An additional simplier interface for static size graphs.
Node operator()(int) for getting node by index
int index(Node node) for getting index by node
3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
24 #include <lemon/utility.h>
25 #include <lemon/traits.h>
29 ///\brief Miscellaneous property maps
31 ///\todo This file has the same name as the concept file in concept/,
32 /// and this is not easily detectable in docs...
41 /// Base class of maps.
43 /// Base class of maps.
44 /// It provides the necessary <tt>typedef</tt>s required by the map concept.
45 template<typename K, typename T>
54 /// Null map. (a.k.a. DoNothingMap)
56 /// If you have to provide a map only for its type definitions,
57 /// or if you have to provide a writable map, but
58 /// data written to it will sent to <tt>/dev/null</tt>...
59 template<typename K, typename T>
60 class NullMap : public MapBase<K, T> {
62 typedef MapBase<K, T> Parent;
63 typedef typename Parent::Key Key;
64 typedef typename Parent::Value Value;
66 /// Gives back a default constructed element.
67 T operator[](const K&) const { return T(); }
68 /// Absorbs the value.
69 void set(const K&, const T&) {}
72 template <typename K, typename V>
73 NullMap<K, V> nullMap() {
74 return NullMap<K, V>();
80 /// This is a readable map which assigns a specified value to each key.
81 /// In other aspects it is equivalent to the \ref NullMap.
82 /// \todo set could be used to set the value.
83 template<typename K, typename T>
84 class ConstMap : public MapBase<K, T> {
89 typedef MapBase<K, T> Parent;
90 typedef typename Parent::Key Key;
91 typedef typename Parent::Value Value;
93 /// Default constructor
95 /// The value of the map will be uninitialized.
96 /// (More exactly it will be default constructed.)
100 /// \param _v The initial value of the map.
102 ConstMap(const T &_v) : v(_v) {}
104 T operator[](const K&) const { return v; }
105 void set(const K&, const T&) {}
107 template<typename T1>
109 typedef ConstMap<K, T1> other;
112 template<typename T1>
113 ConstMap(const ConstMap<K, T1> &, const T &_v) : v(_v) {}
116 ///Returns a \ref ConstMap class
118 ///This function just returns a \ref ConstMap class.
120 template<typename K, typename V>
121 inline ConstMap<K, V> constMap(const V &v) {
122 return ConstMap<K, V>(v);
126 //\todo to document later
127 template<typename T, T v>
130 //\todo to document later
131 template<typename K, typename V, V v>
132 class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
134 typedef MapBase<K, V> Parent;
135 typedef typename Parent::Key Key;
136 typedef typename Parent::Value Value;
139 V operator[](const K&) const { return v; }
140 void set(const K&, const V&) { }
143 ///Returns a \ref ConstMap class
145 ///This function just returns a \ref ConstMap class.
147 template<typename K, typename V, V v>
148 inline ConstMap<K, Const<V, v> > constMap() {
149 return ConstMap<K, Const<V, v> >();
152 /// \c std::map wrapper
154 /// This is essentially a wrapper for \c std::map. With addition that
155 /// you can specify a default value different from \c Value() .
157 /// \todo Provide allocator parameter...
158 template <typename K, typename T, typename Compare = std::less<K> >
159 class StdMap : public std::map<K, T, Compare> {
160 typedef std::map<K, T, Compare> parent;
162 typedef typename parent::value_type PairType;
170 typedef T& Reference;
172 typedef const T& ConstReference;
176 /// Constructor with specified default value
177 StdMap(const T& _v) : v(_v) {}
179 /// \brief Constructs the map from an appropriate std::map.
181 /// \warning Inefficient: copies the content of \c m !
182 StdMap(const parent &m) : parent(m) {}
183 /// \brief Constructs the map from an appropriate std::map, and explicitly
184 /// specifies a default value.
186 /// \warning Inefficient: copies the content of \c m !
187 StdMap(const parent &m, const T& _v) : parent(m), v(_v) {}
189 template<typename T1, typename Comp1>
190 StdMap(const StdMap<Key, T1,Comp1> &m, const T &_v) {
194 Reference operator[](const Key &k) {
195 return insert(PairType(k,v)).first -> second;
198 ConstReference operator[](const Key &k) const {
199 typename parent::iterator i = lower_bound(k);
200 if (i == parent::end() || parent::key_comp()(k, (*i).first))
204 void set(const Key &k, const T &t) {
205 parent::operator[](k) = t;
208 /// Changes the default value of the map.
209 /// \return Returns the previous default value.
211 /// \warning The value of some keys (which has already been queried, but
212 /// the value has been unchanged from the default) may change!
213 T setDefault(const T &_v) { T old=v; v=_v; return old; }
215 template<typename T1>
217 typedef StdMap<Key, T1,Compare> other;
223 /// \addtogroup map_adaptors
226 /// \brief Identity mapping.
228 /// This mapping gives back the given key as value without any
230 template <typename T>
231 class IdentityMap : public MapBase<T, T> {
233 typedef MapBase<T, T> Parent;
234 typedef typename Parent::Key Key;
235 typedef typename Parent::Value Value;
237 const T& operator[](const T& t) const {
242 ///Returns an \ref IdentityMap class
244 ///This function just returns an \ref IdentityMap class.
245 ///\relates IdentityMap
247 inline IdentityMap<T> identityMap() {
248 return IdentityMap<T>();
252 ///Convert the \c Value of a map to another type.
254 ///This \ref concept::ReadMap "read only map"
255 ///converts the \c Value of a maps to type \c T.
256 ///Its \c Key is inherited from \c M.
257 template <typename M, typename T>
258 class ConvertMap : public MapBase<typename M::Key, T> {
261 typedef MapBase<typename M::Key, T> Parent;
262 typedef typename Parent::Key Key;
263 typedef typename Parent::Value Value;
268 ///\param _m is the underlying map
269 ConvertMap(const M &_m) : m(_m) {};
271 /// \brief The subscript operator.
273 /// The subscript operator.
275 /// \return The target of the edge
276 Value operator[](const Key& k) const {return m[k];}
279 ///Returns an \ref ConvertMap class
281 ///This function just returns an \ref ConvertMap class.
282 ///\relates ConvertMap
283 ///\todo The order of the template parameters are changed.
284 template<typename T, typename M>
285 inline ConvertMap<M, T> convertMap(const M &m) {
286 return ConvertMap<M, T>(m);
291 ///This \ref concept::ReadMap "read only map" returns the sum of the two
292 ///given maps. Its \c Key and \c Value will be inherited from \c M1.
293 ///The \c Key and \c Value of M2 must be convertible to those of \c M1.
295 template<typename M1, typename M2>
296 class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
301 typedef MapBase<typename M1::Key, typename M1::Value> Parent;
302 typedef typename Parent::Key Key;
303 typedef typename Parent::Value Value;
306 AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
307 Value operator[](Key k) const {return m1[k]+m2[k];}
310 ///Returns an \ref AddMap class
312 ///This function just returns an \ref AddMap class.
313 ///\todo How to call these type of functions?
316 ///\todo Wrong scope in Doxygen when \c \\relates is used
317 template<typename M1, typename M2>
318 inline AddMap<M1, M2> addMap(const M1 &m1,const M2 &m2) {
319 return AddMap<M1, M2>(m1,m2);
322 ///Shift a map with a constant.
324 ///This \ref concept::ReadMap "read only map" returns the sum of the
325 ///given map and a constant value.
326 ///Its \c Key and \c Value is inherited from \c M.
330 /// ShiftMap<X> sh(x,v);
332 ///is equivalent with
334 /// ConstMap<X::Key, X::Value> c_tmp(v);
335 /// AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
337 template<typename M, typename C = typename M::Value>
338 class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
342 typedef MapBase<typename M::Key, typename M::Value> Parent;
343 typedef typename Parent::Key Key;
344 typedef typename Parent::Value Value;
349 ///\param _m is the undelying map
350 ///\param _v is the shift value
351 ShiftMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
352 Value operator[](Key k) const {return m[k] + v;}
355 ///Returns an \ref ShiftMap class
357 ///This function just returns an \ref ShiftMap class.
359 ///\todo A better name is required.
360 template<typename M, typename C>
361 inline ShiftMap<M, C> shiftMap(const M &m,const C &v) {
362 return ShiftMap<M, C>(m,v);
365 ///Difference of two maps
367 ///This \ref concept::ReadMap "read only map" returns the difference
368 ///of the values of the two
369 ///given maps. Its \c Key and \c Value will be inherited from \c M1.
370 ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
372 template<typename M1, typename M2>
373 class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
377 typedef MapBase<typename M1::Key, typename M1::Value> Parent;
378 typedef typename Parent::Key Key;
379 typedef typename Parent::Value Value;
382 SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
383 Value operator[](Key k) const {return m1[k]-m2[k];}
386 ///Returns a \ref SubMap class
388 ///This function just returns a \ref SubMap class.
391 template<typename M1, typename M2>
392 inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
393 return SubMap<M1, M2>(m1, m2);
396 ///Product of two maps
398 ///This \ref concept::ReadMap "read only map" returns the product of the
401 ///maps. Its \c Key and \c Value will be inherited from \c M1.
402 ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
404 template<typename M1, typename M2>
405 class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
409 typedef MapBase<typename M1::Key, typename M1::Value> Parent;
410 typedef typename Parent::Key Key;
411 typedef typename Parent::Value Value;
414 MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
415 Value operator[](Key k) const {return m1[k]*m2[k];}
418 ///Returns a \ref MulMap class
420 ///This function just returns a \ref MulMap class.
422 template<typename M1, typename M2>
423 inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
424 return MulMap<M1, M2>(m1,m2);
427 ///Scales a maps with a constant.
429 ///This \ref concept::ReadMap "read only map" returns the value of the
430 ///given map multiplied from the left side with a constant value.
431 ///Its \c Key and \c Value is inherited from \c M.
435 /// ScaleMap<X> sc(x,v);
437 ///is equivalent with
439 /// ConstMap<X::Key, X::Value> c_tmp(v);
440 /// MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v);
442 template<typename M, typename C = typename M::Value>
443 class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
447 typedef MapBase<typename M::Key, typename M::Value> Parent;
448 typedef typename Parent::Key Key;
449 typedef typename Parent::Value Value;
454 ///\param _m is the undelying map
455 ///\param _v is the scaling value
456 ScaleMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
457 Value operator[](Key k) const {return v * m[k];}
460 ///Returns an \ref ScaleMap class
462 ///This function just returns an \ref ScaleMap class.
464 ///\todo A better name is required.
465 template<typename M, typename C>
466 inline ScaleMap<M, C> scaleMap(const M &m,const C &v) {
467 return ScaleMap<M, C>(m,v);
470 ///Quotient of two maps
472 ///This \ref concept::ReadMap "read only map" returns the quotient of the
474 ///given maps. Its \c Key and \c Value will be inherited from \c M1.
475 ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
477 template<typename M1, typename M2>
478 class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
482 typedef MapBase<typename M1::Key, typename M1::Value> Parent;
483 typedef typename Parent::Key Key;
484 typedef typename Parent::Value Value;
487 DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
488 Value operator[](Key k) const {return m1[k]/m2[k];}
491 ///Returns a \ref DivMap class
493 ///This function just returns a \ref DivMap class.
495 template<typename M1, typename M2>
496 inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
497 return DivMap<M1, M2>(m1,m2);
500 ///Composition of two maps
502 ///This \ref concept::ReadMap "read only map" returns the composition of
504 ///given maps. That is to say, if \c m1 is of type \c M1 and \c m2 is
508 /// ComposeMap<M1, M2> cm(m1,m2);
510 /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>
512 ///Its \c Key is inherited from \c M2 and its \c Value is from
514 ///The \c M2::Value must be convertible to \c M1::Key.
515 ///\todo Check the requirements.
517 template <typename M1, typename M2>
518 class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
522 typedef MapBase<typename M2::Key, typename M1::Value> Parent;
523 typedef typename Parent::Key Key;
524 typedef typename Parent::Value Value;
527 ComposeMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
529 typename MapTraits<M1>::ConstReturnValue
530 operator[](Key k) const {return m1[m2[k]];}
532 ///Returns a \ref ComposeMap class
534 ///This function just returns a \ref ComposeMap class.
536 ///\relates ComposeMap
537 template <typename M1, typename M2>
538 inline ComposeMap<M1, M2> composeMap(const M1 &m1,const M2 &m2) {
539 return ComposeMap<M1, M2>(m1,m2);
542 ///Combines of two maps using an STL (binary) functor.
544 ///Combines of two maps using an STL (binary) functor.
547 ///This \ref concept::ReadMap "read only map" takes two maps and a
548 ///binary functor and returns the composition of
550 ///given maps unsing the functor.
551 ///That is to say, if \c m1 and \c m2 is of type \c M1 and \c M2
552 ///and \c f is of \c F,
555 /// CombineMap<M1, M2,F,V> cm(m1,m2,f);
557 /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>
559 ///Its \c Key is inherited from \c M1 and its \c Value is \c V.
560 ///The \c M2::Value and \c M1::Value must be convertible to the corresponding
561 ///input parameter of \c F and the return type of \c F must be convertible
563 ///\todo Check the requirements.
565 template<typename M1, typename M2, typename F,
566 typename V = typename F::result_type,
568 class CombineMap : public MapBase<typename M1::Key, V> {
573 typedef MapBase<typename M1::Key, V> Parent;
574 typedef typename Parent::Key Key;
575 typedef typename Parent::Value Value;
578 CombineMap(const M1 &_m1,const M2 &_m2,const F &_f)
579 : m1(_m1), m2(_m2), f(_f) {};
580 Value operator[](Key k) const {return f(m1[k],m2[k]);}
583 ///Returns a \ref CombineMap class
585 ///This function just returns a \ref CombineMap class.
587 ///Only the first template parameter (the value type) must be given.
589 ///For example if \c m1 and \c m2 are both \c double valued maps, then
591 ///combineMap<double>(m1,m2,std::plus<double>)
593 ///is equivalent with
598 ///\relates CombineMap
599 template<typename M1, typename M2, typename F, typename V>
600 inline CombineMap<M1, M2, F, V>
601 combineMap(const M1& m1,const M2& m2, const F& f) {
602 return CombineMap<M1, M2, F, V>(m1,m2,f);
605 template<typename M1, typename M2, typename F>
606 inline CombineMap<M1, M2, F, typename F::result_type>
607 combineMap(const M1& m1, const M2& m2, const F& f) {
608 return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
611 template<typename M1, typename M2, typename K1, typename K2, typename V>
612 inline CombineMap<M1, M2, V (*)(K1, K2), V>
613 combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
614 return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
617 ///Negative value of a map
619 ///This \ref concept::ReadMap "read only map" returns the negative
621 ///value returned by the
622 ///given map. Its \c Key and \c Value will be inherited from \c M.
623 ///The unary \c - operator must be defined for \c Value, of course.
626 class NegMap : public MapBase<typename M::Key, typename M::Value> {
629 typedef MapBase<typename M::Key, typename M::Value> Parent;
630 typedef typename Parent::Key Key;
631 typedef typename Parent::Value Value;
634 NegMap(const M &_m) : m(_m) {};
635 Value operator[](Key k) const {return -m[k];}
638 ///Returns a \ref NegMap class
640 ///This function just returns a \ref NegMap class.
642 template <typename M>
643 inline NegMap<M> negMap(const M &m) {
648 ///Absolute value of a map
650 ///This \ref concept::ReadMap "read only map" returns the absolute value
652 ///value returned by the
653 ///given map. Its \c Key and \c Value will be inherited
654 ///from <tt>M</tt>. <tt>Value</tt>
655 ///must be comparable to <tt>0</tt> and the unary <tt>-</tt>
656 ///operator must be defined for it, of course.
658 ///\bug We need a unified way to handle the situation below:
660 /// struct _UnConvertible {};
661 /// template<class A> inline A t_abs(A a) {return _UnConvertible();}
662 /// template<> inline int t_abs<>(int n) {return abs(n);}
663 /// template<> inline long int t_abs<>(long int n) {return labs(n);}
664 /// template<> inline long long int t_abs<>(long long int n) {return ::llabs(n);}
665 /// template<> inline float t_abs<>(float n) {return fabsf(n);}
666 /// template<> inline double t_abs<>(double n) {return fabs(n);}
667 /// template<> inline long double t_abs<>(long double n) {return fabsl(n);}
672 class AbsMap : public MapBase<typename M::Key, typename M::Value> {
675 typedef MapBase<typename M::Key, typename M::Value> Parent;
676 typedef typename Parent::Key Key;
677 typedef typename Parent::Value Value;
680 AbsMap(const M &_m) : m(_m) {};
681 Value operator[](Key k) const {
683 return tmp >= 0 ? tmp : -tmp;
688 ///Returns a \ref AbsMap class
690 ///This function just returns a \ref AbsMap class.
693 inline AbsMap<M> absMap(const M &m) {
697 ///Converts an STL style functor to a map
699 ///This \ref concept::ReadMap "read only map" returns the value
703 ///Template parameters \c K and \c V will become its
704 ///\c Key and \c Value. They must be given explicitely
705 ///because a functor does not provide such typedefs.
707 ///Parameter \c F is the type of the used functor.
711 typename K = typename F::argument_type,
712 typename V = typename F::result_type,
714 class FunctorMap : public MapBase<K, V> {
717 typedef MapBase<K, V> Parent;
718 typedef typename Parent::Key Key;
719 typedef typename Parent::Value Value;
722 FunctorMap(const F &_f) : f(_f) {}
724 Value operator[](Key k) const { return f(k);}
727 ///Returns a \ref FunctorMap class
729 ///This function just returns a \ref FunctorMap class.
731 ///The third template parameter isn't necessary to be given.
732 ///\relates FunctorMap
733 template<typename K, typename V, typename F> inline
734 FunctorMap<F, K, V> functorMap(const F &f) {
735 return FunctorMap<F, K, V>(f);
738 template <typename F> inline
739 FunctorMap<F, typename F::argument_type, typename F::result_type>
740 functorMap(const F &f) {
741 return FunctorMap<F, typename F::argument_type,
742 typename F::result_type>(f);
745 template <typename K, typename V> inline
746 FunctorMap<V (*)(K), K, V> functorMap(V (*f)(K)) {
747 return FunctorMap<V (*)(K), K, V>(f);
751 ///Converts a map to an STL style (unary) functor
753 ///This class Converts a map to an STL style (unary) functor.
754 ///that is it provides an <tt>operator()</tt> to read its values.
756 ///For the sake of convenience it also works as
757 ///a ususal \ref concept::ReadMap "readable map",
758 ///i.e. <tt>operator[]</tt> and the \c Key and \c Value typedefs also exist.
760 template <typename M>
761 class MapFunctor : public MapBase<typename M::Key, typename M::Value> {
764 typedef MapBase<typename M::Key, typename M::Value> Parent;
765 typedef typename Parent::Key Key;
766 typedef typename Parent::Value Value;
769 typedef typename M::Key argument_type;
771 typedef typename M::Value result_type;
774 MapFunctor(const M &_m) : m(_m) {};
775 ///Returns a value of the map
776 Value operator()(Key k) const {return m[k];}
778 Value operator[](Key k) const {return m[k];}
781 ///Returns a \ref MapFunctor class
783 ///This function just returns a \ref MapFunctor class.
784 ///\relates MapFunctor
786 inline MapFunctor<M> mapFunctor(const M &m) {
787 return MapFunctor<M>(m);
791 ///Applies all map setting operations to two maps
793 ///This map has two \ref concept::WriteMap "writable map"
794 ///parameters and each write request will be passed to both of them.
795 ///If \c M1 is also \ref concept::ReadMap "readable",
796 ///then the read operations will return the
797 ///corresponding values of \c M1.
799 ///The \c Key and \c Value will be inherited from \c M1.
800 ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
802 template<typename M1, typename M2>
803 class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
807 typedef MapBase<typename M1::Key, typename M1::Value> Parent;
808 typedef typename Parent::Key Key;
809 typedef typename Parent::Value Value;
812 ForkMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
813 Value operator[](Key k) const {return m1[k];}
814 // void set(Key k, const Value &v) {m1.set(k,v); m2.set(k,v);}
817 ///Returns an \ref ForkMap class
819 ///This function just returns an \ref ForkMap class.
820 ///\todo How to call these type of functions?
823 ///\todo Wrong scope in Doxygen when \c \\relates is used
824 template <typename M1, typename M2>
825 inline ForkMap<M1, M2> forkMap(const M1 &m1,const M2 &m2) {
826 return ForkMap<M1, M2>(m1,m2);
831 /* ************* BOOL MAPS ******************* */
833 ///Logical 'not' of a map
835 ///This bool \ref concept::ReadMap "read only map" returns the
836 ///logical negation of
837 ///value returned by the
838 ///given map. Its \c Key and will be inherited from \c M,
839 ///its Value is <tt>bool</tt>.
841 template <typename M>
842 class NotMap : public MapBase<typename M::Key, bool> {
845 typedef MapBase<typename M::Key, bool> Parent;
846 typedef typename Parent::Key Key;
847 typedef typename Parent::Value Value;
850 NotMap(const M &_m) : m(_m) {};
851 Value operator[](Key k) const {return !m[k];}
854 ///Returns a \ref NotMap class
856 ///This function just returns a \ref NotMap class.
858 template <typename M>
859 inline NotMap<M> notMap(const M &m) {
863 /// \brief Writable bool map for store each true assigned elements.
865 /// Writable bool map for store each true assigned elements. It will
866 /// copies all the true setted keys to the given iterator.
868 /// \note The container of the iterator should contain for each element.
869 template <typename _Iterator>
872 typedef _Iterator Iterator;
874 typedef typename std::iterator_traits<Iterator>::value_type Key;
878 StoreBoolMap(Iterator it) : _begin(it), _end(it) {}
880 /// Gives back the given first setted iterator.
881 Iterator begin() const {
885 /// Gives back the iterator after the last setted.
886 Iterator end() const {
890 /// Setter function of the map
891 void set(const Key& key, Value value) {
898 Iterator _begin, _end;
901 /// \brief Writable bool map for store each true assigned elements in
902 /// a back insertable container.
904 /// Writable bool map for store each true assigned elements in a back
905 /// insertable container. It will push back all the true setted keys into
907 template <typename Container>
908 class BackInserterBoolMap {
910 typedef typename Container::value_type Key;
914 BackInserterBoolMap(Container& _container) : container(_container) {}
916 /// Setter function of the map
917 void set(const Key& key, Value value) {
919 container.push_back(key);
924 Container& container;
927 /// \brief Writable bool map for store each true assigned elements in
928 /// a front insertable container.
930 /// Writable bool map for store each true assigned elements in a front
931 /// insertable container. It will push front all the true setted keys into
933 template <typename Container>
934 class FrontInserterBoolMap {
936 typedef typename Container::value_type Key;
940 FrontInserterBoolMap(Container& _container) : container(_container) {}
942 /// Setter function of the map
943 void set(const Key& key, Value value) {
945 container.push_front(key);
950 Container& container;
953 /// \brief Writable bool map for store each true assigned elements in
954 /// an insertable container.
956 /// Writable bool map for store each true assigned elements in an
957 /// insertable container. It will insert all the true setted keys into
959 template <typename Container>
960 class InserterBoolMap {
962 typedef typename Container::value_type Key;
966 InserterBoolMap(Container& _container) : container(_container) {}
968 /// Setter function of the map
969 void set(const Key& key, Value value) {
971 container.insert(key);
976 Container& container;
979 /// \brief Fill the true setted elements with a given value.
981 /// Writable bool map for fill the true setted elements with a given value.
982 /// The value can be setted
984 template <typename Map>
987 typedef typename Map::Key Key;
991 FillBoolMap(Map& _map, const typename Map::Value& _fill)
992 : map(_map), fill(_fill) {}
995 FillBoolMap(Map& _map)
996 : map(_map), fill() {}
998 /// Gives back the current fill value
999 typename Map::Value fillValue() const {
1003 /// Sets the current fill value
1004 void fillValue(const typename Map::Value& _fill) {
1008 /// Setter function of the map
1009 void set(const Key& key, Value value) {
1017 typename Map::Value fill;
1021 /// \brief Writable bool map which stores for each true assigned elements
1022 /// the setting order number.
1024 /// Writable bool map which stores for each true assigned elements
1025 /// the setting order number.
1026 template <typename Map>
1027 class SettingOrderBoolMap {
1029 typedef typename Map::Key Key;
1033 SettingOrderBoolMap(Map& _map)
1034 : map(_map), counter(0) {}
1036 /// Number of setted keys.
1041 /// Setter function of the map
1042 void set(const Key& key, Value value) {
1044 map.set(key, counter++);
1056 #endif // LEMON_MAPS_H