lemon/concept/ugraph.h
author deba
Mon, 27 Feb 2006 10:36:01 +0000
changeset 1986 9b56cca61e2e
parent 1979 c2992fd74dad
child 1993 2115143eceea
permissions -rw-r--r--
An additional simplier interface for static size graphs.
Node operator()(int) for getting node by index
int index(Node node) for getting index by node
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 ///\ingroup graph_concepts
    20 ///\file
    21 ///\brief Undirected graphs and components of.
    22 
    23 
    24 #ifndef LEMON_CONCEPT_UGRAPH_H
    25 #define LEMON_CONCEPT_UGRAPH_H
    26 
    27 #include <lemon/concept/graph_component.h>
    28 #include <lemon/concept/graph.h>
    29 #include <lemon/utility.h>
    30 
    31 namespace lemon {
    32   namespace concept {
    33 
    34 //     /// Skeleton class which describes an edge with direction in \ref
    35 //     /// UGraph "undirected graph".
    36     template <typename UGraph>
    37     class UGraphEdge : public UGraph::UEdge {
    38       typedef typename UGraph::UEdge UEdge;
    39       typedef typename UGraph::Node Node;
    40     public:
    41 
    42       /// \e
    43       UGraphEdge() {}
    44 
    45       /// \e
    46       UGraphEdge(const UGraphEdge& e) : UGraph::UEdge(e) {}
    47 
    48       /// \e
    49       UGraphEdge(Invalid) {}
    50 
    51       /// \brief Directed edge from undirected edge and a source node.
    52       ///
    53       /// Constructs a directed edge from undirected edge and a source node.
    54       ///
    55       /// \note You have to specify the graph for this constructor.
    56       UGraphEdge(const UGraph &g,
    57 		     UEdge u_edge, Node n) {
    58 	ignore_unused_variable_warning(u_edge);
    59 	ignore_unused_variable_warning(g);
    60 	ignore_unused_variable_warning(n);
    61       }
    62 
    63       /// \e
    64       UGraphEdge& operator=(UGraphEdge) { return *this; }
    65 
    66       /// \e
    67       bool operator==(UGraphEdge) const { return true; }
    68       /// \e
    69       bool operator!=(UGraphEdge) const { return false; }
    70 
    71       /// \e
    72       bool operator<(UGraphEdge) const { return false; }
    73 
    74       template <typename Edge>
    75       struct Constraints {
    76 	void constraints() {
    77 	  const_constraints();
    78 	}
    79 	void const_constraints() const {
    80 	  /// \bug This should be is_base_and_derived ...
    81 	  UEdge ue = e;
    82 	  ue = e;
    83 
    84 	  Edge e_with_source(graph,ue,n);
    85 	  ignore_unused_variable_warning(e_with_source);
    86 	}
    87 	Edge e;
    88 	UEdge ue;
    89 	UGraph graph;
    90 	Node n;
    91       };
    92     };
    93     
    94 
    95     struct BaseIterableUGraphConcept {
    96 
    97       template <typename Graph>
    98       struct Constraints {
    99 
   100 	typedef typename Graph::UEdge UEdge;
   101 	typedef typename Graph::Edge Edge;
   102 	typedef typename Graph::Node Node;
   103 
   104 	void constraints() {
   105 	  checkConcept<BaseIterableGraphComponent, Graph>();
   106 	  checkConcept<GraphItem<>, UEdge>();
   107 	  //checkConcept<UGraphEdge<Graph>, Edge>();
   108 
   109 	  graph.first(ue);
   110 	  graph.next(ue);
   111 
   112 	  const_constraints();
   113 	}
   114 	void const_constraints() {
   115 	  Node n;
   116 	  n = graph.target(ue);
   117 	  n = graph.source(ue);
   118 	  n = graph.oppositeNode(n0, ue);
   119 
   120 	  bool b;
   121 	  b = graph.direction(e);
   122 	  Edge e = graph.direct(UEdge(), true);
   123 	  e = graph.direct(UEdge(), n);
   124  
   125 	  ignore_unused_variable_warning(b);
   126 	}
   127 
   128 	Graph graph;
   129 	Edge e;
   130 	Node n0;
   131 	UEdge ue;
   132       };
   133 
   134     };
   135 
   136 
   137     struct IterableUGraphConcept {
   138 
   139       template <typename Graph>
   140       struct Constraints {
   141 	void constraints() {
   142 	  /// \todo we don't need the iterable component to be base iterable
   143 	  /// Don't we really???
   144 	  //checkConcept< BaseIterableUGraphConcept, Graph > ();
   145 
   146 	  checkConcept<IterableGraphComponent, Graph> ();
   147 
   148 	  typedef typename Graph::UEdge UEdge;
   149 	  typedef typename Graph::UEdgeIt UEdgeIt;
   150 	  typedef typename Graph::IncEdgeIt IncEdgeIt;
   151 
   152 	  checkConcept<GraphIterator<Graph, UEdge>, UEdgeIt>();
   153 	  checkConcept<GraphIncIterator<Graph, UEdge>, IncEdgeIt>();
   154 	}
   155       };
   156 
   157     };
   158 
   159     struct MappableUGraphConcept {
   160 
   161       template <typename Graph>
   162       struct Constraints {
   163 
   164 	struct Dummy {
   165 	  int value;
   166 	  Dummy() : value(0) {}
   167 	  Dummy(int _v) : value(_v) {}
   168 	};
   169 
   170 	void constraints() {
   171 	  checkConcept<MappableGraphComponent, Graph>();
   172 
   173 	  typedef typename Graph::template UEdgeMap<int> IntMap;
   174 	  checkConcept<GraphMap<Graph, typename Graph::UEdge, int>,
   175 	    IntMap >();
   176 
   177 	  typedef typename Graph::template UEdgeMap<bool> BoolMap;
   178 	  checkConcept<GraphMap<Graph, typename Graph::UEdge, bool>,
   179 	    BoolMap >();
   180 
   181 	  typedef typename Graph::template UEdgeMap<Dummy> DummyMap;
   182 	  checkConcept<GraphMap<Graph, typename Graph::UEdge, Dummy>,
   183 	    DummyMap >();
   184 	}
   185       };
   186 
   187     };
   188 
   189     struct ExtendableUGraphConcept {
   190 
   191       template <typename Graph>
   192       struct Constraints {
   193 	void constraints() {
   194 	  node_a = graph.addNode();
   195 	  uedge = graph.addEdge(node_a, node_b);
   196 	}
   197 	typename Graph::Node node_a, node_b;
   198 	typename Graph::UEdge uedge;
   199 	Graph graph;
   200       };
   201 
   202     };
   203 
   204     struct ErasableUGraphConcept {
   205 
   206       template <typename Graph>
   207       struct Constraints {
   208 	void constraints() {
   209 	  graph.erase(n);
   210 	  graph.erase(e);
   211 	}
   212 	Graph graph;
   213 	typename Graph::Node n;
   214 	typename Graph::UEdge e;
   215       };
   216 
   217     };
   218 
   219     /// \addtogroup graph_concepts
   220     /// @{
   221 
   222 
   223     /// Class describing the concept of Undirected Graphs.
   224 
   225     /// This class describes the common interface of all Undirected
   226     /// Graphs.
   227     ///
   228     /// As all concept describing classes it provides only interface
   229     /// without any sensible implementation. So any algorithm for
   230     /// undirected graph should compile with this class, but it will not
   231     /// run properly, of couse.
   232     ///
   233     /// In LEMON undirected graphs also fulfill the concept of directed
   234     /// graphs (\ref lemon::concept::StaticGraph "Graph Concept"). For
   235     /// explanation of this and more see also the page \ref ugraphs,
   236     /// a tutorial about undirected graphs.
   237     ///
   238     /// You can assume that all undirected graph can be handled
   239     /// as a static directed graph. This way it is fully conform
   240     /// to the StaticGraph concept.
   241 
   242     class UGraph {
   243     public:
   244       ///\e
   245 
   246       ///\todo undocumented
   247       ///
   248       typedef True UndirectedTag;
   249 
   250       /// \brief The base type of node iterators, 
   251       /// or in other words, the trivial node iterator.
   252       ///
   253       /// This is the base type of each node iterator,
   254       /// thus each kind of node iterator converts to this.
   255       /// More precisely each kind of node iterator should be inherited 
   256       /// from the trivial node iterator.
   257       class Node {
   258       public:
   259         /// Default constructor
   260 
   261         /// @warning The default constructor sets the iterator
   262         /// to an undefined value.
   263         Node() { }
   264         /// Copy constructor.
   265 
   266         /// Copy constructor.
   267         ///
   268         Node(const Node&) { }
   269 
   270         /// Invalid constructor \& conversion.
   271 
   272         /// This constructor initializes the iterator to be invalid.
   273         /// \sa Invalid for more details.
   274         Node(Invalid) { }
   275         /// Equality operator
   276 
   277         /// Two iterators are equal if and only if they point to the
   278         /// same object or both are invalid.
   279         bool operator==(Node) const { return true; }
   280 
   281         /// Inequality operator
   282         
   283         /// \sa operator==(Node n)
   284         ///
   285         bool operator!=(Node) const { return true; }
   286 
   287 	/// Artificial ordering operator.
   288 	
   289 	/// To allow the use of graph descriptors as key type in std::map or
   290 	/// similar associative container we require this.
   291 	///
   292 	/// \note This operator only have to define some strict ordering of
   293 	/// the items; this order has nothing to do with the iteration
   294 	/// ordering of the items.
   295 	///
   296 	/// \bug This is a technical requirement. Do we really need this?
   297 	bool operator<(Node) const { return false; }
   298 
   299       };
   300     
   301       /// This iterator goes through each node.
   302 
   303       /// This iterator goes through each node.
   304       /// Its usage is quite simple, for example you can count the number
   305       /// of nodes in graph \c g of type \c Graph like this:
   306       ///\code
   307       /// int count=0;
   308       /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
   309       ///\endcode
   310       class NodeIt : public Node {
   311       public:
   312         /// Default constructor
   313 
   314         /// @warning The default constructor sets the iterator
   315         /// to an undefined value.
   316         NodeIt() { }
   317         /// Copy constructor.
   318         
   319         /// Copy constructor.
   320         ///
   321         NodeIt(const NodeIt& n) : Node(n) { }
   322         /// Invalid constructor \& conversion.
   323 
   324         /// Initialize the iterator to be invalid.
   325         /// \sa Invalid for more details.
   326         NodeIt(Invalid) { }
   327         /// Sets the iterator to the first node.
   328 
   329         /// Sets the iterator to the first node of \c g.
   330         ///
   331         NodeIt(const UGraph&) { }
   332         /// Node -> NodeIt conversion.
   333 
   334         /// Sets the iterator to the node of \c the graph pointed by 
   335 	/// the trivial iterator.
   336         /// This feature necessitates that each time we 
   337         /// iterate the edge-set, the iteration order is the same.
   338         NodeIt(const UGraph&, const Node&) { }
   339         /// Next node.
   340 
   341         /// Assign the iterator to the next node.
   342         ///
   343         NodeIt& operator++() { return *this; }
   344       };
   345     
   346     
   347       /// The base type of the undirected edge iterators.
   348 
   349       /// The base type of the undirected edge iterators.
   350       ///
   351       class UEdge {
   352       public:
   353         /// Default constructor
   354 
   355         /// @warning The default constructor sets the iterator
   356         /// to an undefined value.
   357         UEdge() { }
   358         /// Copy constructor.
   359 
   360         /// Copy constructor.
   361         ///
   362         UEdge(const UEdge&) { }
   363         /// Initialize the iterator to be invalid.
   364 
   365         /// Initialize the iterator to be invalid.
   366         ///
   367         UEdge(Invalid) { }
   368         /// Equality operator
   369 
   370         /// Two iterators are equal if and only if they point to the
   371         /// same object or both are invalid.
   372         bool operator==(UEdge) const { return true; }
   373         /// Inequality operator
   374 
   375         /// \sa operator==(UEdge n)
   376         ///
   377         bool operator!=(UEdge) const { return true; }
   378 
   379 	/// Artificial ordering operator.
   380 	
   381 	/// To allow the use of graph descriptors as key type in std::map or
   382 	/// similar associative container we require this.
   383 	///
   384 	/// \note This operator only have to define some strict ordering of
   385 	/// the items; this order has nothing to do with the iteration
   386 	/// ordering of the items.
   387 	///
   388 	/// \bug This is a technical requirement. Do we really need this?
   389 	bool operator<(UEdge) const { return false; }
   390       };
   391 
   392       /// This iterator goes through each undirected edge.
   393 
   394       /// This iterator goes through each undirected edge of a graph.
   395       /// Its usage is quite simple, for example you can count the number
   396       /// of undirected edges in a graph \c g of type \c Graph as follows:
   397       ///\code
   398       /// int count=0;
   399       /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
   400       ///\endcode
   401       class UEdgeIt : public UEdge {
   402       public:
   403         /// Default constructor
   404 
   405         /// @warning The default constructor sets the iterator
   406         /// to an undefined value.
   407         UEdgeIt() { }
   408         /// Copy constructor.
   409 
   410         /// Copy constructor.
   411         ///
   412         UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
   413         /// Initialize the iterator to be invalid.
   414 
   415         /// Initialize the iterator to be invalid.
   416         ///
   417         UEdgeIt(Invalid) { }
   418         /// This constructor sets the iterator to the first undirected edge.
   419     
   420         /// This constructor sets the iterator to the first undirected edge.
   421         UEdgeIt(const UGraph&) { }
   422         /// UEdge -> UEdgeIt conversion
   423 
   424         /// Sets the iterator to the value of the trivial iterator.
   425         /// This feature necessitates that each time we
   426         /// iterate the undirected edge-set, the iteration order is the 
   427 	/// same.
   428         UEdgeIt(const UGraph&, const UEdge&) { } 
   429         /// Next undirected edge
   430         
   431         /// Assign the iterator to the next undirected edge.
   432         UEdgeIt& operator++() { return *this; }
   433       };
   434 
   435       /// \brief This iterator goes trough the incident undirected 
   436       /// edges of a node.
   437       ///
   438       /// This iterator goes trough the incident undirected edges
   439       /// of a certain node
   440       /// of a graph.
   441       /// Its usage is quite simple, for example you can compute the
   442       /// degree (i.e. count the number
   443       /// of incident edges of a node \c n
   444       /// in graph \c g of type \c Graph as follows.
   445       ///\code
   446       /// int count=0;
   447       /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   448       ///\endcode
   449       class IncEdgeIt : public UEdge {
   450       public:
   451         /// Default constructor
   452 
   453         /// @warning The default constructor sets the iterator
   454         /// to an undefined value.
   455         IncEdgeIt() { }
   456         /// Copy constructor.
   457 
   458         /// Copy constructor.
   459         ///
   460         IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
   461         /// Initialize the iterator to be invalid.
   462 
   463         /// Initialize the iterator to be invalid.
   464         ///
   465         IncEdgeIt(Invalid) { }
   466         /// This constructor sets the iterator to first incident edge.
   467     
   468         /// This constructor set the iterator to the first incident edge of
   469         /// the node.
   470         IncEdgeIt(const UGraph&, const Node&) { }
   471         /// UEdge -> IncEdgeIt conversion
   472 
   473         /// Sets the iterator to the value of the trivial iterator \c e.
   474         /// This feature necessitates that each time we 
   475         /// iterate the edge-set, the iteration order is the same.
   476         IncEdgeIt(const UGraph&, const UEdge&) { }
   477         /// Next incident edge
   478 
   479         /// Assign the iterator to the next incident edge
   480 	/// of the corresponding node.
   481         IncEdgeIt& operator++() { return *this; }
   482       };
   483 
   484       /// The directed edge type.
   485 
   486       /// The directed edge type. It can be converted to the
   487       /// undirected edge.
   488       class Edge : public UEdge {
   489       public:
   490         /// Default constructor
   491 
   492         /// @warning The default constructor sets the iterator
   493         /// to an undefined value.
   494         Edge() { }
   495         /// Copy constructor.
   496 
   497         /// Copy constructor.
   498         ///
   499         Edge(const Edge& e) : UEdge(e) { }
   500         /// Initialize the iterator to be invalid.
   501 
   502         /// Initialize the iterator to be invalid.
   503         ///
   504         Edge(Invalid) { }
   505         /// Equality operator
   506 
   507         /// Two iterators are equal if and only if they point to the
   508         /// same object or both are invalid.
   509         bool operator==(Edge) const { return true; }
   510         /// Inequality operator
   511 
   512         /// \sa operator==(Edge n)
   513         ///
   514         bool operator!=(Edge) const { return true; }
   515 
   516 	/// Artificial ordering operator.
   517 	
   518 	/// To allow the use of graph descriptors as key type in std::map or
   519 	/// similar associative container we require this.
   520 	///
   521 	/// \note This operator only have to define some strict ordering of
   522 	/// the items; this order has nothing to do with the iteration
   523 	/// ordering of the items.
   524 	///
   525 	/// \bug This is a technical requirement. Do we really need this?
   526 	bool operator<(Edge) const { return false; }
   527 	
   528       }; 
   529       /// This iterator goes through each directed edge.
   530 
   531       /// This iterator goes through each edge of a graph.
   532       /// Its usage is quite simple, for example you can count the number
   533       /// of edges in a graph \c g of type \c Graph as follows:
   534       ///\code
   535       /// int count=0;
   536       /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
   537       ///\endcode
   538       class EdgeIt : public Edge {
   539       public:
   540         /// Default constructor
   541 
   542         /// @warning The default constructor sets the iterator
   543         /// to an undefined value.
   544         EdgeIt() { }
   545         /// Copy constructor.
   546 
   547         /// Copy constructor.
   548         ///
   549         EdgeIt(const EdgeIt& e) : Edge(e) { }
   550         /// Initialize the iterator to be invalid.
   551 
   552         /// Initialize the iterator to be invalid.
   553         ///
   554         EdgeIt(Invalid) { }
   555         /// This constructor sets the iterator to the first edge.
   556     
   557         /// This constructor sets the iterator to the first edge of \c g.
   558         ///@param g the graph
   559         EdgeIt(const UGraph &g) { ignore_unused_variable_warning(g); }
   560         /// Edge -> EdgeIt conversion
   561 
   562         /// Sets the iterator to the value of the trivial iterator \c e.
   563         /// This feature necessitates that each time we 
   564         /// iterate the edge-set, the iteration order is the same.
   565         EdgeIt(const UGraph&, const Edge&) { } 
   566         ///Next edge
   567         
   568         /// Assign the iterator to the next edge.
   569         EdgeIt& operator++() { return *this; }
   570       };
   571    
   572       /// This iterator goes trough the outgoing directed edges of a node.
   573 
   574       /// This iterator goes trough the \e outgoing edges of a certain node
   575       /// of a graph.
   576       /// Its usage is quite simple, for example you can count the number
   577       /// of outgoing edges of a node \c n
   578       /// in graph \c g of type \c Graph as follows.
   579       ///\code
   580       /// int count=0;
   581       /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   582       ///\endcode
   583     
   584       class OutEdgeIt : public Edge {
   585       public:
   586         /// Default constructor
   587 
   588         /// @warning The default constructor sets the iterator
   589         /// to an undefined value.
   590         OutEdgeIt() { }
   591         /// Copy constructor.
   592 
   593         /// Copy constructor.
   594         ///
   595         OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
   596         /// Initialize the iterator to be invalid.
   597 
   598         /// Initialize the iterator to be invalid.
   599         ///
   600         OutEdgeIt(Invalid) { }
   601         /// This constructor sets the iterator to the first outgoing edge.
   602     
   603         /// This constructor sets the iterator to the first outgoing edge of
   604         /// the node.
   605         ///@param n the node
   606         ///@param g the graph
   607         OutEdgeIt(const UGraph& n, const Node& g) {
   608 	  ignore_unused_variable_warning(n);
   609 	  ignore_unused_variable_warning(g);
   610 	}
   611         /// Edge -> OutEdgeIt conversion
   612 
   613         /// Sets the iterator to the value of the trivial iterator.
   614 	/// This feature necessitates that each time we 
   615         /// iterate the edge-set, the iteration order is the same.
   616         OutEdgeIt(const UGraph&, const Edge&) { }
   617         ///Next outgoing edge
   618         
   619         /// Assign the iterator to the next 
   620         /// outgoing edge of the corresponding node.
   621         OutEdgeIt& operator++() { return *this; }
   622       };
   623 
   624       /// This iterator goes trough the incoming directed edges of a node.
   625 
   626       /// This iterator goes trough the \e incoming edges of a certain node
   627       /// of a graph.
   628       /// Its usage is quite simple, for example you can count the number
   629       /// of outgoing edges of a node \c n
   630       /// in graph \c g of type \c Graph as follows.
   631       ///\code
   632       /// int count=0;
   633       /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   634       ///\endcode
   635 
   636       class InEdgeIt : public Edge {
   637       public:
   638         /// Default constructor
   639 
   640         /// @warning The default constructor sets the iterator
   641         /// to an undefined value.
   642         InEdgeIt() { }
   643         /// Copy constructor.
   644 
   645         /// Copy constructor.
   646         ///
   647         InEdgeIt(const InEdgeIt& e) : Edge(e) { }
   648         /// Initialize the iterator to be invalid.
   649 
   650         /// Initialize the iterator to be invalid.
   651         ///
   652         InEdgeIt(Invalid) { }
   653         /// This constructor sets the iterator to first incoming edge.
   654     
   655         /// This constructor set the iterator to the first incoming edge of
   656         /// the node.
   657         ///@param n the node
   658         ///@param g the graph
   659         InEdgeIt(const UGraph& g, const Node& n) { 
   660 	  ignore_unused_variable_warning(n);
   661 	  ignore_unused_variable_warning(g);
   662 	}
   663         /// Edge -> InEdgeIt conversion
   664 
   665         /// Sets the iterator to the value of the trivial iterator \c e.
   666         /// This feature necessitates that each time we 
   667         /// iterate the edge-set, the iteration order is the same.
   668         InEdgeIt(const UGraph&, const Edge&) { }
   669         /// Next incoming edge
   670 
   671         /// Assign the iterator to the next inedge of the corresponding node.
   672         ///
   673         InEdgeIt& operator++() { return *this; }
   674       };
   675 
   676       /// \brief Read write map of the nodes to type \c T.
   677       /// 
   678       /// ReadWrite map of the nodes to type \c T.
   679       /// \sa Reference
   680       /// \warning Making maps that can handle bool type (NodeMap<bool>)
   681       /// needs some extra attention!
   682       /// \todo Wrong documentation
   683       template<class T> 
   684       class NodeMap : public ReadWriteMap< Node, T >
   685       {
   686       public:
   687 
   688         ///\e
   689         NodeMap(const UGraph&) { }
   690         ///\e
   691         NodeMap(const UGraph&, T) { }
   692 
   693         ///Copy constructor
   694         NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   695         ///Assignment operator
   696         NodeMap& operator=(const NodeMap&) { return *this; }
   697         // \todo fix this concept
   698       };
   699 
   700       /// \brief Read write map of the directed edges to type \c T.
   701       ///
   702       /// Reference map of the directed edges to type \c T.
   703       /// \sa Reference
   704       /// \warning Making maps that can handle bool type (EdgeMap<bool>)
   705       /// needs some extra attention!
   706       /// \todo Wrong documentation
   707       template<class T> 
   708       class EdgeMap : public ReadWriteMap<Edge,T>
   709       {
   710       public:
   711 
   712         ///\e
   713         EdgeMap(const UGraph&) { }
   714         ///\e
   715         EdgeMap(const UGraph&, T) { }
   716         ///Copy constructor
   717         EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
   718         ///Assignment operator
   719         EdgeMap& operator=(const EdgeMap&) { return *this; }
   720         // \todo fix this concept    
   721       };
   722 
   723       /// Read write map of the undirected edges to type \c T.
   724 
   725       /// Reference map of the edges to type \c T.
   726       /// \sa Reference
   727       /// \warning Making maps that can handle bool type (UEdgeMap<bool>)
   728       /// needs some extra attention!
   729       /// \todo Wrong documentation
   730       template<class T> 
   731       class UEdgeMap : public ReadWriteMap<UEdge,T>
   732       {
   733       public:
   734 
   735         ///\e
   736         UEdgeMap(const UGraph&) { }
   737         ///\e
   738         UEdgeMap(const UGraph&, T) { }
   739         ///Copy constructor
   740         UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
   741         ///Assignment operator
   742         UEdgeMap &operator=(const UEdgeMap&) { return *this; }
   743         // \todo fix this concept    
   744       };
   745 
   746       /// \brief Direct the given undirected edge.
   747       ///
   748       /// Direct the given undirected edge. The returned edge source
   749       /// will be the given edge.
   750       Edge direct(const UEdge&, const Node&) const {
   751 	return INVALID;
   752       }
   753 
   754       /// \brief Direct the given undirected edge.
   755       ///
   756       /// Direct the given undirected edge. The returned edge source
   757       /// will be the source of the undirected edge if the given bool
   758       /// is true.
   759       Edge direct(const UEdge&, bool) const {
   760 	return INVALID;
   761       }
   762 
   763       /// \brief Returns true if the edge has default orientation.
   764       ///
   765       /// Returns whether the given directed edge is same orientation as
   766       /// the corresponding undirected edge.
   767       bool direction(Edge) const { return true; }
   768 
   769       /// \brief Returns the opposite directed edge.
   770       ///
   771       /// Returns the opposite directed edge.
   772       Edge oppositeEdge(Edge) const { return INVALID; }
   773 
   774       /// \brief Opposite node on an edge
   775       ///
   776       /// \return the opposite of the given Node on the given Edge
   777       Node oppositeNode(Node, UEdge) const { return INVALID; }
   778 
   779       /// \brief First node of the undirected edge.
   780       ///
   781       /// \return the first node of the given UEdge.
   782       ///
   783       /// Naturally uectected edges don't have direction and thus
   784       /// don't have source and target node. But we use these two methods
   785       /// to query the two endnodes of the edge. The direction of the edge
   786       /// which arises this way is called the inherent direction of the
   787       /// undirected edge, and is used to define the "default" direction
   788       /// of the directed versions of the edges.
   789       /// \sa direction
   790       Node source(UEdge) const { return INVALID; }
   791 
   792       /// \brief Second node of the undirected edge.
   793       Node target(UEdge) const { return INVALID; }
   794 
   795       /// \brief Source node of the directed edge.
   796       Node source(Edge) const { return INVALID; }
   797 
   798       /// \brief Target node of the directed edge.
   799       Node target(Edge) const { return INVALID; }
   800 
   801 //       /// \brief First node of the graph
   802 //       ///
   803 //       /// \note This method is part of so called \ref
   804 //       /// developpers_interface "Developpers' interface", so it shouldn't
   805 //       /// be used in an end-user program.
   806       void first(Node&) const {}
   807 //       /// \brief Next node of the graph
   808 //       ///
   809 //       /// \note This method is part of so called \ref
   810 //       /// developpers_interface "Developpers' interface", so it shouldn't
   811 //       /// be used in an end-user program.
   812       void next(Node&) const {}
   813 
   814 //       /// \brief First undirected edge of the graph
   815 //       ///
   816 //       /// \note This method is part of so called \ref
   817 //       /// developpers_interface "Developpers' interface", so it shouldn't
   818 //       /// be used in an end-user program.
   819       void first(UEdge&) const {}
   820 //       /// \brief Next undirected edge of the graph
   821 //       ///
   822 //       /// \note This method is part of so called \ref
   823 //       /// developpers_interface "Developpers' interface", so it shouldn't
   824 //       /// be used in an end-user program.
   825       void next(UEdge&) const {}
   826 
   827 //       /// \brief First directed edge of the graph
   828 //       ///
   829 //       /// \note This method is part of so called \ref
   830 //       /// developpers_interface "Developpers' interface", so it shouldn't
   831 //       /// be used in an end-user program.
   832       void first(Edge&) const {}
   833 //       /// \brief Next directed edge of the graph
   834 //       ///
   835 //       /// \note This method is part of so called \ref
   836 //       /// developpers_interface "Developpers' interface", so it shouldn't
   837 //       /// be used in an end-user program.
   838       void next(Edge&) const {}
   839 
   840 //       /// \brief First outgoing edge from a given node
   841 //       ///
   842 //       /// \note This method is part of so called \ref
   843 //       /// developpers_interface "Developpers' interface", so it shouldn't
   844 //       /// be used in an end-user program.
   845       void firstOut(Edge&, Node) const {}
   846 //       /// \brief Next outgoing edge to a node
   847 //       ///
   848 //       /// \note This method is part of so called \ref
   849 //       /// developpers_interface "Developpers' interface", so it shouldn't
   850 //       /// be used in an end-user program.
   851       void nextOut(Edge&) const {}
   852 
   853 //       /// \brief First incoming edge to a given node
   854 //       ///
   855 //       /// \note This method is part of so called \ref
   856 //       /// developpers_interface "Developpers' interface", so it shouldn't
   857 //       /// be used in an end-user program.
   858       void firstIn(Edge&, Node) const {}
   859 //       /// \brief Next incoming edge to a node
   860 //       ///
   861 //       /// \note This method is part of so called \ref
   862 //       /// developpers_interface "Developpers' interface", so it shouldn't
   863 //       /// be used in an end-user program.
   864       void nextIn(Edge&) const {}
   865 
   866 
   867       void firstInc(UEdge &, bool &, const Node &) const {}
   868 
   869       void nextInc(UEdge &, bool &) const {}
   870 
   871       /// \brief Base node of the iterator
   872       ///
   873       /// Returns the base node (the source in this case) of the iterator
   874       Node baseNode(OutEdgeIt e) const {
   875 	return source(e);
   876       }
   877       /// \brief Running node of the iterator
   878       ///
   879       /// Returns the running node (the target in this case) of the
   880       /// iterator
   881       Node runningNode(OutEdgeIt e) const {
   882 	return target(e);
   883       }
   884 
   885       /// \brief Base node of the iterator
   886       ///
   887       /// Returns the base node (the target in this case) of the iterator
   888       Node baseNode(InEdgeIt e) const {
   889 	return target(e);
   890       }
   891       /// \brief Running node of the iterator
   892       ///
   893       /// Returns the running node (the source in this case) of the
   894       /// iterator
   895       Node runningNode(InEdgeIt e) const {
   896 	return source(e);
   897       }
   898 
   899       /// \brief Base node of the iterator
   900       ///
   901       /// Returns the base node of the iterator
   902       Node baseNode(IncEdgeIt) const {
   903 	return INVALID;
   904       }
   905       
   906       /// \brief Running node of the iterator
   907       ///
   908       /// Returns the running node of the iterator
   909       Node runningNode(IncEdgeIt) const {
   910 	return INVALID;
   911       }
   912 
   913       template <typename Graph>
   914       struct Constraints {
   915 	void constraints() {
   916 	  checkConcept<BaseIterableUGraphConcept, Graph>();
   917 	  checkConcept<IterableUGraphConcept, Graph>();
   918 	  checkConcept<MappableUGraphConcept, Graph>();
   919 	}
   920       };
   921 
   922     };
   923 
   924     /// \brief An empty non-static undirected graph class.
   925     ///    
   926     /// This class provides everything that \ref UGraph does.
   927     /// Additionally it enables building graphs from scratch.
   928     class ExtendableUGraph : public UGraph {
   929     public:
   930       
   931       /// \brief Add a new node to the graph.
   932       ///
   933       /// Add a new node to the graph.
   934       /// \return the new node.
   935       Node addNode();
   936 
   937       /// \brief Add a new undirected edge to the graph.
   938       ///
   939       /// Add a new undirected edge to the graph.
   940       /// \return the new edge.
   941       UEdge addEdge(const Node& from, const Node& to);
   942 
   943       /// \brief Resets the graph.
   944       ///
   945       /// This function deletes all undirected edges and nodes of the graph.
   946       /// It also frees the memory allocated to store them.
   947       void clear() { }
   948 
   949       template <typename Graph>
   950       struct Constraints {
   951 	void constraints() {
   952 	  checkConcept<BaseIterableUGraphConcept, Graph>();
   953 	  checkConcept<IterableUGraphConcept, Graph>();
   954 	  checkConcept<MappableUGraphConcept, Graph>();
   955 
   956 	  checkConcept<UGraph, Graph>();
   957 	  checkConcept<ExtendableUGraphConcept, Graph>();
   958 	  checkConcept<ClearableGraphComponent, Graph>();
   959 	}
   960       };
   961 
   962     };
   963 
   964     /// \brief An empty erasable undirected graph class.
   965     ///
   966     /// This class is an extension of \ref ExtendableUGraph. It makes it
   967     /// possible to erase undirected edges or nodes.
   968     class ErasableUGraph : public ExtendableUGraph {
   969     public:
   970 
   971       /// \brief Deletes a node.
   972       ///
   973       /// Deletes a node.
   974       ///
   975       void erase(Node) { }
   976       /// \brief Deletes an undirected edge.
   977       ///
   978       /// Deletes an undirected edge.
   979       ///
   980       void erase(UEdge) { }
   981 
   982       template <typename Graph>
   983       struct Constraints {
   984 	void constraints() {
   985 	  checkConcept<ExtendableUGraph, Graph>();
   986 	  checkConcept<ErasableUGraphConcept, Graph>();
   987 	}
   988       };
   989 
   990     };
   991 
   992     /// @}
   993 
   994   }
   995 
   996 }
   997 
   998 #endif