lemon/unionfind.h
author alpar
Mon, 20 Feb 2006 06:41:12 +0000
changeset 1971 9a59a6cacfd9
parent 1875 98698b69a902
child 1993 2115143eceea
permissions -rw-r--r--
- RGB color related stuff is in color.h now
- eps.h: A simple class to create .eps figures (demo: eps_demo.h)
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_UNION_FIND_H
    20 #define LEMON_UNION_FIND_H
    21 
    22 //!\ingroup auxdat
    23 //!\file
    24 //!\brief Union-Find data structures.
    25 //!
    26 
    27 #include <vector>
    28 #include <list>
    29 #include <utility>
    30 #include <algorithm>
    31 
    32 #include <lemon/invalid.h>
    33 
    34 namespace lemon {
    35 
    36   //! \addtogroup auxdat
    37   //! @{
    38 
    39   /**
    40    * \brief A \e Union-Find data structure implementation
    41    *
    42    * The class implements the \e Union-Find data structure. 
    43    * The union operation uses rank heuristic, while
    44    * the find operation uses path compression.
    45    * This is a very simple but efficient implementation, providing 
    46    * only four methods: join (union), find, insert and size.
    47    * For more features see the \ref UnionFindEnum class.
    48    *
    49    * It is primarily used in Kruskal algorithm for finding minimal
    50    * cost spanning tree in a graph.
    51    * \sa kruskal()
    52    *
    53    * \pre The elements are automatically added only if the map 
    54    * given to the constructor was filled with -1's. Otherwise you
    55    * need to add all the elements by the \ref insert() method.
    56    * \bug It is not clear what the constructor parameter is used for.
    57    */
    58 
    59   template <typename T, typename TIntMap>
    60   class UnionFind {
    61     
    62   public:
    63     typedef T ElementType;
    64     typedef std::pair<int,int> PairType;
    65 
    66   private:
    67     std::vector<PairType> data;
    68     TIntMap& map;
    69 
    70   public:
    71     UnionFind(TIntMap& m) : map(m) {}
    72 
    73     /**
    74      * \brief Returns the index of the element's component.
    75      *
    76      * The method returns the index of the element's component.
    77      * This is an integer between zero and the number of inserted elements.
    78      */
    79 
    80     int find(T a)
    81     {
    82       int comp0 = map[a];
    83       if (comp0 < 0) {
    84 	return insert(a);
    85       }
    86       int comp = comp0;
    87       int next;
    88       while ( (next = data[comp].first) != comp) {
    89 	comp = next;
    90       }
    91       while ( (next = data[comp0].first) != comp) {
    92 	data[comp0].first = comp;
    93 	comp0 = next;
    94       }
    95 
    96       return comp;
    97     }
    98 
    99     /**
   100      * \brief Inserts a new element into the structure.
   101      *
   102      * This method inserts a new element into the data structure. 
   103      *
   104      * It is not required to use this method:
   105      * if the map given to the constructor was filled 
   106      * with -1's then it is called automatically
   107      * on the first \ref find or \ref join.
   108      *
   109      * The method returns the index of the new component.
   110      */
   111 
   112     int insert(T a)
   113     {
   114       int n = data.size();
   115       data.push_back(std::make_pair(n, 1));
   116       map.set(a,n);
   117       return n;
   118     }
   119 
   120     /**
   121      * \brief Joining the components of element \e a and element \e b.
   122      *
   123      * This is the \e union operation of the Union-Find structure. 
   124      * Joins the component of element \e a and component of
   125      * element \e b. If \e a and \e b are in the same component then
   126      * it returns false otherwise it returns true.
   127      */
   128 
   129     bool join(T a, T b)
   130     {
   131       int ca = find(a);
   132       int cb = find(b);
   133 
   134       if ( ca == cb ) 
   135 	return false;
   136 
   137       if ( data[ca].second > data[cb].second ) {
   138 	data[cb].first = ca;
   139 	data[ca].second += data[cb].second;
   140       }
   141       else {
   142 	data[ca].first = cb;
   143 	data[cb].second += data[ca].second;
   144       }
   145       return true;
   146     }
   147 
   148     /**
   149      * \brief Returns the size of the component of element \e a.
   150      *
   151      * Returns the size of the component of element \e a.
   152      */
   153 
   154     int size(T a)
   155     {
   156       int ca = find(a);
   157       return data[ca].second;
   158     }
   159 
   160   };
   161 
   162 
   163 
   164 
   165   /*******************************************************/
   166 
   167 
   168 #ifdef DEVELOPMENT_DOCS
   169 
   170   /**
   171    * \brief The auxiliary class for the \ref UnionFindEnum class.
   172    *
   173    * In the \ref UnionFindEnum class all components are represented as
   174    * a std::list. 
   175    * Items of these lists are UnionFindEnumItem structures.
   176    *
   177    * The class has four fields:
   178    *  - T me - the actual element 
   179    *  - IIter parent - the parent of the element in the union-find structure
   180    *  - int size - the size of the component of the element. 
   181    *            Only valid if the element
   182    *            is the leader of the component.
   183    *  - CIter my_class - pointer into the list of components 
   184    *            pointing to the component of the element.
   185    *            Only valid if the element is the leader of the component.
   186    */
   187 
   188 #endif
   189 
   190   template <typename T>
   191   struct UnionFindEnumItem {
   192 
   193     typedef std::list<UnionFindEnumItem> ItemList;
   194     typedef std::list<ItemList> ClassList;
   195     typedef typename ItemList::iterator IIter;
   196     typedef typename ClassList::iterator CIter;
   197 
   198     T me;
   199     IIter parent;
   200     int size;
   201     CIter my_class;
   202 
   203     UnionFindEnumItem() {}
   204     UnionFindEnumItem(const T &_me, CIter _my_class): 
   205       me(_me), size(1), my_class(_my_class) {}
   206   };
   207 
   208 
   209   /**
   210    * \brief A \e Union-Find data structure implementation which
   211    * is able to enumerate the components.
   212    *
   213    * The class implements a \e Union-Find data structure
   214    * which is able to enumerate the components and the items in
   215    * a component. If you don't need this feature then perhaps it's
   216    * better to use the \ref UnionFind class which is more efficient.
   217    *
   218    * The union operation uses rank heuristic, while
   219    * the find operation uses path compression.
   220    *
   221    * \pre You
   222    * need to add all the elements by the \ref insert() method.
   223    */
   224 
   225 
   226   template <typename T, template <typename Item> class Map>
   227   class UnionFindEnum {
   228 
   229     typedef std::list<UnionFindEnumItem<T> > ItemList;
   230     typedef std::list<ItemList> ClassList;
   231     typedef typename ItemList::iterator IIter;
   232     typedef typename ItemList::const_iterator IcIter;
   233     typedef typename ClassList::iterator CIter;
   234     typedef typename ClassList::const_iterator CcIter;
   235 
   236   public:
   237     typedef T ElementType;
   238     typedef UnionFindEnumItem<T> ItemType;
   239     typedef Map< IIter > MapType;
   240 
   241   private:
   242     MapType& m;
   243     ClassList classes;
   244 
   245     IIter _find(IIter a) const {
   246       IIter comp = a;
   247       IIter next;
   248       while( (next = comp->parent) != comp ) {
   249 	comp = next;
   250       }
   251 
   252       IIter comp1 = a;
   253       while( (next = comp1->parent) != comp ) {
   254 	comp1->parent = comp->parent;
   255 	comp1 = next;
   256       }
   257       return comp;
   258     }
   259 
   260   public:
   261     UnionFindEnum(MapType& _m) : m(_m) {}
   262 
   263 
   264     /**
   265      * \brief Inserts the given element into a new component.
   266      *
   267      * This method creates a new component consisting only of the
   268      * given element.
   269      */
   270 
   271     void insert(const T &a)
   272     {
   273 
   274 
   275       classes.push_back(ItemList());
   276       CIter aclass = classes.end();
   277       --aclass;
   278 
   279       ItemList &alist = *aclass;
   280       alist.push_back(ItemType(a, aclass));
   281       IIter ai = alist.begin();
   282 
   283       ai->parent = ai;
   284       m.set(a, ai);
   285 
   286     }
   287 
   288     /**
   289      * \brief Inserts the given element into the component of the others.
   290      *
   291      * This methods inserts the element \e a into the component of the
   292      * element \e comp. 
   293      */
   294 
   295     void insert(const T &a, const T &comp) {
   296       
   297       IIter clit = _find(m[comp]);
   298       ItemList &c = *clit->my_class;
   299       c.push_back(ItemType(a,0));
   300       IIter ai = c.end();
   301       --ai;
   302       ai->parent = clit;
   303       m.set(a, ai);
   304       ++clit->size;
   305     }
   306 
   307 
   308     /**
   309      * \brief Finds the leader of the component of the given element.
   310      *
   311      * The method returns the leader of the component of the given element.
   312      */
   313 
   314     T find(const T &a) const {
   315       return _find(m[a])->me;
   316     }
   317 
   318 
   319     /**
   320      * \brief Joining the component of element \e a and element \e b.
   321      *
   322      * This is the \e union operation of the Union-Find structure. 
   323      * Joins the component of element \e a and component of
   324      * element \e b. If \e a and \e b are in the same component then
   325      * returns false else returns true.
   326      */
   327 
   328     bool join(T a, T b) {
   329 
   330       IIter ca = _find(m[a]);
   331       IIter cb = _find(m[b]);
   332 
   333       if ( ca == cb ) {
   334 	return false;
   335       }
   336 
   337       if ( ca->size > cb->size ) {
   338 
   339 	cb->parent = ca->parent;
   340 	ca->size += cb->size;
   341 	
   342 	ItemList &alist = *ca->my_class;
   343 	alist.splice(alist.end(),*cb->my_class);
   344 
   345 	classes.erase(cb->my_class);
   346 	cb->my_class = 0;
   347       }
   348       else {
   349 
   350 	ca->parent = cb->parent;
   351 	cb->size += ca->size;
   352 	
   353 	ItemList &blist = *cb->my_class;
   354 	blist.splice(blist.end(),*ca->my_class);
   355 
   356 	classes.erase(ca->my_class);
   357 	ca->my_class = 0;
   358       }
   359 
   360       return true;
   361     }
   362 
   363 
   364     /**
   365      * \brief Returns the size of the component of element \e a.
   366      *
   367      * Returns the size of the component of element \e a.
   368      */
   369 
   370     int size(const T &a) const {
   371       return _find(m[a])->size;
   372     }
   373 
   374 
   375     /**
   376      * \brief Splits up the component of the element. 
   377      *
   378      * Splitting the component of the element into sigleton
   379      * components (component of size one).
   380      */
   381 
   382     void split(const T &a) {
   383 
   384       IIter ca = _find(m[a]);
   385  
   386       if ( ca->size == 1 )
   387 	return;
   388       
   389       CIter aclass = ca->my_class;
   390 
   391       for(IIter curr = ca; ++curr != aclass->end(); curr=ca) {
   392 	classes.push_back(ItemList());
   393 	CIter nl = --classes.end();
   394 	nl->splice(nl->end(), *aclass, curr);
   395 
   396 	curr->size=1;
   397 	curr->parent=curr;
   398 	curr->my_class = nl;
   399       }
   400 
   401       ca->size=1;
   402       return;
   403     }
   404 
   405 
   406     /**
   407      * \brief Sets the given element to the leader element of its component.
   408      *
   409      * Sets the given element to the leader element of its component.
   410      */
   411 
   412     void makeRep(const T &a) {
   413 
   414       IIter ia = m[a];
   415       IIter la = _find(ia);
   416       if (la == ia) return;
   417 
   418       ia->my_class = la->my_class;
   419       la->my_class = 0;
   420 
   421       ia->size = la->size;
   422 
   423       CIter l = ia->my_class;
   424       l->splice(l->begin(),*l,ia);
   425 
   426       ia->parent = ia;
   427       la->parent = ia;
   428     }
   429 
   430     /**
   431      * \brief Moves the given element to an other component.
   432      *
   433      * This method moves the element \e a from its component
   434      * to the component of \e comp.
   435      * If \e a and \e comp are in the same component then
   436      * it returns false otherwise it returns true.
   437      */
   438 
   439     bool move(const T &a, const T &comp) {
   440 
   441       IIter ai = m[a];
   442       IIter lai = _find(ai);
   443       IIter clit = _find(m[comp]);
   444 
   445       if (lai == clit)
   446 	return false;
   447 
   448       ItemList &cl = *clit->my_class,
   449 	&al = *lai->my_class;
   450 
   451       bool is_leader = (lai == ai);
   452       bool singleton = false;
   453 
   454       if (is_leader) {
   455 	++lai;
   456       }
   457 
   458       cl.splice(cl.end(), al, ai);
   459 
   460       if (is_leader) {
   461 	if (ai->size == 1) {
   462 	  classes.erase(ai->my_class);
   463 	  singleton = true;
   464 	}
   465 	else {
   466 	  lai->size = ai->size; 
   467 	  lai->my_class = ai->my_class;	
   468 	}
   469       }
   470       if (!singleton) {
   471 	for (IIter i = lai; i != al.end(); ++i)
   472 	  i->parent = lai;
   473 	--lai->size;
   474       }
   475 
   476       ai->parent = clit;
   477       ai->my_class = 0;
   478       ++clit->size;
   479 
   480       return true;
   481     }
   482 
   483 
   484     /**
   485      * \brief Removes the given element from the structure.
   486      *
   487      * Removes the given element from the structure.
   488      *
   489      * Removes the element from its component and if the component becomes
   490      * empty then removes that component from the component list.
   491      */
   492     void erase(const T &a) {
   493 
   494       IIter ma = m[a];
   495       if (ma == 0) return;
   496 
   497       IIter la = _find(ma);
   498       if (la == ma) {
   499 	if (ma -> size == 1){
   500 	  classes.erase(ma->my_class);
   501 	  m.set(a,0);
   502 	  return;
   503 	}
   504 	++la;
   505 	la->size = ma->size; 
   506 	la->my_class = ma->my_class;	
   507       }
   508 
   509       for (IIter i = la; i != la->my_class->end(); ++i) {
   510 	i->parent = la;
   511       }
   512 
   513       la->size--;
   514       la->my_class->erase(ma);
   515       m.set(a,0);
   516     }
   517 
   518     /**
   519      * \brief Removes the component of the given element from the structure.
   520      *
   521      * Removes the component of the given element from the structure.
   522      */
   523 
   524     void eraseClass(const T &a) {
   525       IIter ma = m[a];
   526       if (ma == 0) return;
   527 #     ifdef DEBUG
   528       CIter c = _find(ma)->my_class;
   529       for (IIter i=c->begin(); i!=c->end(); ++i)
   530 	m.set(i->me, 0);
   531 #     endif
   532       classes.erase(_find(ma)->my_class);
   533     }
   534 
   535 
   536     class ClassIt {
   537       friend class UnionFindEnum;
   538 
   539       CcIter i;
   540     public:
   541       ClassIt(Invalid): i(0) {}
   542       ClassIt() {}
   543       
   544       operator const T& () const { 
   545 	ItemList const &ll = *i;
   546 	return (ll.begin())->me; }
   547       bool operator == (ClassIt it) const {
   548 	return (i == it.i);
   549       }
   550       bool operator != (ClassIt it) const {
   551 	return (i != it.i);
   552       }
   553       bool operator < (ClassIt it) const {
   554 	return (i < it.i);
   555       }
   556 
   557       bool valid() const { return i != 0; }
   558     private:
   559       void first(const ClassList &l) { i = l.begin(); validate(l); }
   560       void next(const ClassList &l) {
   561 	++i; 
   562 	validate(l);
   563       }
   564       void validate(const ClassList &l) {
   565 	if ( i == l.end() ) 
   566 	  i = 0;
   567       }
   568     };
   569 
   570     /**
   571      * \brief Sets the iterator to point to the first component.
   572      * 
   573      * Sets the iterator to point to the first component.
   574      *
   575      * With the \ref first, \ref valid and \ref next methods you can
   576      * iterate through the components. For example:
   577      * \code
   578      * UnionFindEnum<Graph::Node, Graph::NodeMap>::MapType map(G);
   579      * UnionFindEnum<Graph::Node, Graph::NodeMap> U(map);
   580      * UnionFindEnum<Graph::Node, Graph::NodeMap>::ClassIt iter;
   581      *  for (U.first(iter); U.valid(iter); U.next(iter)) {
   582      *    // iter is convertible to Graph::Node
   583      *    cout << iter << endl;
   584      *  }
   585      * \endcode
   586      */
   587 
   588     ClassIt& first(ClassIt& it) const {
   589       it.first(classes);
   590       return it;
   591     }
   592 
   593     /**
   594      * \brief Returns whether the iterator is valid.
   595      *
   596      * Returns whether the iterator is valid.
   597      *
   598      * With the \ref first, \ref valid and \ref next methods you can
   599      * iterate through the components. See the example here: \ref first.
   600      */
   601 
   602     bool valid(ClassIt const &it) const {
   603       return it.valid(); 
   604     }
   605 
   606     /**
   607      * \brief Steps the iterator to the next component. 
   608      *
   609      * Steps the iterator to the next component.
   610      *
   611      * With the \ref first, \ref valid and \ref next methods you can
   612      * iterate through the components. See the example here: \ref first.
   613      */
   614 
   615     ClassIt& next(ClassIt& it) const {
   616       it.next(classes);
   617       return it;
   618     }
   619 
   620 
   621     class ItemIt {
   622       friend class UnionFindEnum;
   623 
   624       IcIter i;
   625       const ItemList *l;
   626     public:
   627       ItemIt(Invalid): i(0) {}
   628       ItemIt() {}
   629       
   630       operator const T& () const { return i->me; }
   631       bool operator == (ItemIt it) const {
   632 	return (i == it.i);
   633       }
   634       bool operator != (ItemIt it) const {
   635 	return (i != it.i);
   636       }
   637       bool operator < (ItemIt it) const {
   638 	return (i < it.i);
   639       }
   640 
   641       bool valid() const { return i != 0; }
   642     private:
   643       void first(const ItemList &il) { l=&il; i = l->begin(); validate(); }
   644       void next() {
   645 	++i; 
   646 	validate();
   647       }
   648       void validate() {
   649 	if ( i == l->end() ) 
   650 	  i = 0;
   651       }
   652     };
   653 
   654 
   655 
   656     /**
   657      * \brief Sets the iterator to point to the first element of the component.
   658      * 
   659      * \anchor first2 
   660      * Sets the iterator to point to the first element of the component.
   661      *
   662      * With the \ref first2 "first", \ref valid2 "valid" 
   663      * and \ref next2 "next" methods you can
   664      * iterate through the elements of a component. For example
   665      * (iterating through the component of the node \e node):
   666      * \code
   667      * Graph::Node node = ...;
   668      * UnionFindEnum<Graph::Node, Graph::NodeMap>::MapType map(G);
   669      * UnionFindEnum<Graph::Node, Graph::NodeMap> U(map);
   670      * UnionFindEnum<Graph::Node, Graph::NodeMap>::ItemIt iiter;
   671      *   for (U.first(iiter, node); U.valid(iiter); U.next(iiter)) {
   672      *     // iiter is convertible to Graph::Node
   673      *     cout << iiter << endl;
   674      *   }
   675      * \endcode
   676      */
   677     
   678     ItemIt& first(ItemIt& it, const T& a) const {
   679       it.first( * _find(m[a])->my_class );
   680       return it;
   681     }
   682 
   683     /**
   684      * \brief Returns whether the iterator is valid.
   685      *
   686      * \anchor valid2
   687      * Returns whether the iterator is valid.
   688      *
   689      * With the \ref first2 "first", \ref valid2 "valid" 
   690      * and \ref next2 "next" methods you can
   691      * iterate through the elements of a component.
   692      * See the example here: \ref first2 "first".
   693      */
   694 
   695     bool valid(ItemIt const &it) const {
   696       return it.valid(); 
   697     }
   698 
   699     /**
   700      * \brief Steps the iterator to the next component. 
   701      *
   702      * \anchor next2
   703      * Steps the iterator to the next component.
   704      *
   705      * With the \ref first2 "first", \ref valid2 "valid" 
   706      * and \ref next2 "next" methods you can
   707      * iterate through the elements of a component.
   708      * See the example here: \ref first2 "first".
   709      */
   710 
   711     ItemIt& next(ItemIt& it) const {
   712       it.next();
   713       return it;
   714     }
   715     
   716   };
   717 
   718 
   719   //! @}
   720 
   721 } //namespace lemon
   722 
   723 #endif //LEMON_UNION_FIND_H