1027     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
  1028     bfs.pushAndSetReached(s);
  1029     typename ResGW::template NodeMap<int>
  1030       dist(res_graph); //filled up with 0's
  1031 
  1032     //F will contain the physical copy of the residual graph
  1033     //with the set of edges which are on shortest paths
  1034     MG F;
  1035     typename ResGW::template NodeMap<typename MG::Node>
  1036       res_graph_to_F(res_graph);
  1037     {
  1038       typename ResGW::NodeIt n;
  1039       for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
  1040 	res_graph_to_F.set(n, F.addNode());
  1041       }
  1042     }
  1043 
  1044     typename MG::Node sF=res_graph_to_F[s];
  1045     typename MG::Node tF=res_graph_to_F[t];
  1046     typename MG::template EdgeMap<ResGWEdge> original_edge(F);
  1047     typename MG::template EdgeMap<Num> residual_capacity(F);
  1048 
  1049     while ( !bfs.finished() ) {
  1050       ResGWOutEdgeIt e=bfs;
  1051       if (res_graph.valid(e)) {
  1052 	if (bfs.isBNodeNewlyReached()) {
  1053 	  dist.set(res_graph.target(e), dist[res_graph.source(e)]+1);
  1054 	  typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.source(e)],
  1055 					res_graph_to_F[res_graph.target(e)]);
  1056 	  original_edge.update();
  1057 	  original_edge.set(f, e);
  1058 	  residual_capacity.update();
  1059 	  residual_capacity.set(f, res_graph.resCap(e));
  1060 	} else {
  1061 	  if (dist[res_graph.target(e)]==(dist[res_graph.source(e)]+1)) {
  1062 	    typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.source(e)],
  1063 					  res_graph_to_F[res_graph.target(e)]);
  1064 	    original_edge.update();
  1065 	    original_edge.set(f, e);
  1066 	    residual_capacity.update();
  1067 	    residual_capacity.set(f, res_graph.resCap(e));
  1068 	  }
  1069 	}
  1070       }
  1071       ++bfs;
  1072     } //computing distances from s in the residual graph
  1073 
  1074     bool __augment=true;
  1075 
  1076     while (__augment) {
  1077       __augment=false;
  1078       //computing blocking flow with dfs
  1079       DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F);
  1080       typename MG::template NodeMap<typename MG::Edge> pred(F);
  1081       pred.set(sF, INVALID);
  1082       //invalid iterators for sources
  1083 
  1084       typename MG::template NodeMap<Num> free(F);
  1085 
  1086       dfs.pushAndSetReached(sF);
  1087       while (!dfs.finished()) {
  1088 	++dfs;
  1089 	if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
  1090 	  if (dfs.isBNodeNewlyReached()) {
  1091 	    typename MG::Node v=F.aNode(dfs);
  1092 	    typename MG::Node w=F.bNode(dfs);
  1093 	    pred.set(w, dfs);
  1094 	    if (F.valid(pred[v])) {
  1095 	      free.set(w, std::min(free[v], residual_capacity[dfs]));
  1096 	    } else {
  1097 	      free.set(w, residual_capacity[dfs]);
  1098 	    }
  1099 	    if (w==tF) {
  1100 	      __augment=true;
  1101 	      _augment=true;
  1102 	      break;
  1103 	    }
  1104 
  1105 	  } else {
  1106 	    F.erase(/*typename MG::OutEdgeIt*/(dfs));
  1107 	  }
  1108 	}
  1109       }
  1110 
  1111       if (__augment) {
  1112 	typename MG::Node n=tF;
  1113 	Num augment_value=free[tF];
  1114 	while (F.valid(pred[n])) {
  1115 	  typename MG::Edge e=pred[n];
  1116 	  res_graph.augment(original_edge[e], augment_value);
  1117 	  n=F.source(e);
  1118 	  if (residual_capacity[e]==augment_value)
  1119 	    F.erase(e);
  1120 	  else
  1121 	    residual_capacity.set(e, residual_capacity[e]-augment_value);
  1122 	}
  1123       }
  1124 
  1125     }
  1126 
  1127     status=AFTER_AUGMENTING;
  1128     return _augment;
  1129   }
  1130 
  1131 
  1132 
  1133 
  1134   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
  1135   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2()
  1136   {
  1137     bool _augment=false;
  1138 
  1139     ResGW res_graph(*g, *capacity, *flow);
  1140 
  1141     //ReachedMap level(res_graph);
  1142     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
  1143     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
  1144 
  1145     bfs.pushAndSetReached(s);
  1146     DistanceMap<ResGW> dist(res_graph);
  1147     while ( !bfs.finished() ) {
  1148       ResGWOutEdgeIt e=bfs;
  1149       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
  1150 	dist.set(res_graph.target(e), dist[res_graph.source(e)]+1);
  1151       }
  1152       ++bfs;
  1153     } //computing distances from s in the residual graph
  1154 
  1155       //Subgraph containing the edges on some shortest paths
  1156     ConstMap<typename ResGW::Node, bool> true_map(true);
  1157     typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>,
  1158       DistanceMap<ResGW> > FilterResGW;
  1159     FilterResGW filter_res_graph(res_graph, true_map, dist);
  1160 
  1161     //Subgraph, which is able to delete edges which are already
  1162     //met by the dfs
  1163     typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt>
  1164       first_out_edges(filter_res_graph);
  1165     typename FilterResGW::NodeIt v;
  1166     for(filter_res_graph.first(v); filter_res_graph.valid(v);
  1167 	filter_res_graph.next(v))
  1168       {
  1169  	typename FilterResGW::OutEdgeIt e;
  1170  	filter_res_graph.first(e, v);
  1171  	first_out_edges.set(v, e);
  1172       }
  1173     typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
  1174       template NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW;
  1175     ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
  1176 
  1177     bool __augment=true;
  1178 
  1179     while (__augment) {
  1180 
  1181       __augment=false;
  1182       //computing blocking flow with dfs
  1183       DfsIterator< ErasingResGW,
  1184 	typename ErasingResGW::template NodeMap<bool> >
  1185 	dfs(erasing_res_graph);
  1186       typename ErasingResGW::
  1187 	template NodeMap<typename ErasingResGW::OutEdgeIt>
  1188 	pred(erasing_res_graph);
  1189       pred.set(s, INVALID);
  1190       //invalid iterators for sources
  1191 
  1192       typename ErasingResGW::template NodeMap<Num>
  1193 	free1(erasing_res_graph);
  1194 
  1195       dfs.pushAndSetReached
  1196 	///\bug lemon 0.2
  1197 	(typename ErasingResGW::Node
  1198 	 (typename FilterResGW::Node
  1199 	  (typename ResGW::Node(s)
  1200 	   )
  1201 	  )
  1202 	 );
  1203       while (!dfs.finished()) {
  1204 	++dfs;
  1205 	if (erasing_res_graph.valid(typename ErasingResGW::OutEdgeIt(dfs)))
  1206  	  {
  1207   	    if (dfs.isBNodeNewlyReached()) {
  1208 
  1209  	      typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs);
  1210  	      typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs);
  1211 
  1212  	      pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs));
  1213  	      if (erasing_res_graph.valid(pred[v])) {
  1214  		free1.set
  1215 		  (w, std::min(free1[v], res_graph.resCap
  1216 			       (typename ErasingResGW::OutEdgeIt(dfs))));
  1217  	      } else {
  1218  		free1.set
  1219 		  (w, res_graph.resCap
  1220 		   (typename ErasingResGW::OutEdgeIt(dfs)));
  1221  	      }
  1222 
  1223  	      if (w==t) {
  1224  		__augment=true;
  1225  		_augment=true;
  1226  		break;
  1227  	      }
  1228  	    } else {
  1229  	      erasing_res_graph.erase(dfs);
  1230 	    }
  1231 	  }
  1232       }
  1233 
  1234       if (__augment) {
  1235 	typename ErasingResGW::Node
  1236 	  n=typename FilterResGW::Node(typename ResGW::Node(t));
  1237 	// 	  typename ResGW::NodeMap<Num> a(res_graph);
  1238 	// 	  typename ResGW::Node b;
  1239 	// 	  Num j=a[b];
  1240 	// 	  typename FilterResGW::NodeMap<Num> a1(filter_res_graph);
  1241 	// 	  typename FilterResGW::Node b1;
  1242 	// 	  Num j1=a1[b1];
  1243 	// 	  typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph);
  1244 	// 	  typename ErasingResGW::Node b2;
  1245 	// 	  Num j2=a2[b2];
  1246 	Num augment_value=free1[n];
  1247 	while (erasing_res_graph.valid(pred[n])) {
  1248 	  typename ErasingResGW::OutEdgeIt e=pred[n];
  1249 	  res_graph.augment(e, augment_value);
  1250 	  n=erasing_res_graph.source(e);
  1251 	  if (res_graph.resCap(e)==0)
  1252 	    erasing_res_graph.erase(e);
  1253 	}
  1254       }
  1255 
  1256     } //while (__augment)
  1257 
  1258     status=AFTER_AUGMENTING;
  1259     return _augment;
  1260   }
  1261 
  1262 
  1263 } //namespace lemon
  1264 
  1265 #endif //LEMON_MAX_FLOW_H
  1266 
  1267 
  1268 
  1269